New Phytologist Supporting Information

Article title: Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus

Authors: Nick W. Albert, Eugenio Butelli, Sarah M. A. Moss, Paolo Piazza, Chethi N. Waite, Kathy E. Schwinn, Kevin M. Davies and Cathie Martin

Article acceptance date: 30 November 2020

Contents:

Supporting Figure S1: Differences in *mutabilis* phenotypes between greenhouse and field-grown plants of *A.majus*

Supporting Figure S2 Lack of complementation between inc I¹ and inc I² of A.majus

Supporting Figure S3: RNA gel blot showing lack of *Inc I* transcript in flower lobes of the *mutabilis* mutant of *A.majus*

Supporting Figure S4 Sectors caused by excision of a transposable element (Tam 2) from the *Del* gene in *inc I²: del^{rec}* plants of *A.majus*

Supporting Figure S5 Phenotype of *del*²³ allele of *A.majus*

Supporting Figure S6: Molecular analysis of *del*²³ of *A.majus*

Supporting Figure S7: Impaired expression of anthocyanin biosynthetic genes in flowers of the *inc I*² mutant of *A.majus*

Supporting Figure S8: Phenotypes of *pallida* mutants of *A.majus* with deletions in their UAS controlling *DFR* expression caused by imprecise transposon excision and described by Almeida *et al* (1989)

Supporting Dataset S1: Amino acid alignment of bHLH proteins

Supporting Table S1: Primers used in this study

Supporting references

Supporting Figure S1: Differences in *mutabilis* phenotypes of *A. majus* between greenhouse and field-grown plants.

Different phenotypes of *mutabilis* mutant in greenhouse and fieldgrown plants

Arrow shows acyanic area of petal lobe shielded from the light by the other folds of the petal lobes in the flower buds

Field grown

Supporting Figure S2:

Supporting Figure S2: Lack of complementation between *inc I¹* and *inc I² in A. majus*

The phenotypes of the *mutabilis* and *incolorata I* mutants are shown with the phenotypes of two of their F_1 progeny.

Supporting Figure S3: RNA gel blot showing lack of *Inc I* transcript in flowers of the *mutabilis* mutant *of A. majus*

Total RNA from flower lobes (L) from the *inc I*² mutant lack *Inc I* transcript compared to total RNA from lobes of *del* mutants. No *Inc I* transcript was detected in flower tubes (T) of the *del* mutant. *Inc I* transcript was detected in lobes of wild type (*Del*) flowers and also faintly in tube tissue from wildtype flowers. Transcript levels of *Ros 1* in the same RNA preparations are shown below as loading controls. The *Inc I* probe was pJAM1494, the *Ros 1* probe was pJAM1450 (Schwinn *et al.*, 2006).

Supporting Figure S4:

Supporting Figure S4: Sectors caused by excision of the transposable element (Tam 2) from the *Del* gene in *inc* l^2 : *del*^{*rec}</sup> <i>A. majus* plants showing that Del activity can complement Inc I activity in flower lobes. Arrows point to a *Del*^{+,} full red revertant sector that includes both lobe and tube tissue in an *inc* $l^2/inc l^2$: *del*^{*rec*} /*del*^{*rec*} mutant line **a**) shows side view of flowers **b**) shows dorsal view of same flowers.</sup>

Supporting Figure S5:

Supporting Figure S5: Phenotype of *del*²³ allele of *A. majus*a) shows wild type *Del* phenotype b) shows *del*²³ phenotype c) shows *del* loss-of-function phenotype

Supporting Figure S6:

Supporting Figure S6: Molecular analysis of *del*²³ of *A. majus*

a) qRT-PCR amplification of *Del* transcript in flowers of *del^{rec}* and *del²³* lines. **b)** Nucleotide sequence alignment of the reference genome WT JI:7 (upper sequence) and JI:23 (lower sequence). Annotations of sequence variants relative to the JI:7 reference genome are as follows: single nucleotide polymorphisms are indicated in blue, insertions in green, deletions in red below the aligned genomic sequences. The predominant transcript amplified from JI:23 flowers spliced into an insertion within intron five (see enlarged sequence in dashed-red box), inserting one additional amino acid (indicated by upper transcript shown scarlet bar). Rarely, the *del²³* transcript spliced correctly (indicated by lower transcript shown as scarlet bar).

