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Supplementary Material 

Dropouts 

The number of dropouts was small: a total of 7 PwHA withdrew from the studies due to adverse 

events (n=4), investigator decision (n=1), personal reason (n=1) and lost to follow-up (n=1). At the 

clinical cut-off date used for this analysis, no participant withdrew the study for lack of efficacy. 

Distributional assumptions 

The distributions of the estimated individual mean daily bleed frequency versus estimated individual 

variance are given in Figure S1. Because of the log-log scale, the graph does not include the 

individuals who did not experience any bleeds. A modest over dispersion (i.e. variance> mean) can 

be observed. There is substantial inter-individual variability for both means and variances. 

The generalized Poisson performed better than the other distributions tested, based on likelihood-

based comparisons (ΔAIC=-15.0 when compared with the Poisson distribution) and was therefore 

used as a starting point for the exposure-response model building. 

Estimation concerns 

Modeling count data, especially count data whose distribution deviates from the standard Poisson 

distribution, is generally not robust when using first order conditional estimation with Interaction 

(FOCE-I). In contrast, resampling methodology like stochastic approximation of the EM algorithm 

(SAEM) followed by Monte Carlo-Markov chain Bayesian estimation (MCMC BAYES) have been 

proven successful [S1,S2]. However, in our experience the MCMC BAYES method tends to be 

unstable (frequent premature termination of the estimation steps). Hence, it was decided to first run a 

SAEM step before running a MCMC BAYES step using the output of the SAEM step as initial 

estimates for the MCMC BAYES step. The SAEM started with 50 burn-in samples with convergence 

test (CTYPE=3) and 50 stochastic posterior samples, and the subsequent MCMC BAYES run 

consisted of 2,000 burn-in samples with the same convergence test, followed by at least 500 samples 

of the posterior distribution. Parameter estimates were obtained using at least 500 samples from the 

posterior distribution.  



Structural model building  

The introduction of a treatment effect of any sort provided a considerable improvement in the model 

fit. Compared to a model that did not include any sort of treatment effect, the mode of the objective 

function value decreased by 343.2, 739.6 and 1585.2 points, respectively, when adding a single 

parameter denoting either a linear effect of last given dose, a linear effect of emicizumab 

concentration or an effective concentration (EC50) under the assumption of a maximum effect (Emax) 

of 1 (a so-called “Imax” model).   

A full Emax model, where the maximum effect was estimated, provided the lowest objective function 

value mode. Models that included any sort of effect sustainment, either as in an effect of time after 

dose on Emax, or using a K-PD model that allowed for an effect offset that was slower than the 

elimination of drug from the plasma, were also tested. These models did indeed improve the 

distribution of the objective function value. However, the estimated rate constants of the estimated 

effect offset tended to approach infinity and their precision were lacking. In contrast, when the Emax 

value was fixed to 1, thus reducing the model to an Imax model, the objective function distribution 

overlapped considerably with that of the full Emax model (see Figure S10). Since the Imax model 

encompassed one parameter less, it was selected over the Emax model. In addition, this model is 

similar to the model used in the emicizumab RTTE model published previously [24]. Addition of a 

Hill factor to the Imax model was tested, and, while marginally improving the objective function 

distribution, the resultant IC50 was conspicuously low (0.091 µg/ml) and highly uncertain. It was 

concluded that the Imax model with added Hill factor was over-parameterized, and the Imax model was 

selected as final.    

Covariate model building strategy 

One objective of the analysis was to use covariate information in order to identify sensitive groups 

that may differ in their exposure response profiles. One attractive option for investigating potential 

covariate effects would be to use the so-called "full model" approach, by including all possible 

covariates in the model. However, in this specific context, with the exposure response model being 



fit to count data using computationally demanding techniques, and also considering the identifiability 

issues that could be encountered, we opted for a stepwise approach.  

The effect of adding a covariate is dependent on which covariates that were added previously, which 

again poses a problem in this analysis as computation times in MCMC BAYES runs are generally 

long, and there are no generally accepted criteria for model selection in this context. This was 

addressed by performing a stepwise covariate modeling (SCM) procedure, as implemented in Perl-

speaks NONMEM (PsN) [S1] using SAEM estimation. The one-sided type I error rate was set to 

𝛼=0.01 for the forward inclusion step and 𝛼=0.001 for the backwards exclusion. The SCM was 

performed using the generally recommended approach for model selection in a SAEM setting, which 

encompasses running a last estimation step using a single replicate of importance sampling. This 

practice provides a point estimate that could be used for model selection in the SCM procedure. 

