
i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S1 — #10 i
i

i
i

i
i

Improved design and analysis of practical minimizers S1

S1 Analysis of Lexicographical Minimizers
In this section, we prove that the asymptotical optimality for the
lexicographic minimizer with k0 = blogσ(w/2)c − 2 can be used to
derive the asymptotical optimality for other values of k ≥ logσ(w)− c.

Lemma 7. The lexicographic minimizer with k = k0 − c for constant
c ≥ 0 has density O(1/w).

Proof. We defineW ′+ andW ′− in the same way for this new minimizer
with parameter k. We also call the new minimizer as k-minimizer, and the
minimizer in Theorem 1 as k0-minimizer.

We now claim |W ′+| ≤ |W+|. This is because given a window
in W ′+, we can always append 0c before the start of the window to
get a window (for the k0-minimizer) in W+. Assume otherwise, we let
z0 = 0c · · · be the k0-mer at the start of the extended window and z1
be the k0-mer picked by the k0-minimizer. This requires z1 to also have
form of 0c · · · , and that the k-mer after 0c is strictly smaller than the last
k-mer of z0. However, if this is the case, the original window will not be
in W ′+ as the first k-mer is not minimal.

Similarly, we claim |W ′−| ≤ |W−| as given a window in W ′− we
can append 0c after the end of the window to get a window inW−. Assume
otherwise, we let z0 = · · · 0c be the last k0-mer at the end of the extended
window and z1 be the k0-mer picked by the k0-minimizer. Since z0 ends
with 0c and z1 is smaller or equal to z0, the k-prefix of z1 must be smaller
or equal to the k-prefix of z0. This means the original window will not be
in W ′− as there is a k-mer that is smaller or equal to the last k-mer.

Therefore |W ′+| = O(σw) and |W ′−| = O(σw), and the density
is σ(|W ′+|+ |W ′−|)/σw+k = O(σ−k) = O(1/w).

On the other hand, for large k the following lemma establishes
asymptotically optimal density. Recall W ‡ is the set of windows (for
the k0-minimizer) such that the last k0-mer is among the smallest, but not
necessarily unique (so the minimizer might not always pick it).

Lemma 8. The lexicographic minimizer with k > k0 has density
O(1/w).

Proof. We defineW ′+ andW ′− in the same way for this new minimizer,
and again call the new minimizer the k-minimizer.

We first claim |W ′+| ≤ σk−k0 |W+|. This is because given a window
in W ′+, we can remove the last k − k0 bases to get a window in W+.
To see this, we only need to show for the shorter window, the first k0-mer
is less than or equal to every other k0-mer. Since the original window is
in W ′+, the first k-mer in the original window is less than or equal to
every other k-mer. This means the k0-long prefix of the first k-mer is also
less or equal to the k0-long prefix of every other k-mer in the original
window, which is exactly the condition for the short window in W+. For
every window x in W+, there are σk−k0 windows in Σw+k−1 that x is
a prefix of, which means |W ′+| ≤ σk−k0 |W+|.

We now claim |W ′−| ≤ σk−k0 |W ‡|. Similarly, given a window in
W ′−, we can again remove the last k− k0 bases to get a window inW ‡.
As the original window is in W ′−, the last k-mer in the original window
is less than every other k-mer. This means the k0-long prefix of the last
k-mer is less or equal to the k0-long prefix of every other k-mer in the
original window. (Note that if a k-mer is less than another, their prefix
can be equal.) The k0-long prefixes of k-mers in the original window are
exactly the k0-mers of the shorter window, so the short window is inW ‡.
With a similar argument, we have |W−| ≤ σk−k0 |W ‡|.

These two facts combined means we can calculate the density of the
new minimizer as follows:

σ(|W ′+|+ |W ′−|)/σw+k ≤ σk−k0+1(|W+|+ |W ‡|)/σw+k

= (|W+|+ |W ‡|)/σw+k0−1

= O(σ−k0) = O(1/w).

S2 Analysis of UHS from Random Minimizers
We discuss the UHS with w > k and w < k separately. In the first case,
the best UHS has its relative size lower bounded by the decycling set, and
in the second case, a stronger bound of 1/w is available.