Supporting Figure S7:

Supporting Figure S7: Impaired expression of anthocyanin biosynthetic genes in flowers of the *inc I*² mutant of *A. majus*

RNA gel blots of total RNA (25 µg) were hybridised with ³²P dCTP-labelled probes for the anthocyanin biosynthetic genes *CHS, CHI, F3H, DFR, ANS* and *3GT* or the 26S rRNA (loading control). RNA gel blots showed reduced transcript abundance for the anthocyanin biosynthetic genes *F3H, DFR, ANS* and *3GT* in the lobes of *inc I*² mutants compared with wild-type. This confirmed that the weak pigmentation in *inc I*² is because of impaired activation of the anthocyanin biosynthesis.

Supporting Figure S8

Supporting Figure S8: Phenotypes of *pallida* mutants of *A. majus* with deletions in their UAS controlling *DFR* expression caused by imprecise transposon excision and described by Almeida *et al* (1989)

a) Phenotypes of *pallida* alleles affected in the structure of the *DFR* promoter in *A. majus*.

b) Diagram of the UAS in *DFR* promoter in WT (JI:520) and mutant alleles of the *Pallida* locus encoding *DFR* in *A. majus*. The sequence of the UAS interacting with the MBW complex defined in this study (AC-box 1, G-box 1 and AC-box 2) are shown for each allele as well as the regions of the DFR promoter, boxes A, B and C, defined as important for regulation by Almeida *et al.*, (1989). TS1 = transcriptional start site 1, TATA 1 = TATA box associated with TS1, TS2 = transcriptional start site 2 and TATA 2 = TATA box associated with TS2 in *DFR* promoter of *A. majus* (Coen *et al.*, 1986).

Supporting Dataset S1: Amino acid alignment of bHLH proteins. MUSCLE alignment of bHLH proteins used for Maximum likelihood phylogenetic tree in Figure 2c.