Once the SCM was completed, potential covariates would be added to the base model in order of 

inclusion in the SCM, and models (re-) fit using MCMC BAYES. We thus implemented SCM more 

as a screening procedure than as a final criterion for model selection. In this later step of the 

covariate selection procedure, the same criteria for model selection were used as when the basic 

structural model was developed, i.e. objective function distribution, Akaike information criterion, 

parameter precision, visual predictive check performance, in addition to clinical significance of 

covariate inclusion.  

Possible impact of FVIII prophylaxis 

Prophylaxis with FVIII was forbidden in HAVEN studies, with the exception of the first week of 

treatment with emicizumab for PwHA without FVIII inhibitors who were previously treated with 

FVIII prophylaxis. Only episodic use of FVIII was allowed during the study to treat a bleed. The use 

of FVIII did therefore not prevent the occurrence of a bleed, limiting its impact on the exposure-

response of emicizumab. It is however conceivable that the treatment of a bleed with FVIII in a 

given PwHA may decrease the likelihood of occurrence of the next bleed and indirectly impact the 

exposure response of emicizumab. This influence is however thought to be minimal as the model 



nicely described the exposure-responses in different emicizumab treated populations, as seen by the 

VPCs, including those who did not receive FVIII to treat a bleed or those who had previously 

received FVIII prophylaxis. 

 

  



Supplementary Figures 

Fig. S1 Individual variances versus individual mean daily bleed counts among all persons with 

hemophilia A experiencing bleeds. 

 

  



Fig. S2 Visual predictive check plots for the count data model – HAVEN 1 study, 1.5 mg/kg QW – 

(top) Arm A (bottom) Arm B. Circles and solid blue lines are the observed fractions of persons with 

hemophilia A in each category experiencing the respective number of daily bleeds in each period, 

shaded areas are the simulated 95% prediction intervals. 

 

  



Fig. S3 Visual predictive check plots for the count data model – HAVEN 1 study, 1.5 mg/kg QW – 

(top) Arm C (bottom) Arm D Circles and solid blue lines are the observed fractions  of persons with 

hemophilia A in each category experiencing the respective number of daily bleeds in each period, 

shaded areas are the simulated 95% prediction intervals. 

 



 

 

Fig. S4 Visual predictive check plots for the count data model – Japanese phase Ib/II study - (top) 

0.3 mg/kg QW (bottom) 1 mg/kg QW. Circles and solid blue lines are the observed fractions of 

persons with hemophilia A in each category experiencing the respective number of daily bleeds in 

each period, shaded areas are the simulated 95% prediction intervals. 

 



 

 

 

 

Fig. S5 Visual predictive check plots for the count data model – Study ACE001JP Part C/ACE002JO 

3.0 mg/kg QW. Circles and solid blue lines are the observed fractions of persons with hemophilia A 

in each category experiencing the respective number of daily bleeds in each period, shaded areas are 

the simulated 95% prediction intervals. 



 

  



Fig. S6 Visual predictive check plots for the count data model – HAVEN 3 study, 1.5 mg/kg QW – 

(top) Arm A (bottom) Arm D. Circles and solid blue lines are the observed fractions of persons with 

hemophilia A in each category experiencing the respective number of daily bleeds in each period, 

shaded areas are the simulated 95% prediction intervals.

 



Fig. S7 Visual predictive check plots for the count data model – HAVEN 3 study, 3 mg/kg Q2W – 

(top) Arm B (bottom) Arm C. Circles and solid blue lines are the observed fractions of persons with 

hemophilia A in each category experiencing the respective number of daily bleeds in each period, 

shaded areas are the simulated 95% prediction intervals. 

  



Fig. S8 Visual predictive check plots for the count data model – HAVEN 4 study, 6 mg/kg Q4W – 

(top) run-in Arm (bottom) expansion Arm. Circles and solid blue lines are the observed fractions of 

persons with hemophilia A in each category experiencing the respective number of daily bleeds in 

each period, shaded areas are the simulated 95% prediction intervals. 

 



Fig. S9 Visual predictive check plots for the count data model - (top) Non-intervention study 

(bottom) HAVEN 2 (Pediatric Study). Circles and solid blue lines are the observed fractions of 

persons with hemophilia A in each category experiencing the respective number of daily bleeds in 

each period, shaded areas are the simulated 95% prediction intervals. 

 



 

 

Fig. S10 Comparison of the posterior distribution of the objective functions of Emax and Imax models.  
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