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Abstract: A reliable, remote, and continuous real-time respiratory sound monitor with automated
respiratory sound analysis ability is urgently required in many clinical scenarios—such
as in monitoring disease progression of coronavirus disease 2019—to replace
conventional auscultation with a handheld stethoscope. However, a robust
computerized respiratory sound analysis algorithm has not yet been validated in
practical applications. In this study, we developed a lung sound database
(HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each),
34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious
sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740
rhonchi labels), and 15,606 discontinuous adventitious sound labels (all crackles). We
conducted benchmark tests for long short-term memory (LSTM), gated recurrent unit
(GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural
network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath
phase detection and adventitious sound detection. We also conducted a performance
comparison between the LSTM-based and GRU-based models, between unidirectional
and bidirectional models, and between models with and without a CNN. The results
revealed that these models exhibited adequate performance in lung sound analysis.
The GRU-based models outperformed, in terms of  F1  scores and areas under the
receiver operating characteristic curves, the LSTM-based models in most of the
defined tasks. Furthermore, all bidirectional models outperformed their unidirectional
counterparts. Finally, the addition of a CNN improved the accuracy of lung sound
analysis, especially in the CAS detection tasks.
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ABSTRACT 25 

A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory 26 

sound analysis ability is urgently required in many clinical scenarios—such as in monitoring disease 27 

progression of coronavirus disease 2019—to replace conventional auscultation with a handheld 28 

stethoscope. However, a robust computerized respiratory sound analysis algorithm has not yet been 29 

validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) 30 

comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 31 

exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze 32 

labels, 686 stridor labels, and 4,740 rhonchi labels), and 15,606 discontinuous adventitious sound 33 

labels (all crackles). We conducted benchmark tests for long short-term memory (LSTM), gated 34 

recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional 35 

neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath 36 

phase detection and adventitious sound detection. We also conducted a performance comparison 37 

between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, 38 

and between models with and without a CNN. The results revealed that these models exhibited 39 

adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 40 

scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of 41 

the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. 42 

Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS 43 
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detection tasks. 44 

 45 
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1. Introduction 48 

Respiration is vital for the normal functioning of the human body. Therefore, clinical physicians 49 

are frequently required to examine respiratory conditions. Respiratory auscultation [1-3] using a 50 

stethoscope has long been a crucial first-line physical examination. The chestpiece of a stethoscope 51 

is usually placed on a patient’s chest or back for lung sound auscultation or over the patient’s 52 

tracheal region for tracheal sound auscultation. During auscultation, breath cycles can be inferred, 53 

which help clinical physicians evaluate the patient’s respiratory rate. In addition, pulmonary 54 

pathologies are suspected when the frequency or intensity of respiratory sounds changes or when 55 

adventitious sounds, including continuous adventitious sounds (CASs) and discontinuous 56 

adventitious sounds (DASs), are identified [1, 2, 4]. Patients with coronavirus disease 2019 exhibit 57 

adventitious sounds [5]; hence, auscultation may be a useful approach for disease diagnosis [6] and 58 

disease progression tracking. However, auscultation performed using a conventional handheld 59 

stethoscope involves some limitations [7]. First, the interpretation of auscultation results 60 

substantially depends on the subjectivity of the practitioners. Even experienced clinicians might not 61 

have high consensus rates in their interpretations of auscultatory manifestations [8, 9]. Second, 62 

auscultation is a qualitative analysis method. Comparing auscultation results between individuals and 63 

quantifying the sound change by reviewing historical records are difficult tasks. Third, prolonged 64 

continuous monitoring of respiratory sound is almost impractical. 65 
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To overcome the aforementioned limitations, computerized methods for respiratory sound 66 

recording and analyses based on traditional signal processing and machine learning have been 67 

proposed and reviewed [4, 10-13]. With the advent of the deep learning era, studies have developed 68 

novel deep learning–based methods for respiratory sound analysis. However, many of such studies 69 

have focused on only distinguishing healthy participants from participants with respiratory disorders 70 

[14-18] and distinguishing various types of normal breathing sounds from adventitious sounds 71 

[19-25]. Only a few studies [26-29] have explored the use of deep learning for detecting breath 72 

phases and adventitious sounds. Moreover, most previous studies on computerized lung sound 73 

analysis have been limited by insufficient data. As of writing this paper, the largest reported 74 

respiratory sound database is ICBHI 2017 Challenge [30], which comprises 6,898 breath cycles and 75 

10,775 events of wheezes and crackles acquired from 126 individuals.  76 

Data size plays a major role in the creation of a robust and accurate deep learning–based respiratory 77 

sound analysis algorithm [31, 32]. Accordingly, the first aim of the present study was to establish a 78 

large and open-access respiratory sound database for training such algorithms for the detection of 79 

breath phase and adventitious sounds, mainly focusing on lung sounds. The second aim was to conduct 80 

a benchmark test on the established lung sound database by using eight recurrent neural network 81 

(RNN)-based models. RNNs [33] are effective for time-series analysis; long short-term memory 82 

(LSTM) [34] and gated recurrent unit (GRU) [35] networks, which are two RNN variants, exhibit 83 

superior performance to the original RNN model. However, whether LSTM models are superior to 84 
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GRU models (and vice versa) in many applications, particularly in respiratory sound analysis, is 85 

inconclusive. Bidirectional RNN models [36, 37] can transfer not only past information to the future 86 

but also future information to the past; these models consistently exhibit superior performance to 87 

unidirectional RNN models in many applications [38-40] as well as in breath phase and crackle 88 

detection [29]. However, whether bidirectional RNN models outperform unidirectional RNN models in 89 