Lemma S14. For sufficiently large k andw > k−(3+ε) logσ(k+1),
there exists a UHS of relative size 2/k+ o(1/k) with path lengthw. This
is a 2 + o(1) approximation of the minimum size UHS.

Proof. We pick k′ = (3 + ε) logσ(k + 1) (ignoring rounding for
simplicity), and let w′ = k − k′. By our setup, w ≥ w′, and k′ = o(k)

(implying w′ = k − o(k)). By Theorem 3, the charged context set of
a random minimizer (w′, k′,O′) has relative size 2/w′ + o(1/w′) =

2/k + o(1/k). By Theorem 4, the charged context set is a UHS over
k-mers with path length w. This finishes the first part of the proof.

For the second part, by Lemma 2 the minimum size UHS, regardless of
path length, will have relative size at least 1/k−o(1/k). As our proposed
UHS has relative size 2/k + o(1/k), it is a 2 + o(1) approximation of
the minimum size UHS.

Lemma S15. For sufficiently large k andw ≤ k−(3+ε) logσ(k+1),
there exists a UHS of relative size 2/w+o(1/w) with path lengthw. This
is a 2 + o(1) approximation of the best possible UHS.

Proof. We pick w′ = w and k′ = k − w. By our setup, k′ ≥ (3 +

ε) logσ(w′ + 1) as w < k. By the identical argument as seen in the last
lemma, we obtain a UHS over k-mers with path lengthw and relative size
2/w + o(1/w).

For the second part, note that the minimal relative size of a UHS with
path length w is 1/w as it need to hit every one of every w k-mer on the
de Bruijn sequence of orderk, where everyk-mer appears exactly once. As
our set has relative size 2/w+o(1/w), it is a 2+o(1) approximation.

These two lemmas give us the desired result.

S3 More Analyses of the Miniception
This section contains analyses of the Miniception that are not included in
the main text.

S3.1 Restricted Sampling

In this section, we formally prove the correctness of the restricted sampling
process.

Lemma 12. Denote the distribution generated by the restricted
sampling process as S+(x), then S+(x) = R+(x).

Proof. We prove the two distributions are identical in two parts. First, we
show they have the same support (generate the same set of permutations).
Note that any permutations sampled from S+(x) satisfies E+

0 by the
swapping process, and any permutation satisfying E+

0 can be sampled
from S+(x) as it can simply be the initial distribution and unchanged by

i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S2 — #11 i
i

i
i

i
i

S2 Zheng et al.

the swapping process. Second, given R+(x) is a uniform distribution
over permutations satisfying E+

0 , we only need to prove for any two
permutation satisfying E+

0 they are generated by S+(x) with the same
probability. This is true because every permutation satisfying E+

0 has
exactly w preimages in the swapping process.

Lemma 13. Given an order of k0-mers sampled from S+(x),
conditioned on the first k0-mer being overall minimal, the k0-mer order
excluding the first k0-mer follows the unrestricted distributionR(x).

Proof. Our goal is to prove the two distributions are equal, and we will
use the same two-step process. First, every permutation can be generated by
both processes. Second, as proved before, S+(x) generates each eligible
permutation with identical probability, and this holds for the conditional
distribution as each permutation has exactly one preimage. This means it
is the same distribution asR(x) where each permutation is also generated
with the same probability.

S3.2 Analysis of Q−n (x) with x ≤ 2

Based on our analysis ofQ+
n (x) for x ≤ 2, as presented in the main text,

we derive the recurrence for Q−n (x) for x ≤ 2 here.
To start with, we similarly define the restricted sampling process

(where we swap the minimal element in the first w elements with the
wth element instead). We define Q−n (x) to denote the same quantity as
Q+
n (x), except the order is now sampled from the new restricted sampling

process S−(x). The derivation of Q−n (x) is identical when the minimal
k0-mer in the sequence is not the wth one. With probability 1/x, the
minimal k0-mer will be thewth one. In this case, if x < 2, again only one
UHS k-mers will contain the minimal k0-mer, but with x = 2 two k-mers
will contain it (with x = 2, the k0-mer is in the middle of the sequence,
with at least w− 1 k0-mers away from each end). All other UHS k-mers
now come from the substring right to the minimal k0-mer, whose relative
length is now x−1, and similar to our previous argument, the order within
the substring followsR(x− 1). This yields the following recurrence:

Q−n (x) =
1

x
(Pn−1(x− 1) +

∫ x

1
Q−n−1(t)dt), n ≥ 1, x < 2

Q−n (x) =
1

x
(Pn−2(x− 1) +

∫ x

1
Q−n−1(t)dt), n ≥ 1, x = 2

S3.3 Analytical Solution for Pn(x), Q+
n (x) and Q−n (x) at

x ≤ 2

In this section, we provide the analytical solution to the integrals given
x ≤ 2, up to n = 6 as follows. The formula of Pn(x) for 4 ≤ n ≤ 6

is more complicated and is omitted here for clarity. We provide (in our
Github repository) automatic symbolic integration codes that computes
these integrals up to any specified n, and calculate D(2) based on the
integrals.

P0(x) = 2/x− 1

P1(x) = −2 + 4 ln(x)/x+ 2/x

P2(x) = −4 + 4 ln2(x)/x+ 4 ln(x)/x+ 4/x

P3(x) = −8 + 8 ln3(x)/3x+ 4 ln2(x)/x+ 8 ln(x)/x+ 8/x

Q+
0 (x) = 0

Q+
1 (x) = 2/x2 − 1/x

Q+
2 (x) = ln(x)(4/x2 − 1/x)

Q+
3 (x) = ln2(x)(4/x2 − 1/2x)

Q+
4 (x) = ln3(x)(8/3x2 − 1/6x)

Q+
5 (x) = ln4(x)(4/3x2 − 1/24x)

Q+
6 (x) = ln5(x)(8/15x2 − 1/120x)

Q−0 (x) = 0

Q−1 (x) = 1/x, x < 2; 0, x = 2

Q−2 (x) = ln(x)/x, x < 2; (1 + ln(x))/x, x = 2

Q−3 (x) = ln2(x)/2x

Q−4 (x) = ln3(x)/6x

Q−5 (x) = ln4(x)/24x

Q−6 (x) = ln5(x)/120x

S3.4 Deriving the Integrals for x > 2

To extend our analysis to other values of w, we will derive the recurrence
formula for Pn(x), Q+

n (x) and Q−n (x) for n ≥ 2. Note that as w =

w0 + 1 no longer holds, the relative length of a sequence is defined as the
number of k0-mers in the sequence divided by w0 + 1, andR(x) is now
a random permutation of x(w0 + 1) elements. Definition for S±(x) and
the desired quantities change accordingly.

We will follow the same general argument as before, by iterating over
the location of minimal k0-mer within the sequence as t(w0 + 1) for
0 ≤ t ≤ x, and discuss the different scenarios. The extra consideration
comes from the fact that now it is possible both left and right substrings
can produce UHS k-mers, so we also need to iterate over the number of
UHS k-mers from one substring. We will define the convolution operator
to represent this iteration process:

[A(s) ∗B(t)]n =
n∑

m=0

Am(s)Bn−m(t)

We start with the derivation of Pn(x) for x > 2. For n = 0 and
x > 2, Pn(x) = 0 as wherever the minimal k0-mer is, there will be
one UHS k-mer containing it. For the rest, we define the middle region as
the subregion that is at least w0 k0-mers away from both the first and the
last k0-mer in the sequence. Its relative length is x − 2. If the minimal
k0-mer falls in this region, two UHS k-mers (recall a k-mer consists of
(w0+1) k0-mers) will contain the k0-mer and both substrings split by the
minimal k0-mer may contain more UHS k-mers. If the minimal k0-mer
falls outside this region, the analysis is identical to the previous case. This
yields the following recurrence:

i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S3 — #12 i
i

i
i

i
i

Improved design and analysis of practical minimizers S3

Pn(x) =
1

x
(2

∫ 1

0
Pn−1(x− t)dt

+

∫ x−1

1

n−2∑
m=0

Pm(t)Pn−2−m(x− t)dt)

=
1

x
(2

∫ 1

0
Pn−1(x− t)dt

+

∫ x−1

1
[P (t) ∗ P (x− t)]n−2dt)