Supporting Table S1: Primers used in this study						
Number	Primer	Sequence	Application			
NA587	Incolorata I Am02g53780	CTAAGAATTCAAGTTGCATCAGGC	Sequencing			
NA588	Incolorata I Am02g53780	AGCCTTAGTTTGGTTCCCAGG	Sequencing			
NA589	Incolorata I Am02g53780	GTGAGATTCACAATAGCTTTGGC	Sequencing			
NA590	Incolorata I Am02g53780	CAAGTCAGAAAATTAGGTGGCG	Sequencing			
NA591	Incolorata I Am02g53780	TGAATGTTCTCTGCACATGCC	Sequencing			
NA592	Incolorata I Am02g53780	GCGCGAAACCACATGAAGG	Sequencing			
SM119	Incolorata I Am02g53780	GAGAAGTACTAAAATGGCTGCAC	Sequencing			
SM120	Incolorata I Am02g53780	CTTGGCTCCGCACCTAGTG	Sequencing			
SM121	Incolorata I Am02g53780	CTAGTGTGGCGTGATGGATATTAC	Sequencing			
SM122	Incolorata / Am02g53780	GCTGTTTGATTCTCCGGCAG	Sequencing			
SM123	Incolorata I Am02g53780	GTTCGCATAACACTAGTAACCG	Sequencing			
SM124	Incolorata I Am02g53780	CCTTAGCAAGAATTGTCCTGGA	Sequencing			
SM125	Incolorata I Am02g53780	CATCCGAGTCCGACTCAGC	Sequencing			
SM126	Incolorata I Am02g53780	GTGCTTCCGAATCGTGAACT	Sequencing			
SM127	Incolorata I Am02g53780	GAGAATAGGTGATTATACGGGACA	Sequencing			
SM128	Incolorata I Am02g53780	CCATGGACAAGTCAGTAGGCC	Sequencing			
SM129	Incolorata I Am02g53780	CCCGAATTTTGACTAGCCAAATAC	Sequencing			
SM130	Incolorata I Am02g53780	CTCTCTCTCAGCCCTGAAAGC	Sequencing			
SM131	Incolorata I Am02g53780	CACTGAACAGCTTGAACCGC	Sequencing			
SM132	Incolorata I Am02g53780	AGGCTGTAAGTCCACTGAACAG	Sequencing			
SM133	Incolorata I Am02g53780	GTTAATCACTCGGTTCATTTCAATTAG	Sequencing			
SM134	Incolorata I Am02g53780	TGGCATGGTTGAAGCAAGAC	Sequencing			
SM135	Incolorata I Am02g53780	CTTACTTGTATTCCAGCACTCTTG	Sequencing			
SM136	Incolorata I Am02g53780	CACACAAAAGGGGTGGAGGAG	Sequencing			
SM137	Incolorata I Am02g53780	GGTGAAGGAGAATGTGAATGGTAG	Sequencing			
SM138	Incolorata I Am02g53780	TTAGACTGAGAAGCCGGAGC	Sequencing			
	<u> </u>					
			Cloning/			
NA560	Delila (del ²³ allele)	CACCaaaATGGCTACTGGTGTCCAAAAC	Sequencing			
			Cloning/			
NA561	Delila (del ²³ allele)	TCAAGACTTCATAATAACTTTCTGAAGAG	Sequencing			
SM112	Delila Am02g33340	GGATTCAAGAATGGCTACTGGT	Sequencing			
SM113	Delila Am02g33340	AGCCCTGCAAATTACTTAGCAA	Sequencing			
SM114	Delila Am02g33340	GGTGATGGGTTCTACAATGGAG	Sequencing			
SM115	Delila Am02g33340	GATTCAATTCGACAGATTGTACAGT	Sequencing			
SM116	Delila Am02g33340	GTGCGGACACCAAAGTTTTC	Sequencing			
SM117	Delila Am02g33340	GCTTTTGAATTGTCCAGACACG	Sequencing			
SM118	Delila Am02g33340	GAAACCACGTCTTGTCAGAGAG	Sequencing			
		CACCAAAATGGCAACTGGAAACCAAAATGATA	Cloning/			
NA556	Del-like Am02g28470	ATG	Sequencing			
			Cloning/			
NA559	Del-like Am02g28470	TCAAGACTCCCTCATAACCTTCTGC	Sequencing			
NA557	Del-like Am02g28470	CTACCGCAATTCTCAACCATGTC	Sequencing			

