Supplementary Information Structural basis of the activation of c-MET receptor Uchikawa et al.

Supplementary Figure 1. Reconstitutions of c-MET/HGF and c-MET/NK1 complexes. The representative SEC profiles and SDS-PAGE analyses of the c-MET927-LZ/HGF (a) and c-MET927-LZ/NK1 (b) complexes, from N = 3 repeats. Heparin was added in both samples to promote the complex formation. C-MET/HGF or c-MET/NK1 were co-eluted in SEC, suggesting that the complexes were stably formed and remained intact during SEC.

Supplementary Figure 2. Cryo-EM analysis of c-MET927-LZ/HGF complex

(a) Representative electron micrograph from total 8,100 micrographs and 2D class averages of c-MET927-LZ/HGF complex. Scale bar: 50 nm. (b) Gold-standard Fourier shell correlation (FSC) curve for the cryo-EM maps. Blue: cryo-EM map of holo-complex (2:2 c-MET/HGF complex). Red: cryo-EM map of sub-complex (1:2 c-MET/HGF complex). Green: cryo-EM map of c-MET I and HGF I obtained by focused refinement of holo-complex. Yellow: cryo-EM map of sub-complex after further 3D classification. A complete version of HGF II was resolved in this map. (c) Cryo-EM map of c-MET/HGF complex; cryo-EM map of sub-complex; cryo-EM map of sub-complex after further 3D classification. If was resolved in this map. (c) Cryo-EM maps of c-MET/HGF complexes colored by local resolution. From left to right: cryo-EM map of holo-complex; cryo-EM map of sub-complex; cryo-EM map of sub-complex; cryo-EM map of c-MET I and HGF I obtained by focused refinement of holo-complex; cryo-EM map of sub-complex after further 3D classification, resolving the intact HGF II. (d) Representative cryo-EM densities of various parts of the c-MET/HGF complexes.

Supplementary Figure 3. Flowchart of cryo-EM data processing of c-MET/HGF dataset.

Supplementary Figure 4. The structure of c-MET extracellular domain and HGF.

(a) Overall structure of the c-MET extracellular region. The intramolecular disulfide bond (Cys26-Cys584) that links the N-terminal segment to the IPT1 domain is shown as yellow stick. (b) Superposition between c-MET I (green) and c-MET II (blue) by aligning the SEMA domain. (c) Superposition between N-terminal disordered c-MET from PDB ID: 2UZX¹ (grey) and N-terminal ordered c-MET from the cryo-EM structure of c-MET/HGF complex (yellow) by aligning the SEMA domain, revealing conformational change on the stalk region (indicated by an arrow). (d) Modular structure of the HGF. (e) Superposition between HGF I (pink) and HGF II (yellow) by aligning the two NK2 domains, showing the structural relocation of K3-K4-SPH segment in relative to NK2.

Supplementary Figure 5. HGF WT or mutants endow differential agonist activities.

Representative western botting of Phospho-c-MET (Tyr1234/1235), c-MET, and loading control β -actin from N = 3 biological repeats. H1299 cells (~ 60% confluent in 6 well plate) was stimulated with 200 ng HGF (WT or mutant) for 10 min at 37°C. The agonist activity of each HGF variant was calculated following the formula: (Phospho-c-Met/ β -actin(1)/(c-MET/ β -actin(2)), and the presented agonist activity was normalized to HGF WT. Actin1 is the loading control for phospho-c-MET, while actin2 is the loading control for c-MET. Source data are provided as a Source Data file.

Supplementary Figure 6. HGF-induced auto-phosphorylation of c-MET in H1299 cells expressing full-length myc-tagged c-MET WT or mutants.

(a) H1299 cells stably express myc-c-MET (WT or mutants) were selected for functional assays. (b) Representative western blotting of Phospho-c-MET (Tyr1234/1235), c-MET, and loading control β -actin from N = 5 biological repeats. Endogenous c-MET was depleted by siRNA in H1299 cells stably expressing myc-c-MET, and then 200 ng HGF WT was applied for 10 min at 37°C to stimulate the phosphorylation of myc-c-MET. The phosphorylation capacity of each myc-c-MET WT or mutants was calculated following the formula: (Phospho-myc-c-MET/ β -actin (1)/(myc-c-MET/ β -actin(2)). Here the basal auto-phosphorylation of myc-c-MET was subtracted for each variant and the presented agonist activity was normalized to myc-c-MET WT. Actin1 is the loading control for phospho-c-MET, while actin2 is the loading control for c-MET. Source data are provided as a Source Data file.

Supplementary Figure 7. Cryo-EM analysis of c-MET927-LZ/NK1 complex.

(a) Representative electron micrograph from total 3,644 micrographs and 2D class averages of c-MET927-LZ/NK1 complex. Scale bar: 50 nm. (b) Gold-standard Fourier shell correlation (FSC) curve for the cryo-EM map of c-MET/NK1 complex. (c) Cryo-EM map of c-MET/NK1 complex colored by local resolution. (d) Flowchart of cryo-EM data processing of c-MET/NK1 dataset. (e) Cryo-EM densities of c-MET and NK1 dimer. (f) The rigid body fitting of the models of SEMA-PSI-IPT1-IPT2 domains of two c-MET and dimeric NK1 into the cryo-EM map that is low-pass filtered by local resolution.