CAS detection has yet to be determined. Furthermore, the convolutional neural network (CNN)–RNN 90 

structure has been proven to be suitable for heart sound analysis [41], lung sound analysis [19], and 91 

other tasks [39, 42]. Nevertheless, the application of the CNN–RNN structure in respiratory sound 92 

detection has yet to be fully investigated. Benchmarking can enable demonstrating the reliability and 93 

goodness of a database; it can also be applied to investigate the performance of the RNN variants in 94 

respiratory analysis.  95 

In summary, the aims of this study are outlined as follows: 96 

 Establish the largest open-access lung sound database as of writing this paper—HF_Lung_V1 97 

(https://gitlab.com/techsupportHF/HF_Lung_V1). 98 

 Conduct a performance comparison between LSTM and GRU models, between unidirectional and 99 

bidirectional models, and between models with and without a CNN in breath phase and 100 

adventitious sound detection based on lung sound data. 101 

 Discuss factors influencing model performance. 102 

 103 
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2 Establishment of the lung sound database 104 

2.1 Data sources and patients 105 

The lung sound database was established using two sources. The first source was a database 106 

used in a datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the license 107 

of Creative Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of Emergency 108 

and Critical Care Medicine. Lung sound recordings in the TSECC database were acquired from 261 109 

patients. 110 

The second source was sound recordings acquired from 18 residents of a respiratory care ward 111 

(RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2018 and October 112 

2019. The recordings were approved by the Research Ethics Review Committee of Far Eastern 113 

Memorial Hospital (case number: 107052-F). Written informed consent was obtained from the 18 114 

patients. This study was conducted in accordance with the 1964 Helsinki Declaration and its later 115 

amendments or comparable ethical standards. 116 

All patients were Taiwanese and aged older than 20 years. Descriptive statistics regarding the 117 

patients’ demographic data, major diagnosis, and comorbidities are presented in Table 1; however, 118 

information on the patients in the TSECC database is missing. Moreover, all 18 RCW/RCC residents 119 

were under mechanical ventilation. 120 

 121 

Table 1. Demographic data of patients. 122 
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Subjects from 

RCW/RCC 

Subjects in 

TSECC Database 

Number (n) 18 261 

Gender (M/F) 11/7 NA 

Age 67.5 (36.7, 98.3) NA 

Height (cm) 163.6 (147.2, 180.0) NA 

Weight (kg) 62.1 (38.2, 86.1) NA 

BMI (kg/m2) 23.1 (15.6, 30.7) NA 

Respiratory Diseases 

ARF 4 (22.2%) NA 

CRF 8 (44.4%) NA 

COPD AE 1 (5.6%) NA 

COPD 2 (11.1%) NA 

Pneumonia 4 (22.2%) NA 

ARDS 1 (5.6%) NA 

Emphysema 1 (5.6%) NA 

Comorbidity 

CKD 1 (5.6%) NA 

AKI 3 (16.7%) NA 

CHF 2 (11.1%) NA 

DM 7 (38.9%) NA 

HTN 6 (33.3%) NA 

Malignancy 1 (5.6%) NA 

Arrythmia 1 (5.6%) NA 

CAD 1 (5.6%) NA 

RCW: respiratory care ward, RCC: respiratory care center, ARF: acute respiratory failure, CRF: chronic respiratory failure, COPD AE: chronic 123 

obstructive pulmonary disease acute exacerbation, COPD: chronic obstructive pulmonary disease, ARDS: acute respiratory distress syndrome, CKD: 124 

chronic kidney disease, AKI: acute kidney injury, CHF: chronic heart failure, DM: diabetes, HTN: hypertension, CAD: cardiovascular disease. The mean 125 

values of the age, height, weight, and BMI are presented, with the corresponding 95% CI in parentheses. 126 

 127 

 128 

2.2 Sound recording 129 

Breathing lung sounds were recorded using two devices: (1) a commercial electronic 130 
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stethoscope (Littmann 3200, 3M, Saint Paul, Minnesota, USA) and (2) a customized multichannel 131 

acoustic recording device (HF-Type-1) that supports the connection of eight electret microphones. 132 

The signals collected by the HF-Type-1 device were transmitted to a tablet (Surface Pro 6, Microsoft, 133 

Redmond, Washington, USA; Fig 1). Breathing lung sounds were collected at the eight locations 134 

(denoted by L1–L8) indicated in Fig 2a. The auscultation locations are described in detail in the 135 

caption of Fig 2. The two devices had a sampling rate of 4,000 Hz and a bit depth of 16 bits. The 136 

audio files were recorded in the WAVE (.wav) format. 137 

 138 

 139 

Fig 1. Customized multichannel acoustic recording device (HF-Type-1) connected to a tablet. 140 

 141 

Fig 2. Auscultation locations and lung sound recording protocol. (a) Auscultation locations (L1–142 

L8): L1: second intercostal space (ICS) on the right midclavicular line (MCL); L2: fifth ICS on the 143 

right MCL; L3: fourth ICS on the right midaxillary line (MAL); L4: tenth ICS on the right MAL; L5: 144 

second ICS on the left MCL; L6: fifth ICS on the left MCL; L7: fourth ICS on the left MAL; and L8: 145 

tenth ICS on the left MAL. (b) A standard round of breathing lung sound recording with Littmann 146 