NA558	Del-like Am02g28470	CGGCCACAAACTGATTATGACC	Sequencing
NA568	Del-like Am02g28470	GGTTGTGTAGCTGAGATGGAC	Sequencing
NA569	Del-like Am02g28470	GACCTAGTTGAGACACTCGAC	Sequencing
NA570	Del-like Am02g28470	TGGGCAGATCAGGGAGAC	Sequencing
NA571	Del-like Am02g28470	ATCGATTTGTGTGTGTGGAAC	Sequencing
K112	WDR1	ATHGAYACIACITGYACIATHTGGGA	3'RACE
K113	WDR1	TGGAAYAARCARGAYYTIMGITAYATGGC	3'RACE
(dT)17-	cDNA synthesis for 3'RACE	GACTCGAGTCGACATCGATTTTTTTTTTTTTTTT	3'RACE
adaptor	Frohman et al., 1988		
adaptor	Adapter primer for 3'RACE	GACTCGAGCGACATCGAT	3'RACE
	Frohman et al., 1988		
K127	WDR1	GCACCAAACATCGACATGGGAACAATC	Gene walking
K128	WDR1	AGCAACCGTCGGCAGTTCCCACAGCAA	Gene walking
K133	WDR1	tgcaGGTACCAATGGACATTTCAACCCAC	Cloning cDNA
K134	WDR1	tcgaTCTAGAGAGAGCTAAAGCCGTCGAC	Cloning cDNA
K564	Am EF1a Am01g17900	GACTGCCACACCTCCCACATTG	qPCR
K565	Am EF1a Am01g17900	TCACCATACCAGCGTCACCATTC	qPCR
	Am Cyclophilin		qPCR
K566	Am05g43400	CCAGGGCGGCGATTTCACC	
	Am Cyclophilin		qPCR
K567	Am05g43400	GCGTTCGCCATGGACAGGATTC	
K488	Nivea/CHS Am04g40840	TGCTGCGTATGGCGAAGGACT	qPCR
K489	Nivea/CHS Am04g40840	CCGCGGTAACGATCTGGAAAA	qPCR
K461	Pallida/DFR Am06g29640	CACATCAATGGACAAGAGAATGC	qPCR
K462	Pallida/DFR Am06g29640	GCCATCAGTATGATCGTTTGC	qPCR
NA621	Candi/ANS Am02g33790	GGTTGAGGAGAAGGAGAAGC	qPCR
NA622	Candi/ANS Am02g33790	CCACTCCAGTTGACCACTAG	qPCR
NA623	3-O-UFGT Am02g24600	TGAGAGTGTTATGGTCGTGG	qPCR
NA624	3-O-UFGT Am02g24600	CTCCTGAACTCCCTTATCACC	qPCR
NA625	CHI Am02g23710	CTGCGATCACCCAAATTCAG	qPCR
NA626	CHI Am02g23710	ACTTGATGAACTTCCCCTGG	qPCR
NA631	Inc II/F3H Am05g03330	TACTTTGCTGCTCCAGGATC	qPCR
NA632	Inc II/F3H Am05g03330	GAGTTCACAACTGCTTGGTG	qPCR
K562	Rosea1 Am06g36450	AGGATGGGGAATTAGGAAACCTA	qPCR
K563	Rosea1 Am06g36450	CTCTCCATAACATCAGTAATCTC	qPCR
K297	WDR1 Am01g20780	TGGGCGCCGCACAGTTG	qPCR
K299	WDR1 Am01g20780	GCTAAAGCCGTCGACTACCTCACA	qPCR
SM13	Incolorata I Am02g53780	CCTCGTGCCGTTTGTTACTA	qPCR
SM14	Incolorata / Am02g53780	CTCGAGCTCCTCAATCTTCTTC	qPCR
SM15	Delila Am02g33340	ATTCTTGCATCCCTAGTCCCATCC	qPCR
SM16	Delila Am02g33340	CCCCCGGCCCTTTACCATTTT	qPCR
NA562	Del-like Am02g28470	TGTGGAGGCAAAGAGTGATTTA	qPCR
NA563	Del-like Am02g28470	CCCTTCCACTTGGCTCTTATAG	qPCR
			-
EB-665	Pallida/DFR promoter	GTTATCACGTGCCTCGCGA	Deletion for
	Am06g29640		p2551 and

			p2552
EB-666	Pallida/DFR promoter	TTTAGGAAGGTGATAGTATTACGTACT	Deletion for
	Am06g29640		p2551 and
			p2565
EB-668	Pallida/DFR promoter	GTATAAACTATGCCACTTCTATGACA	Deletion for
	Am06g29640		p2552
EB-672	Pallida/DFR promoter	TTTATATAGTACGTAATACTATCACCTTC	Deletion for
	Am06g29640		p2557
EB-674	Pallida/DFR promoter	AAGCTTATTCAAAAATCGTATAGAAATTCA	Deletion for
	Am06g29640		p2557
EB-697	Pallida/DFR promoter	GTCTTGGAAAGTTAGGAGAATTTCGT	Deletion for
	Am06g29640		p2565 and
			p2571
EB-719	Pallida/DFR promoter	AGGCACGTGATAACCCTACCA	Deletion for
			p2571

Supplementary references:

- Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES. 1989. Genetic interactions underlying flower color patterns in *Antirrhinum majus*. *Genes & Development* **3**(11): 1758-1767.
- **Coen ES, Carpenter R, Martin C. 1986.** Transposable elements generate novel spatial patterns of geneexpression in *Antirrhinum majus*. *Cell* **47**(2): 285-296.
- Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell **18**(4): 831-851.