ForQ+
n (x), we similarly define the middle region. If the minimal k0-

mer before swapping process falls to the left of the middle region (with
probability 1/x), it falls within the first k-mer and its order is swapped
with the first k0-mer. The probability of observing n − 1 UHS k-mers
outside the first k0-mer is the same Pn−1(x). If the minimal k0-mer is to
the right of the middle region, one UHS k-mer contains this k0-mer and all
other UHS k-mers comes from the left substring, following S+(x − 1).
If the minimal k0-mer is in the middle region, two UHS k-mers contain
the k0-mer and both substrings may contain more UHS k-mers, with the
order in the left substring conditioned on S+(t) and the order in the right
substring conditioned onR(x− t). This yields the following recurrence:

Q+
n (x) =

1

x
(Pn−1(x)+∫ x−1

1
[Q+(t) ∗ P (x− t)]n−2dt+

∫ x

x−1
Q+
n−1(t)dt)

The derivation forQ−n (x) is extremely similar to that ofQ+
n (x). Note

that now x ≥ 2, two UHS k-mers are guaranteed when the minimal
k0-mer is the wth one.

Q−n (x) =
1

x
(Pn−2(x− 1)+∫ x−1

1
[Q−(t) ∗ P (x− t)]n−2dt+

∫ x

x−1
Q−n−1(t)dt)

Following the methods of truncating distributions outlined in the main
text, noting that now P (E+

0) = P (E−0) = 1/(w0 + 1) = (x− 1)/w,
we can calculate density factor bound as follows:

Mi = (Q+
i (x) +Q−i (x))/2

D(x) = 4(x− 1)(
n∑
i=1

Mi/i+ (1−
n∑
i=1

Mi)/(n+ 1))

, assuming the integrals are derived up to nUHS k-mers. The final density
bound will be D(x)/w + o(1/w).

S3.5 Estimating D(x) with Dynamic Programming

As D(x) represents the density of the Miniception when w ≈ (x− 1)k,
with k →∞, it is natural to approximateD(x) by selecting a large value
of k and calculate the density of the Miniception with w = (x − 1)k.
Here we make the assumption that all k0-mers in the string are unique
and k0 � k, so we simply take k0 = 1, w = (x − 1)k and assume the
order of the k0-mers in the context followsR(x). By our analysis for the
integral method (See Section S3.6), the final density bound will be off by
O(1/k) compared to the integrals, so by choosing k to be large enough we
can ensure the derived bound is close to the integral bound, which again by

Section S3.6 approximates the behavior of the Miniception for arbitrary
large values of k.

Now, let P [l, n] be the probability that given permutation of l k0-
mers, there are exactly n UHS k-mers. Recall a k-mer is a UHS k-mer if
its first or last k0-mer is the smallest in the substring, which is of length
k now. We again enumerate over the location of the smallest k0-mer in
permutation, and denote this value i. Each specific location is the minimum
with probability 1/l. If i ≥ k − 1, the k-mer that ends at i (meaning its
last k0-mer is this one) is a UHS k-mer. By symmetry, if i ≤ l − k, the
k-mer starting at i is a UHS k-mer. The rest of UHS k-mers will come
from the two substrings, obtained by removing the ith k0-mer from the
sequence, and as before, we need to enumerate the number of UHS k-mers
from either substrings. This results in the following recurrence, where we
use fl,n(i) to denote the number of UHS k-mers that need to come from
either substrings:

(A[x] ∗B[y])n =

l∑
i=0

A[x, i]B[y, n− i]

fl,n(i) = n− 1(i ≥ k − 1)− 1(i ≤ l − k)

P [l, n] =
1

l

l−1∑
i=0

(P [i] ∗ P [l − 1− i])fl,n(i)

With the dynamic programming, we only need to provide that
P [i, 0] = 1, P [i, n] = 0 for i < k and n ≥ 1. We can then calculate
the values of P [l, n] up to l = xk and some preset value of n with the
requirement n > 2x.

We can similarly generate the recurrence relationship forQ+[l, n] and
Q−[l, n] (derivations are highly similar and omitted here):

Q+[l, n] =
1

l
(kP [l − 1, n− 1]

+

l−1∑
i=k

(Q+[i] ∗ P [l − 1− i])fl,n(i))

Q−[l, n] =
1

l
(kP [l − k, n− 1− 1(l ≥ 2k − 1)]

+

l−1∑
i=k

(Q−[i] ∗ P [l − 1− i])fl,n(i))

The approximate density factor bound (we use the density factor bound
for numerical stability and ease of comparison), which we denote as
Dk(x), can be calculated as follows using our previous argument of
truncating the distribution.