3200 and HF-Type-1 devices. The white arrows represent a continuous recording, and the small red 147 

blocks represent 15-s recordings. When the Littmann 3200 device was used, 15.8-s signals were 148 

recorded sequentially from L1 to L8. Subsequently, all recordings were truncated to 15 s. When the 149 

HF-Type-1 device was used, sounds at L1, L2, L4, L5, L6, and L8 were recorded simultaneously. 150 

Subsequently, each 2-min signal was truncated to generate new 15-s audio files. 151 

 152 

All lung sounds in the TSECC database were collected using the Littmann 3200 device only, 153 

where 15.8-s recordings were obtained sequentially from L1 to L8 (Fig 2b; Littmann 3200). One 154 
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round of recording with the Littmann 3200 device entails a recording of lung sounds from L1 to L8. 155 

The TSECC database was composed of data obtained from one to three rounds of recording with the 156 

Littmann 3200 device for each patient. 157 

We recorded the lung sounds of the 18 RCW/RCC residents by using both the Littmann 3200 158 

device and the HF-Type-1 device. The Littmann 3200 recording protocol was in accordance with that 159 

used in the TSECC database, except that data from four to five rounds of lung sound recording were 160 

collected instead. The HF-Type-1 device was used to record breath sounds at L1, L2, L4, L5, L6, and 161 

L8. One round of recording with the HF-Type-1 device entails a synchronous and continuous 162 

recording of breath sounds for 30 min (Fig 2b; HF-Type-1). However, the recording with the 163 

HF-Type-1 device was occasionally interrupted; in this case, the recording duration was <30 min. 164 

Voluntary deep breathing was not mandated during the recording of lung sounds. The statistics 165 

of the recordings are listed in Table 2. 166 

 167 

Table 2. Statistics of recordings and labels of HF_Lung_V1 database. 168 

 
Littmann 3200 HF-Type-1 Total 

Subjects 

n 261 18 261 

Recordings 

Filename prefix steth_ trunc_ NA 

Rounds of recording 748 70 NA 

No of 15-sec recordings 4504 5261 9765 

Total duration (min) 1126 1315.25 2441.25 

Labels 

No of I 16535 17560 34095 
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Total duration of I (min) 257.17 271.02 528.19 

Mean duration of I (sec) 0.93 0.93 0.93 

 No of E 9107 9242 18349 

Total duration of E (min) 160.25 132.60 292.85 

Mean duration of E (sec) 1.06 0.86 0.96 

 No of C/W/S/R 6984/3974/152/2858 6899/4483/534/1882 13883/8457/686/4740 

Total duration of C/W/S/R (min) 105.90/63.92/1.94/40.04 85.26/55.80/7.52/21.94 191.16/119.73/9.46/61.98 

Mean duration of C/W/S/R (sec) 0.91/0.97/0.76/0.84 0.74/0.75/0.85/0.70 0.83/0.85/0.83/0.78 

 No of D 7266 8340 15606 

Total duration of D (min) 111.75 55.80 230.87 

Mean duration of D (sec) 0.92 0.87 0.89 

I: inhalation, E: exhalation, W: wheeze, S: stridor, R: rhonchus, C: continuous adventitious sound, D: discontinuous adventitious sound. W, S, and R were 169 

combined to form C. 170 

 171 

 172 

2.3 Audio file truncation 173 

In this study, the standard duration of an audio signal used for inhalation, exhalation, and 174 

adventitious sound detection was 15 s. This duration was selected because a 15-s signal contains at 175 

least three complete breath cycles, which are adequate for a clinician to reach a clinical conclusion. 176 

Furthermore, a 15-s breath sound was be used previously for verification and validation [43] . 177 

Because each audio file generated by the Littmann 3200 device had a length of 15.8 s, we 178 

cropped out the final 0.8-s signal from the files (Fig 2b; Littmann 3200). Moreover, we used only the 179 

first 15 s of each 2-min signal of the audio files (Fig 2b; HF-Type-1) generated by the HF-Type-1 180 

device. Table 2 presents the number of truncated 15-s recordings and the total duration. 181 

 182 

2.4 Data labeling 183 
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Because the data in the TSECC database contains only classification labels indicating whether a 184 

CAS or DAS exists in a recording, we attempted to label the event level of all sound recordings. Two 185 

board-certified respiratory therapists (NJL and YLW) and one board-certified nurse (WLT), with 8, 3, 186 

and 13 years of clinical experience, respectively, were recruited to label the start and end points of 187 

inhalation (I), exhalation (E), wheeze (W), stridor (S), rhonchus (R), and DAS (D) events in the 188 

recordings. They labeled the sound events by listening to the recorded breath sounds while 189 

simultaneously observing the corresponding patterns on a spectrogram by using customized labeling 190 

software [44]. The labelers were asked not to label sound events if they could not clearly identify the 191 

corresponding sound or if an incomplete event at the beginning or end of an audio file caused 192 

difficulty in identification. BFH held regular meetings to ensure that the labelers had good agreement 193 

on labeling criteria based on a few samples by judging the mean pseudo-κ value [27]. When 194 

developing artificial intelligence (AI) detection models, we combined the W, S, and R labels to form 195 

CAS labels (C). Moreover, the D labels comprised only crackles, which were not differentiated into 196 

coarse or fine crackles. The labelers were asked to label the period containing crackles but not a 197 

single explosive sound (generally less than 25 ms) of a crackle. Each recording was annotated by 198 

only one labeler; thus, the labels did not represent perfect ground truth. However, we used the labels 199 

as ground-truth labels for model training, validation, and testing. The statistics of the labels are listed 200 

in Table 2. 201 

 202 
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3. Inhalation, exhalation, CAS, and DAS detection 203 