Supplementary Table 1. Primers used in the study

Project	Oligo name	sequence
Stable cell line for	cMetpLVXFW	
functional test		CTATTTCCGGTGAATTCCTCGAGATGAAGGCCCCCGCTGTGCTT
	cMetpLVXRV	GGGGAGGGAGAGGGGGGGGGGATCCCCGTTCAAGTCTTCCTCGGAGAT
	pLVX_backbone_FW	GGATCCCGCCCCTCTCCCTC
	pLVX_backbone_RV	CTCGAGGAATTCACCGGAAATAGATCC
cmet and HGF for protein purification	cMetpEZTFW	TAATACGACTCACTATAGGCTAGCGCCACCATGAAGGCCCCCGCT
	cMetpEZT927RV	GAGTGGAAGCAAGCAATTTCTTCAGGTACCAGCAGCGGCCTGG
	HGF_FW	TAATACGACTCACTATAGGCTAGCATGTGGGTGACCAAACTCC
	HGF_RV	CCCCCGGGTCCTTGGAAGAGCACTTCGAGTGTCTCGCATGTTTTAAT TGCACAG
	HGF_NK1RV	GGTGGTGGTGGTGCTCGAGAACTTCTGAACACTGAGGAATGTCAC
cmet		
mutations for functional test	cmet K267AR384AE419A FW	CCTTTGGACCGTCAAGAAGTAAATAAAATTG
	cmet_K267AR384AE419A_RV	GAATATCGAACAGCCTTTACCACAGCTTTGC
	cmet_Y369A373A_FW	CACATGGCAGATCGATCCATTGGTTC
	cmet_Y369A373A_RV	CATGAGCACTGCTTTAATAGGACACTTCTG
	cmet R426AR469A FW	GGCCTGCAAAGCTGTGGT
	cmet_R426AR469A_RV	CTCATGTGAATTTTCTCCTGGACTC
	cmet_N382AF398A_FW	GGACATCTCACGGCGTTTTTGTT
	cmet N382AF398A RV	GATGAATATCGAACAGAGTTTACC
	cmet_K592EN593EK595EK599E	GTCCCAGCCACATATGGTCAG
	cmet_K592EN593EK595EK599E	
		CTTTAAGTGAGAGCACGATGAAT
HGE point		
	343536_F	AGAGAATACAATTCATGAATTCAAAAAAATCAG
	343536_R	TCCTCCCTTTGTCCCTCTGCATAG
	47_F	AAAATCAGCAGAGACTACCCTAATC
	47_R	TTGAATTCATGAATTGTATTTCTTC
	91_F	TGTTTTTGATGAGGCAAGAAAACAATG
	91_R	AAAGCCTTGCAAGTGAATG
	112_F	GAAAAAAGAAGCCGGCCATGAATTTGACCTC
	112_R	ACTCCACTTGACATGCTATTG
	114_F	AGAATTTGGCGAGGAATTTGACC
	114_R	TTTTTCACTCCACTTGAC
	159_F	GATACCACACCGGCACAGCTTTTTGCCTTC
	159_R	ATGGAACTCCAGGGCTGA
	195_F	AAGCAATCCACGGGTACGCTACGAAGTCTG

195_R	GTGAAACACCAGGGTCCC
197_F	TCCAGAGGTAGAGTACGAAGTCTGTGAC
197_R	TTGCTTGTGAAACACCAG
242_F	GACACCACACGAGCACAAATTCTTGCC
242_R	TGATGATCCCAGCGCTGA
244_F	ACACCGGCACGAGTTCTTGCCTG
244_R	GGTGTCTGATGATCCCAG
249_F	CTTGCCTGAAGAGTATCCCGACAAGGGC
249_R	AATTTGTGCCGGTGTGGT
242244249_F	TTGCCTGAAGAGTATCCCGACAAGGGCTTT
242244249_R	GAACTCGTGCTCGTGTGGTGTCTGATGATC
321_F	CAATACCATTCGGAATGGAATTCCATGTCAG
321_R	ACAGTGCCCCTGTAGCCT
336_F	GTATCCTCACCGGCATGACATGACTC
336_R	TGAGAATCCCAACGCTGA
373_F	TCCAAACATCGAGGTTGGCTACTGC
373_R	TCAGTGGTAAAACACCAG
361_F	AGATGGGTCTCGGTCACCCTGGTG
361_R	GGATTTCGGCAGTAATTTTC
376_F	CCGAGTTGGCGCCTGCTCCCAAA
376R	ATGTTTGGATCAGTGGTAAAAC
673_F	TGAGGGGGATGCCGGTGGCCCAC
673_R	CATGGTCCTGATCCAATCTTTTC
737678_F	GAATGAAGGACTTCCATTCACTTGCAAGGCTTTT
737678_R	TCAGTACACTCATTAGCACATTGGTCTGCAGT

Supplementary References

1. Niemann, H. H. *et al.* Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InIB. *Cell* **130**, 235-246, doi:10.1016/j.cell.2007.05.037 (2007).