M ′i = (Q+[xk, i] +Q−[xk, i])/2

Dk(x) = 4(x− 1)(

n∑
i=1

M ′i/i+ (1−
n∑
i=1

M ′i)/(n+ 1))

The final density bound for the Miniception under this configuration
will be Dk(x)/w + o(1/w), where the o(1/w) term comes from the
event that some k0-mers in a context can be identical.

S3.6 Error Analysis for the Integral Method

In the derivation for the Miniception, we assume k → ∞ and use an
integral instead of summation for derivation ofPn(x) and other quantities.

i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S4 — #13 i
i

i
i

i
i

S4 Zheng et al.

In this section, we show the error introduced by this method is small
enough to not affect the final result asymptotically. Specifically, we show
the following:

Lemma S16. Let D(x) be the density factor bound derived from the
integrals, and Dk(x) be the density factor bound calculated from the
dynamic programming with window length (x− 1)k and k-mer length k
(measured in number of k0-mers), assuming all k0-mers are distinct. We
have |D(x) − Dk(x)| = O(nx/k), where n is the largest number of
UHS k-mers considered by both processes.

As shown in the main text, this lemma serves a dual purpose. It
means D(x) is a good approximation to any Dk(x) up to asymptotically
negligible errors, and by calculating Dk(x) for sufficiently large k, we
can estimateD(x) accurately which in turn approximates otherDk(x). In
other words, D(x) serves as a bridge to connect the density factor bound
Dk(x) for different values of k, which then bound the density of the actual
minimizer as long as k0 satisfies the condition for Lemma 8. Note that in
derivation of Dk(x) the concept of k0-mers are already abstracted away,
and for simplicity we assume k0 = 1 in that process, meaning every k-mer
now consists of k k0-mers.

Recall in the main text we set up the integrals to derive the distribution
of mtotal conditioned on first k-mer being a UHS k-mer. Following the
convention in the dynamic programming process, we assume k0 = 1,
meaning k = w0 + 1. The context has exactly xk k0-mers, and each
k-mer is of length k. Note that all lengths in the section are measured in
k0-mers. As shown in the main text, conditioned on E0, the context will
contain at least two UHS k-mers.

Recall that we derive the values of Pn(x) up to n. An alternative view
of the integral recurrence is that we determine at most n + 1 locations
that contains the minimal k0-mers in a certain substring, and calculate
the number of UHS k-mers based on the order and the distance of these
locations. For example with x = 2, if the first location (the minimal k0-
mer in the whole context) is on the left half of the context, the second
location is for the minimal k0-mer in the right substring. If the second
location is in the middle region of that substring, we determined the number
of UHS k-mers (1 in this case) using two locations. If instead, the second
location is not inside the middle region, a third location is determined
inside the sub-sub-sequence that could still generate a UHS k-mer, and
these three locations can collectively determine how many UHS k-mers
are in the whole context. This process continues until no substrings can
generate more UHS k-mers, or n+ 1 UHS k-mers have been generated.
There are only n + 1 determined locations total, as for each recursion
there is one corresponding UHS k-mer, either right before the start of the
substring or right after the end of the substring. This is similar when we
derive the values ofQ+

n (x) andQ−n (x), where we determine the location
of the minimal k0-mer before swapping.

We denote the sequential decision process to determine number of
UHS k-mers, conditioned on E+

0 (corresponding to Q+
n (x)) and E−0

(corresponding to Q−n (x)), as m ∼ P+
n (x) and m ∼ P−n (x),

respectively. Formally:

Pm∼P+(x)(m = i) = Q+
i (x), i ≤ n

Pm∼P+(x)(m = n+ 1) = 1−
n∑
i=1

Q+
i (x)

And this is symmetric for P−(x). With this definition, we have:

D(x) = 2(x− 1)(Em∼P+(x)(1/m) + Em∼P−(x)(1/m))

Similarly, we can propose an alternative view of the dynamic
programming, where we determine at most n+ 1 locations that contains

the minimal k0-mers in a certain sequence. The difference is that in the
previous cases, the locations are picked on a real axis [0, x], but now it is
picked from a discrete set of locations in [xk]. We will now argue the two
processes are not that different.