3.1 Framework 204 

The inhalation, exhalation, CAS, and DAS detection framework developed in this study is 205 

displayed in Fig 3. The prominent advantage of the research framework is its modular design. 206 

Specifically, each unit of the framework can be tested separately, and the algorithms in different parts 207 

of the framework can be modified to achieve optimal overall performance. Moreover, the output of 208 

some blocks can be used for multiple purposes. For instance, the spectrogram generated by the 209 

preprocessing block can be used as the input of a model or for visualization in the user interface for 210 

real-time monitoring. 211 

 212 

Fig. 3. Pipeline of detection framework. 213 

 214 

The framework comprises three parts: preprocessing, deep learning–based modeling, and 215 

postprocessing. The preprocessing part involves signal processing and feature engineering 216 

techniques. The deep learning–based modeling part entails the use of a well-designed neural network 217 

for obtaining a sequence of classification predictions rather than a single prediction. The 218 

postprocessing part involves merging the segment prediction results and eliminating the burst event. 219 

 220 

3.2 Preprocessing 221 
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We processed the lung sound recordings at a sampling frequency of 4 kHz. First, to eliminate 222 

the 60-Hz electrical interference and a part of the heart sound noise, we applied a high-pass filter to 223 

the recordings by setting a filter order of 10 and cut-off frequency of 80 Hz. The filtered signals were 224 

then processed using the short-time Fourier transform (STFT). In the STFT, we set a Hanning 225 

window size of 256 and hop length of 64; no additional zero-padding was applied. Thus, a 15-s 226 

sound signal could be transformed into a corresponding spectrogram with a size of 938 × 129. To 227 

obtain the spectral information regarding the lung sounds, we extracted the following features [29, 228 

45]: 229 

 Spectrogram: We extracted 129-bin log-magnitude spectrograms. 230 

 Mel frequency cepstral coefficients (MFCCs): We extracted 20 static coefficients, 20 delta 231 

coefficients (Δ), and 20 acceleration coefficients (Δ2). We used 40 mel bands within a frequency 232 

range of 0–4,000 Hz. The frame width used to calculate the delta and acceleration coefficients 233 

was set to 9, which resulted in a 60-bin vector per frame. 234 

 Energy summation: We computed the energy summation of four frequency bands, namely 0–235 

250, 250–500, 500–1,000, and 0–2,000 Hz, and obtained four values per time frame. 236 

After extracting the aforementioned features, we concatenated them to form a 938 × 193 feature 237 

matrix. Subsequently, we conducted min–max normalization on each feature. The values of the 238 

normalized features ranged between 0 and 1. 239 

 240 
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3.3 Deep learning models 241 

We investigated the performance of eight RNN models, namely LSTM, GRU, bidirectional 242 

LSTM (BiLSTM), bidirectional GRU (BiGRU), CNN-LSTM, CNN-GRU, CNN-BiLSTM, and 243 

CNN-BiGRU, in terms of inhalation, exhalation, and adventitious sound detection. Fig 4 illustrates 244 

the detailed model structures. The outputs of the LSTM, GRU, BiLSTM, and BiGRU models were 245 

938 × 1 vectors, and those of the CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU 246 

models were 469 × 1 vectors. An element in these vectors was set to 1 if an inhalation, exhalation, 247 

CAS, or DAS occurred within a time segment in which the output value passed the thresholding 248 

criterion; otherwise, the element was set to 0. 249 

 250 

Fig. 4. Model architectures and postprocessing for inhalation, exhalation, CAS, and DAS 251 

segment and event detection. (a) LSTM and GRU models; (b) BiLSTM and BiGRU models; and (c) 252 

CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models. 253 

 254 

For a fairer comparison of the performance of the unidirectional and bidirectional models, we 255 

trained additional simplified (SIMP) BiLSTM, SIMP BiGRU, SIMP CNN-BiLSTM, and SIMP 256 

CNN-BiGRU models by adjusting the number of trainable parameters. Parameter adjustment was 257 

conducted by halving the number of cells of the LSTM and GRU layers. 258 

We used Adam as the optimizer in the benchmark model, and we set the initial learning rate to 259 

0.0001 with a step decay (0.2×) when the validation loss did not decrease for 10 epochs. The learning 260 
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process stopped when no improvement occurred over 50 consecutive epochs. 261 

 262 

3.4 Postprocessing 263 

The prediction vectors obtained using the adopted models can be further processed for different 264 

purposes. For example, we can transform the prediction result from frames to time for real-time 265 

monitoring. The breathing duration of most humans lies within a certain range; we considered this 266 

fact in our study. Accordingly, when the prediction results obtained using the models indicated that 267 

two consecutive inhalation events occurred within a very small interval, we checked the continuity of 268 

these two events and decided whether to merge them, as illustrated in the bottom panel of Fig 4a. For 269 

example, when the interval between the jth and ith events was smaller than T s, we computed the 270 

difference in frequency between their energy peaks (|𝒑𝒋 − 𝒑𝒊|). Subsequently, if the difference was 271 

below a given threshold P, the two events were merged into a single event. In the experiment, T was 272 

set to 0.5 s, and P was set to 25 Hz. After the merging process, we further assessed whether a burst 273 

event existed. If the duration of an event was shorter than 0.05 s, the event was deleted. 274 

 275 

3.5 Dataset arrangement and cross-validation 276 

We adopted fivefold cross-validation in the training dataset to train and validate the models. 277 

Moreover, we used an independent testing dataset to test the performance of the trained models. 278 

According to our preliminary experience, the acoustic patterns of the breath sounds collected from 279 
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one patient at different auscultation locations or between short intervals had many similarities. To 280 

avoid potential data leakage caused by our methods of collecting and truncating the breath sound 281 

signals, we assigned all truncated recordings collected on the same day to only one of the training, 282 

validation, or testing datasets; this is because these recordings might have been collected from the 283 

same patient within a short period. The statistics of the datasets are listed in Table 3. We used only 284 

audio files containing CASs and DASs to train and test their corresponding detection models. 285 

 286 

Table 3. Statistics of the datasets and labels of the HF_Lung_V1 database. 287 

 
Training Dataset Testing Dataset Total 

Recordings 

No of 15-sec recordings 7809 1956 9765 

Total duration (min) 1952.25 489 2441.25 

Labels 

No of I 27223 6872 34095 

Total duration of I (min) 422.17 105.97 528.14 

Mean duration of I (sec) 0.93 0.93 0.93 

 

No of E 15601 2748 18349 

Total duration of E (min) 248.05 44.81 292.85 

Mean duration of E (sec) 0.95 0.98 0.96 

 

No of C/W/S/R 11464/7027/657/3780 2419/1430/29/960 13883/8457/686/4740 

Total duration of C/W/S/R (min) 160.16/100.71/9.10/50.35 31.01/19.02/0.36/11.63 191.16/119.73/9.46/61.98 

Mean duration of C/W/S/R (sec) 0.84/0.86/0.83/0.80 0.77/0.80/0.74/0.73 0.83/0.85/0.83/0.78 

 

No of D 13794 1812 15606 

Total duration of D (min) 203.59 27.29 230.87 

Mean duration of D (sec) 0.89 0.90 0.89 
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I: inhalation, E: exhalation, W: wheeze, S: stridor, R: rhonchus, C: continuous adventitious sound, D: discontinuous adventitious sound. W, S, and R were 288 

combined to form C. 289 

 290 

 291 

3.6 Task definition and evaluation metrics 292 

[4] clearly defined classification and detection at the segment, event, and recording levels. In 293 

this study, we performed two tasks. The first task involved performing detection at the segment level. 294 

The acoustic signal of each lung sound recording was transformed into a spectrogram. The temporal 295 

resolution of the spectrogram depended on the window size and overlap ratio of the STFT. The 296 

aforementioned parameters were fixed such that each spectrogram was a matrix of size 938 × 129. 297 

Thus, each recording contained 938 time segments (time frames), and each time segment was 298 

automatically labeled (Fig 5b) according to the ground-truth event labels (Fig 5a) assigned by the 299 

labelers. The output of the prediction process was a sequential prediction matrix (Fig 5c) of size 938 300 

× 1 in the LSTM, GRU, BiLSTM, and BiGRU models and size 469 × 1 in the CNN-LSTM, 301 

CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models. By comparing the sequential prediction with 302 

the ground-truth time segments, we could define true positive (TP; orange vertical bars in Fig 5d), 303 

true negative (TN; green vertical bars in Fig 5d), false positive (FP; black vertical bars in Fig 5d), 304 

and false negative (FN; yellow vertical bars in Fig 5d) time segments. Subsequently, the models’ 305 

sensitivity and specificity in classifying the segments in each recording were computed. 306 

 307 
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Fig 5. Task definition and evaluation metrics. (a) Ground-truth event labels, (b) ground-truth time 308 

segments, (c) AI inference results, (d) segment classification, (e) event detection, and (f) legend. JI: 309 

Jaccard index. 310 

 311 

The second task entailed event detection at the recording level. After completing the sequential 312 

prediction (Fig 5c), we assembled the time segments associated with the same label into a 313 

corresponding event (Fig 5e). We also derived the start and end times of each assembled event. The 314 

Jaccard index (JI; [27] was used to determine whether an AI inference result correctly matched the 315 

ground-truth event. For an assembled event to be designated as a TP event (orange horizontal bars in 316 

Fig 5e), the corresponding JI value must be greater than 0.5. If the JI was between 0 and 0.5, the 317 

assembled event was designated as an FN event (yellow horizontal bars in Fig 5e), and if it was 0, 318 

the assembled event was designated as an FP event (black horizontal bars in Fig 5e). A TN event 319 

cannot be defined in the task of event detection. 320 

The performance of the models was evaluated using the F1 score, and that of segment detection 321 

was evaluated using the receiver operating characteristic (ROC) curve and area under the ROC curve 322 

(AUC). In addition, the mean absolute percentage error (MAPE) of event detection was derived. The 323 

accuracy, positive predictive value (PPV), sensitivity, specificity, and F1 score of the models are 324 

presented in the section of Supporting information. 325 

 326 

3.7 Hardware and software 327 
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We trained the baseline models on an Ubuntu 18.04 server that was provided by the National 328 

Center for High-Performance Computing in Taiwan [Taiwan Computing Cloud (TWCC)] and was 329 

equipped with an Intel(R) Xeon(R) Gold 6154 @3.00 GHz CPU with 90 GB RAM. To manage the 330 

intensive computation involved in RNN training, we implemented the training module by using the 331 

TensorFlow 2.10, CUDA 10, and CuDNN 7 programs to run the NVIDIA Titan V100 card on the 332 

TWCC server for GPU acceleration.  333 
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4 Results 334 