We first establish a mapping M(t) : R → [xk] from real numbers
to discrete locations, by multiplying the real number by k and rounding
down. When a real number is sampled uniformly from [0, x], its mapping
will be a uniform distribution over [xk] (that is, 1/xk chance to map into
each location). Now, we consider emulating the decision process from the
dynamic programming (which we denote P+

k (x), for simplicity). Each
time a location is randomly sampled (the location of minimal k0-mer in
current substring of consideration) from P+(x), we emulate one step of
P+
k (x) by selecting the mapped discrete location as the location of the

minimal k0-mer. The process continues until the end of decision process.
We now examine the emulation process in more detail. At each step

of the decision process, we sample the location of the minimal k0-mer
in current substring of consideration, before the swapping process if the
substring of consideration is still conditioned onE+

0 orE−0 . The boundary
of the substring is determined by two previous samples (or simply the
boundary), which we denote L and R. The discrete decision process we
are emulating will be sampling the location of the minimal k0-mer in
current substring of consideration, which will be the substring fromM(L)

toM(R), including neither ends. It can be seen that we are sampling from
a slightly longer range in the original process. As long as our sampled
location T satisfiesM(L) < M(T) < M(R), the distribution ofM(T)

is uniform over possible selections. If M(T) = M(L) or M(T) =

M(R) at any step of the emulation, we call the whole process failed and
do not continue. The swapping process can be addressed similarly, as in
this case L = 0 is guaranteed, and the emulated and original decision
process will never disagree on whether the swap should be triggered.

Assume M(T) passes this check, meaning it is uniformly sampled
from possible locations between M(L) and M(R). We will now decide
on the next step in the process. This includes two parts: Counting number of
UHS k-mers including the minimal k0-mer, and determining if a substring
can still produce more UHS k-mers. Both parts involves two distance
checks: If T − L > 1 in the original decision process, and if M(T) −
M(L) ≥ w0 in the discrete decision process, for checking if the k-mer
ending with the minimal k0-mer in this substring constitutes a valid UHS
k-mer. If the original decision process and the emulated decision process
will give different answer to this check, we call the whole process failed
and do not continue. For deciding if the left substring can produce more
UHS k-mers, we replace w0 with w0 + 1 and the analysis is the same. It
is also symmetric for the right substring and checking the k-mer starting
with minimal k0-mer.

Now, if a decision process does not fail (by either of the previously
defined criteria), we say it perfectly emulates a discrete decision process.
By the way it is defined, the emulated process randomizes the location
of minimal k0-mers correctly, make the same decision as the original
process at every step, and count the same number of UHS k-mers. We now
characterize these “safe decision processes” with the following notation.
Let S+k denote a distribution whose support is {×, 1, 2, 3, · · · , n + 1}
derived from the aforementioned emulation process. × denotes a failed
process, and an integer denotes the number of UHS k-mers determined
from the process. We claim P

m∼S+
k

(m = i) ≤ Pm∼P+ (m = i)

and P
m∼S+

k
(m = i) ≤ P

m∼P+
k

(m = i) simultaneously for all i ∈

{1, 2, 3, · · · , n + 1}. Intuitively, the distribution P+ and P+
k looks the

same if the emulation is successful.
The first part of the statement can be proved by the definition of

the emulation process: P
m∼S+

k
(m = i) is the probability that the

emulation successes and returns i UHS k-mers, which is never greater
than the probability of iUHS k-mers regardless of the emulation outcome

i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S5 — #14 i
i

i
i

i
i

Improved design and analysis of practical minimizers S5

(P (A ∩ B) ≤ P (A)). The second part is can be proved by viewing the
emulation from the perspective of the discrete process (which we call a
reverse emulation, however they are in fact the same process): At each
step of the discrete decision process, we first randomly select the location
of the minimal k0-mer, and randomly choose a real number that maps
to this location as its real coordinate. We then do a failure check by
rolling a random number inside [L,R] (from the real number locations
selected in previous steps), and fail the process if the rolled location collide.
Similarly, at each distance check we first get the outcome from discrete
locations, then fail the process if the real number locations disagree with
the outcome. In this perspective, we can prove the second part of the
statement in the same way: P

m∼S+
k

(m = i) is the probability that this

reverse emulation successes and returns iUHSk-mers, and is never greater
than the probability of getting i UHS k-mers regardless of the outcome of
reverse emulation.