4.1 LSTM versus GRU models 335 

Table 4 presents the F1 scores used to compare the eight LSTM- and GRU-based models. When 336 

a CNN was not added, the GRU models outperformed the LSTM models by 0.7%–9.5% in terms of 337 

the F1 scores. However, the CNN-GRU and CNN-BiGRU models did not outperform the 338 

CNN-LSTM and CNN-BiLSTM models in terms of the F1 scores (and vice versa). 339 

 340 

Table 4. Comparison of F1 scores between LSTM-based models and GRU-based models.  341 

    Inhalation   Exhalation   CASs   DASs 

Models 
n of trainable 

parameters 

F1 score 
 

F1 score 
 

F1 score 
 

F1 score 

Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection       

LSTM 300,609 73.9% 76.1% 
 

51.8% 57.0% 
 

15.1% 12.2% 
 

62.6% 59.1% 

GRU 227,265 76.2% 78.9%   59.8% 65.6%   24.6% 20.1%   65.9% 62.5% 

BiLSTM 732,225 78.1% 84.0% 
 

57.3% 63.9% 
 

19.8% 19.1% 
 

69.6% 70.0% 

BiGRU 552,769 80.3% 86.2%   64.1% 70.9%   26.9% 25.6%   70.3% 71.4% 

CNN-LSTM 3,448,513 77.6% 81.1% 
 

57.7% 62.1% 
 

45.3% 42.5% 
 

68.8% 64.4% 

CNN-GRU 2,605,249 78.4% 82.0%   57.2% 62.0%   51.5% 49.8%   68.0% 64.6% 

CNN-BiLSTM 6,959,809 80.6% 86.3% 
 

60.4% 65.6% 
 

47.9% 46.4% 
 

71.2% 70.8% 

CNN-BiGRU 5,240,513 80.6% 86.2%   62.2% 68.5%   53.3% 51.6%   70.6% 70.0% 

The bold values indicate the higher F1 score between the compared pairs of models. 342 

 343 

According to the ROC curves presented in Fig 6a–d, the GRU-based models outperformed the 344 

LSTM-based models in all compared pairs, except for one pair, in terms of DAS segment detection 345 

(AUC of 0.891 for CNN-BiLSTM vs 0.889 for CNN-BiGRU). 346 
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 347 

Fig. 6. ROC curves for (a) inhalation, (b) exhalation, (c) CAS, and (d) DAS segment detection. 348 

The corresponding AUC values are presented. 349 

4.2 Unidirectional versus bidirectional models 350 

As presented in Table 5, the bidirectional models outperformed their unidirectional counterparts 351 

in all the defined tasks by 0.4%–9.8% in terms of the F1 scores, even when the bidirectional models 352 

had fewer trainable parameters after model adjustment. 353 

 354 

Table 5. Comparison of F1 scores between the unidirectional and bidirectional models.  355 

    Inhalation   Exhalation   CASs   DASs 

Models 
n of trainable 

parameters 

F1 score 
 

F1 score 
 

F1 score 
 

F1 score 

Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection       

LSTM 300,609 73.9% 76.1% 
 

51.8% 57.0% 
 

15.1% 12.2% 
 

62.6% 59.1% 

SIMP BiLSTM 235,073 77.8% 84.1%   55.8% 62.4%   19.8% 17.9%   68.8% 68.9% 

GRU 227,265 76.2% 78.9% 
 

59.8% 65.6% 
 

24.6% 20.1% 
 

65.9% 62.5% 

SIMP BiGRU 178,113 80.1% 86.1%   63.7% 70.0%   25.0% 22.2%   70.3% 71.3% 

CNN-LSTM 3,448,513 77.6% 81.1% 
 

57.7% 62.1% 
 

45.3% 42.5% 
 

68.8% 64.4% 

SIMP CNN-BiLSTM 3,382,977 80.0% 85.8%   60.4% 66.2%   50.8% 50.2%   70.2% 70.2% 

CNN-GRU 2,605,249 78.4% 82.0% 
 

57.2% 62.0% 
 

51.5% 49.8% 
 

68.0% 64.6% 

SIMP CNN-BiGRU 2,556,097 80.1% 85.9%   62.4% 68.4%   52.6% 51.5%   69.9% 69.5% 

The bold values indicate the higher F1 score between the compared pairs of models. SIMP means the number of trainable parameters 356 

is adjusted. 357 

 358 

4.3 Models with CNN versus those without CNN 359 

According to Table 6, the models with a CNN outperformed those without a CNN in 26 of the 360 
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32 compared pairs. 361 

 362 

 363 

Table 6. Comparison of F1 scores between models without and with a CNN. 364 

    Inhalation   Exhalation   CASs   DASs 

Models 

n of  

trainable 

parameters 

F1 score 
 

F1 score 
 

F1 score 
 

F1 score 

Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection 

 
Segment 

Detection 

Event 

Detection       

LSTM 300,609 73.9% 76.1% 
 

51.8% 57.0% 
 

15.10% 12.20% 
 

62.60% 59.10% 

CNN-LSTM 3,448,513 77.6% 81.1%   57.7% 62.1%   45.30% 42.50%   68.80% 64.40% 

BiLSTM 732,225 76.2% 78.9% 
 

59.8% 65.6% 
 

19.80% 17.90% 
 

68.80% 68.90% 

CNN-BiLSTM 6,959,809 78.4% 82.0%   57.2% 62.0%   50.80% 50.20%   70.20% 70.20% 

GRU 227,265 78.1% 84.0% 
 

57.3% 63.9% 
 

24.60% 20.10% 
 

65.90% 62.50% 

CNN-GRU 2,605,249 80.6% 86.3%   60.4% 65.6%   51.50% 49.80%   68.00% 64.60% 

BiGRU 178,113 80.3% 86.2% 
 

64.1% 70.9% 
 

25.00% 22.20% 
 

70.30% 71.30% 

CNN-BiGRU 2,556,097 80.6% 86.2%   62.2% 68.5%   52.60% 51.50%   69.90% 69.50% 

The bold values indicate the higher F1 score between the compared pairs of models. 365 