We now bound the probability of failure, that isP
m∼S+

k
(m = ×). As

the decision process consists ofn+1 steps, we will bound the probability at
each step. At each step, the interval for random selection has at least relative
length of 1 (otherwise no UHS k-mers will be from this section), and there
are at least k k0-mers for selection. The key observation here is there are
only 6 ways to fail (colliding with M(L), disagreement on whether left
substring contains more UHS k-mers, disagreement on whether the k-
mer ending at smallest k0-mer is valid UHS k0-mer, and their symmetric
counterparts), and for each of them, there is a interval of length at most
1/k such that the fail event is triggered if and only if the minimal k0-mer
is inside the interval. In other words, the probability to fail at each decision
step is at most 6/k = O(1/k), and the probability of failure at any step
is O(n/k).

We now have the tools to bound |D(x)−Dk(x)|. We first bound the
term Em∼P+(x)(1/m). We denote S as the event that the emulation is
successful, and F+(x) as the distribution of UHS k-mer count when the
emulation fails.

Em∼P+(x)(1/m) =

n+1∑
i=1

Pm∼P+(x)(m = i)/i

= P (S)

n+1∑
i=1

P
m∼S+

k
(x)

(m = i)/i

+ P (S̄)

n+1∑
i=1

Pm∼F+(x)(m = i)/i

And similarly, let F+
k (x) as the distribution of UHS k-mer count when

the reverse emulation fails.

E
m∼P+

k
(x)

(1/m) =

n+1∑
i=1

P
m∼P+

k
(x)

(m = i)/i

= P (S)

n+1∑
i=1

P
m∼S+

k
(x)

(m = i)/i

+ P (S̄)

n+1∑
i=1

P
m∼F+

k
(x)

(m = i)/i

This leads to the following:

|Em∼P+(x)(1/m)− E
m∼P+

k
(x)

(1/m)|

= P (S)|
n+1∑
i=1

(Pm∼F+(x)(m = i)− P
m∼F+

k
(x)

(m = i))/i|

≤ P (S) = O(n/k)

Substitute this back, we get |D(x)−Dk(x)| = O(nx/k).
Note that this bound is not tight. This is because we overestimate the

difference term
∑n+1
i=1 Pm∼S+

k
(x)

(m = i)/i by simply upper bounding

it by 1. However, for larger value of k and x, the context is almost
guaranteed to have around 2x UHS k-mers, and the difference here is
more on the order of O(1/x2). This means in practice the bound is more
like O(1/k) (considering n = Θ(x) is a reasonable choice) with the
possibility of even smaller (as we do not consider that positive terms and
negative terms cancel out each other), which also explains why we can
pick k = 2500 in our simulations.

S4 Implementing the Miniception
The implementation takes a sequence S as input (as well as other
parameters specifying the minimizer), and returns the list of picked
locations. We will derive a linear time implementation, meaning the
algorithm runs in time O(k|S|) as it takes O(k) time just to process and
compare k-mers. We will discuss our algorithms based on the assumption
that a k-mer fits in a word (This means k ≤ 32 for 64-bit systems), Value
of k beyond this limit is rare in practice, and our algorithm also easily
adapts to general values of k.

While the Miniception is defined with many randomness,
implementing it means sticking to one “instantiation”, and the orders O0

and O are fixed. We will assume the alphabet is {0, 1, 2, 3} so a k-mer
can be written as an integer in [4k]. We assume constant time access to
O0 as a function f0 : [4k0]→ R, such that x0 < x1 inO0 if and only if
f0(x0) < f0(x1), and similarly a function f : [4k]→ R for some order
function that agrees withO when restricted to C0, meaning both f0 and f
can simply be a random hash function.

From the construction of the Miniception, we can recover C0 from
O0. In most cases, this means we only need to store a small minimizer
to implement the Miniception on the fly. In comparison, existing methods
with precomputed UHS requires storage of the whole set.

Implementation of minimizers usually use monotone queues for linear
time complexity, under the same assumption. The monotone queue is
a special kind of deque that ensures the item in the queue are both in
nondecreasing order and are inserted recent enough. Such data structure
allows solving the problem of finding minimum element in every T -
long window in input linear time, which is exactly the problem of
identifying picked k-mers for a given sequence, as the picked locations are
simply locations that are minimal in a w-long window. We will provide
pseudocode for its implementation later this section.

As the Miniception consists of two minimizers, we use two monotone
queues, one implementing the seed minimizer and one implementing
the actual minimizer which identifies picked locations. As we only care
whether a context is charged for the seed minimizer, the first monotone
queue has expiry timew0+1. The second monotone queue is implemented
as in a normal minimizer.

We provide a pseudocode for the algorithm below. For simplicity, we
will ignore the warmup part (before the first full window). We provide a
reference implementation written in Python in our github repo. We start

i
i

“Marcais.233” — 2020/3/27 — 14:15 — page S6 — #15 i
i

i
i

i
i

S6 Zheng et al.

with the monotone queue, which as described can be considered as a deque
with an extra parameter T (expiry time) and additional operations.

Algorithm 1 The Monotone Queue with Expiry Time T
procedure SetTime(t) . this procedure removes expired items

while Queue is not empty do
x′, t′ ← front of queue
if t′ ≤ t− T then

Pop x′, t′ from queue
else

return
end if

end while
end procedure
procedure Insert(x, t) . input is (item, time) pair

Set current time to t
while Queue is not empty do
x′, t′ ← end of queue
if x < x′ then . minimizers prefer leftmost k-mers

Pop x′, t′ from queue
else

break
end if

end while
Append x, t to the end of queue

end procedure

The monotone queue achievesO(k) amortized time complexity (recall
each item in the queue is a k-mer), as each item will only be inserted
and popped once. With the monotone queue, we can implement the
Miniception. As mentioned before, we assume each k-mer can be held
in a word.

Algorithm 2 The Miniception
procedure MiniceptionPicks(S)
Q0 = MonoQueue(w0 + 1) . w0 + 1 is the window length
Q = MonoQueue(w)

for i = (w + k − 1) to |S| do . Setups ignored for clarity
m0 ← (m0 × 4 + S[i]) mod 4k0 . Latest k0-mer
m← (m× 4 + S[i]) mod 4k . Latest k-mer
Insert (f0(m0), i) to Q0

t← time of Q0[0] . for current minimum k0-mer in window
if (t = i) or (t = (i− w0)) then

Insert (f(m), i) to Q . latest k-mer is in C0
else

Set current time to i in Q . remove out-of-window k-mer
end if
p← time of Q[0] . this is the end of picked k-mer in window
Pick p− (k − 1) if not picked already

end for
end procedure

10 20 30
Value of k (w = 100)

1.9

2.0

2.1

2.2

2.3

De
ns

ity
 F

ac
to

r

10 20 30
Value of k (w = 10)

1.7

1.8

1.9

2.0

2.1

2.2

De
ns

ity
 F

ac
to

r

Lexicographic Random Miniception

Fig. 7. Comparing density of the Miniception against lexicographic and random
minimizers. We experiment with w = 10 (left half) and w = 100 (right half).

50 100 150 200
Value of w (k = 13)

1.9

2.0

2.1

2.2

2.3

2.4

De
ns

ity
 F

ac
to

r

7.5 10.0 12.5 15.0
Value of k (w = 100)

2.0

2.1

2.2

2.3

De
ns

ity
 F

ac
to

r

Lexicographic
Random

Miniception
PASHA

PASHA-Random

Fig. 8. Density factor comparison, now also with minimizers derived from PASHA outputs.
Left half: experiments with fixed k = 13 and varying w. Right half: experiments with
fixed w = 100 and varying k.

S5 Evaluating Minimizers on Human Reference
Genome

We use the identical setup as in the main text, except the contexts are now
sampled from hg38 human reference genome. As observed by Roberts
et al. (2004b,a), order the alphabet by reverse frequency may improve
performance of the lexicographic minimizer. For this reason, we use the
order C < G < A < T for all minimizers. We also consider two
strategies for constructing a compatible minimizer given the UHS from
PASHA. The authors suggested a lexicographic order within the UHS,
but we also implement a minimizer where the order within the UHS is
randomized, like the Miniception. Refer to the main text for more details.