 366 

The models with a CNN exhibited higher AUC values than did those without a CNN (Fig 6a–d), 367 

except that BiGRU had a higher AUC value than did CNN-BiGRU in terms of inhalation detection 368 

(0.963 vs 0.961), GRU had a higher AUC value than did CNN-GRU in terms of exhalation detection 369 

(0.886 vs 0.883), and BiGRU had a higher AUC value than did CNN-BiGRU in terms of exhalation 370 

detection (0.911 vs 0.899). 371 

Moreover, compared with the LSTM, GRU, BiLSTM, and BiGRU models, the CNN-LSTM, 372 

CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models exhibited flatter and lower MAPE curves 373 



25 

 

over a wide range of threshold values in all event detection tasks (Fig 7a–d). 374 

 375 

 376 

Fig 7. MAPE curves for (a) inhalation, (b) exhalation, (c) CAS, and (d) DAS event detection. 377 

5 Discussion 378 

5.1 Benchmark results 379 

According to the F1 scores presented in Table 4, among models without a CNN, the GRU and 380 

BiGRU models consistently outperformed the LSTM and BiLSTM models in all defined tasks. 381 

However, the GRU-based models did not have superior F1 scores among models with a CNN. 382 

Regarding the ROC curves and AUC values (Fig 6a–d), the GRU-based models consistently 383 

outperformed the other models in all but one task. Accordingly, we can conclude that GRU-based 384 

models perform slightly better than LSTM-based models in lung sound analysis. Previous studies 385 

have also compared LSTM- and GRU-based models [38, 46, 47]. Although a concrete conclusion 386 

cannot be drawn regarding whether LSTM-based models are superior to the GRU-based models (and 387 

vice versa), GRU-based models have been reported to outperform LSTM-based models in terms of 388 

computation time [38, 47]. 389 

As presented in Table 5, the bidirectional models outperformed their unidirectional counterparts 390 

in all defined tasks, a finding that is consistent with several previously obtained results [29, 36, 38, 391 

40]. 392 
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A CNN can facilitate the extraction of useful features and enhance the prediction accuracy of 393 

RNN-based models. The benefits engendered by a CNN are particularly vital in CAS detection. For 394 

the models with a CNN, the F1 score improvement ranged from 26.0% to 30.3% and the AUC 395 

improvement ranged from 0.067 to 0.089 in the CAS detection tasks. Accordingly, we can infer that 396 

considerable information used in CAS detection resides in the local positional arrangement of the 397 

features. Thus, a two-dimensional CNN facilitates the extraction of the associated information. 398 

Notably, CNN-induced improvements in model performance in the inhalation, exhalation, and DAS 399 

detection tasks were not as high as those observed in the CAS detection tasks. The MAPE curves 400 

(Fig 7a–d) reveal that a model with a CNN has more consistent predictions over various threshold 401 

values.  402 

In our previous study [26], an attention-based encoder–decoder architecture based on ResNet 403 

and LSTM exhibited favorable performance in inhalation (F1 score of 90.4%) and exhalation (F1 404 

score of 93.2%) segment detection tasks. However, the model was established on the basis of a very 405 

small dataset (489 recordings of 15-s-long lung sounds). Moreover, the model involves a 406 

complicated architecture; hence, it is impossible to implement real-time respiratory monitoring in 407 

devices with limited computing power, such as smartphones or medical-grade tablets.  408 

Few studies have performed event detection at the recording level by using a comparatively 409 

simple deep learning model. [29] used the BiGRU model and one-dimensional labels (similar to 410 

those used in the present study) for breath phase and crackle detection. Their BiGRU model 411 
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exhibited comparable performance to our models in terms of inhalation event detection (F1 scores, 412 

87.0% vs 86.2%) and in terms of DAS event detection (F1 scores, 72.1% vs 71.4%). However, the 413 

performance of the BiGRU model differed considerably from that of our models in terms of 414 

exhalation detection (F1 scores: 84.6% vs 70.9%). One of the reasons for this discrepancy is that [29] 415 

established their ground-truth labels on the basis of the gold-standard signals of a pneumotachograph. 416 

Another reason is that an exhalation label is not always available following an inhalation label in our 417 

data. Finally, we did not specifically control the sounds we recorded; for example, we did not ask 418 

patients to perform voluntary deep breathing or keep ambient noise down. The factors influencing 419 

the model performance are further discussed in the next section. 420 

 421 

5.2 Factors influencing model performance 422 

The benchmark performance of the proposed models may have been influenced by the 423 

following factors: (1) unusual breathing patterns; (2) imbalanced data; (3) low signal-to-noise ratio 424 

(SNR); (4) noisy labels, including class and attribute noise, in the database; and (5) sound 425 

overlapping.  426 

Fig 8 displays most of the breath patterns present in the HF_Lung_V1 database. Fig 8a 427 

illustrates the general pattern of a breath cycle in the lung sounds when the ratio of inhalation to 428 

exhalation durations is approximately 2:1 and an expiratory pause is noted [3, 4]. Fig 8b presents a 429 

frequent condition under which an exhalation is not completely heard by the labelers. However, 430 
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because we did not ask the subjects to breath voluntarily when recording the sound, many unusual 431 

breath patterns might have been recorded, such as patterns caused by shallow breathing, fast 432 

breathing, and apnea as well as those caused by double triggering of the ventilator [48] and air 433 

trapping [49, 50]. These unusual breathing patterns might confuse the labeling and learning 434 

processes and result in poor testing results. 435 

 436 

Fig 8. Patterns of normal breathing lung sounds. (a) General lung sound patterns and (b) general 437 

lung sound patterns with unidentifiable exhalations. “I” represents an identifiable inhalation event, “E” 438 

represents an identifiable exhalation event, and the black areas represent pause phases. 439 

 440 

The developed database contains imbalanced numbers of inhalation and exhalation labels 441 

(34,095 and 18,349, respectively) because not every exhalation was heard and labeled. In addition, 442 

the proposed models may possess the capability of learning the rhythmic rise and fall of breathing 443 

signals but not the capability of learning acoustic or texture features that can distinguish an 444 

inhalation from an exhalation. This may thus explain the models’ poor performance in exhalation 445 

detection. However, these models are suitable for respiratory rate estimation and apnea detection as 446 

long as appropriate inhalation detection is achieved. Furthermore, for all labels, the summation of the 447 

event duration was smaller than that of the background signal duration (these factors had a ratio of 448 

approximately 1:2.5 to 1:7). The aforementioned phenomenon can be regarded as foreground–449 

background class imbalance [51] and will be addressed in future studies. 450 
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Most of the sounds in the established database were not recorded during the patients performed 451 

deep breathing; thus, the signal quality was not maximized. However, training models with such 452 

nonoptimal data increase their adaptability to real-world scenarios. Moreover, the SNR may be 453 

reduced by noise, such as human voices; music; sounds from bedside monitors, televisions, air 454 

conditioners, fans, and radios; sounds generated by mechanical ventilators; electrical noise generated 455 

by touching or moving the parts of acoustic sensors; and friction sounds generated by the rubbing of 456 

two surfaces together (e.g., rubbing clothes with the skin). A poor SNR of audio signals can lead to 457 

difficulties in labeling and prediction tasks. The features of some noise types are considerably similar 458 

to those of adventitious sounds. The poor performance of the proposed models in CAS detection can 459 

be partly attributed to the noisy environment in which the lung sounds were recorded. In particular, 460 

the sounds generated by ventilators caused numerous FP events in the CAS detection tasks. Thus, 461 

additional effort is required to develop a superior preprocessing algorithm that can filter out 462 

influential noise or to identify a strategy to ensure that models focus on learning the correct CAS 463 

features. Furthermore, the integration of active noise-canceling technology [52] or noise suppression 464 

technology [53] into respiratory sound monitors can help reduce the noise from auscultatory signals. 465 

The sound recordings in the HF_Lung_V1 database were labeled by only one labeler; thus, 466 

some noisy labels, including class and attribute noise, may exist in the database [54]. These noisy 467 

labels are attributable to (1) the different hearing abilities of the labeler, which can cause differences 468 

in the labeled duration; (2) the absence of clear criteria for differentiating between target and 469 
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confusing events; (3) individual human errors; (4) tendency to not label events located close to the 470 

beginning and end of a recording; and (5) confusion caused by unusual breath patterns and poor 471 

SNRs. However, deep learning models exhibit high robustness to noisy labels [55]. Accordingly, we 472 

are currently working toward establishing better ground-truth labels. 473 

Breathing generates CASs and DASs under abnormal respiratory conditions. This means that 474 

the breathing sound, CAS, and DAS might overlap with one another during the same period. This 475 

sound overlapping, along with the data imbalance, makes the CAS and DAS detection models learn 476 

to read the rise and fall of the breathing energy and falsely identify an inhalation or exhalation as 477 

CAS or DAS, respectively. This FP detection was observed in our benchmark results. In the future, 478 

strategies must be adopted to address the problem of sound overlap. 479 

 480 

6 Conclusions 481 

We established a large open-access lung sound database, namely HF_Lung_V1 482 

(https://gitlab.com/techsupportHF/HF_Lung_V1), that contains 9,765 audio files of lung sounds 483 

(each with a duration of 15 s), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 CAS labels 484 

(comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchus labels), and 15,606 DAS 485 

labels (all of which are crackles). 486 

We also investigated the performance of eight RNN-based models in terms of inhalation, 487 

exhalation, CAS detection, and DAS detection in the HF_Lung_V1 database. We determined that the 488 
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bidirectional models outperformed the unidirectional models in lung sound analysis. Furthermore, 489 

the addition of a CNN to these models further improved their performance. 490 

Future studies can develop more accurate respiratory sound analysis models. First, highly 491 

accurate ground-truth labels should be established. Second, researchers should investigate the 492 

performance of RNN-based models containing state-of-the-art convolutional layers. Third, regional 493 

CNN variants can be adopted in lung sound analysis if the labels are expanded to two-dimensional 494 

bounding boxes [27]. Fourth, wavelet-based approaches, empirical mode decomposition, and other 495 

methods that can extract different features should be investigated [4, 56]. Finally, respiratory sound 496 

monitors should be equipped with the capability of tracheal breath sound analysis [52]. 497 

  498 
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