Reviewers' comments:

Reviewer #1 (Remarks to the Author):

Although the use of optical clearing methods to assess extravasation in tumors is not novel (Lee
SS, Bindokas VP, Kron SJ]. Multiplex Three-Dimensional Mapping of Macromolecular Drug
Distribution in the Tumor Microenvironment. Mol Cancer Ther. 2019 Jan;18(1):213-226. doi:
10.1158/1535-7163.MCT-18-0554. Epub 2018 Oct 15. PMID: 30322947; PMCID: PMC6318001.),
the authors present useful warnings to obtain more accurate results in drug delivery studies. This
paper follows a robust experimental approach, with no apparent flaws in its methodology. It also
provides deep insight into image processing techniques that are good candidates to solve, in a
generalizable way, common problems that arise when segmenting vasculature and other elements
of 3D microscopy images. Authors present Machine Learning in a justified way as a valuable tool to
solve most technical issues concerning data analysis in drug delivery systems.

1. One of the main claims of the paper is the demonstration of the current flaws of extravasation
studies of tumoral tissue with quantitative assays, demonstrating the superiority of microscopy
techniques in these types of studies. This claim would be more convincing if the authors mentioned
references demonstrating that intermittent vascular perfusion is not currently considered as a
factor hindering drug delivery studies (line 60, line 303)

2. Although optical clearing methods are a nice choice to optimize extravasation studies. clearing
techniques often use aggressive compounds that can affect the tissue “s structure and properties,
and not only its size (line 481). In fact, some optical clearing methods may actually increase the
permeability of the BBB. Therefore, the results of extravasation spots count in OCS may not be
entirely accurate. This should be indicated somewhere in the text.

Minor comments:
1. Reference 20 of line 84 does not seem to prove the importance of transcardial perfusion in this
type of studies.

2. On page 21, it would be nice to add some reference or derivation of the CF formula.

3. There is a missing definition of scale bars in Figure 5H, Supplementary Figure 2 D and E,
Supplementary Figure 6 E and F.

4. Regarding the vessel lumen filling strategy presented on page 20, a further explanation of the
“analyze particles” implementation to obtain binary masks of the lumen would be of great help to
facilitate reproducibility of the workflow.

Reviewer #2 (Remarks to the Author):

In the manuscript titled "Optical tissue clearing and machine learning can precisely characterize
extravasation and blood vessel architecture in brain tumors", the authors discuss the problem of
the quantification of drug accumulation in brain tissue.

The authors present the difficulties that arise in the assessment of drug delivery in brain tumor
tissue. First of all, they show that transcardial perfusion -- which is essential in removing the
circulating drug from vessels -- is hindered in samples of glioblastoma (GBM) because of the
pathologically-induced changes in the vasculature morphology. This problem alone is likely to
cause a wrong assessment of compound extravasation. Continuing their line of reasoning, they
also show that conventionally prepared samples undergoing cryosectioning are prone to
overestimation of the amount of extravasated drug because of the actual damage inflicted to the
vessels during the cutting procedure.



With these two findings, the authors show that 3D imaging of optically cleared tissue -- leaving the
sample intact -- is an effective method for simultaneous precise assessment of drug extravasation
and angioarchitecture reconstruction. This also allows them to link the degree of extravasation to
specific features of the brain tumor vasculature.

The manuscript is well written and easy to follow. The techniques used throughout this work are
not new if taken independently. The main novelty of this work is the combination of several
techniques (tissue clearing, 3D deep imaging, vessel segmentation using machine learning
approaches) to tackle the problem of precise extravasation assessment, and the demonstration
that transcardial perfusion combined with tissue sectioning is not an effective method for this aim,
both of which could be of interest for the scientific community. For machine learning, the authors
use commercially available solutions (i.e. no actual model development was done in this work),
which they consider to be an advantage. Overall, the work appears to be meticulous and sound
from a procedural point of view.

Here follows a list of minor points and suggestions that the authors might find useful:

* Figure 3M-P: it might help the reader if the authors added a small label within the panels
indicating to which cell lines the histograms refer to

* Line 475: "liquid nitrogen-colled" is probably a typo for "liquid nitrogen-cooled".

* Figure 6D: it might help to add a scale to the color bar, or at least indicate min/max values

* Supplementary Figure 2, D-F: the label of the vertical scale is missing, probably it's the same as
panel G

* It might be of interest to know a few more details on their confocal imaging setup (e.g. voxel
size, total acquisition time, dataset size, etc).

Reviewer #3 (Remarks to the Author):

In the manuscript entitled “Optical tissue clearing and machine learning can precisely characterize
extravasation and blood vessel architecture in brain tumors”, Serhii Kostrikov et al. used optical
tissue clearing methods and machine learning to quantify compound extravasation models of brain
tumors and reconstruct blood vessel structures. The comments are given as follows:

1. In the manuscript, optical clearing was used to avoid the level of overestimation arising from
sectioning artifacts. However, almost all optical cleaning methods will cause fluorescence loss,
which will affect the subsequent statistical results. This article does not consider how this factor
will affect the experimental results;

2. In Fig. 2A, lectin is used for cardiac perfusion with PBS, which is performed after dextran. But in
Fig. 41, lectin and dextran are injected and circulated together. Is there any difference between
these two experimental operations?

3. There are some problems with the statistical results in the article. For example, the error bar in
Fig.5H is too large, some results in Fig. 7 do not have error bar. These statistics are not credible.
4. Please specify the hyperparameters (such as learning rate, batch size, epoch, etc) and optimizer
used in the machine learning model.

5. Please specify the dataset used when training the machine learning model.

6. When performing segmentation, why not use the commonly used U-Net, but use VGG19 to
extract 256 features and classified by random forest? Please compare and provide the advantages
of this method.

7. It is better to list the specific information of CPU, GPU and RAM when describing machine
learning method.

8. Please pay attention to keep the consistency of each image, such as text size, etc.



Reviewer’s comment

Response

Reviewer #1

We are very grateful to the reviewer for investing the time to examine our work in-depth
and providing such positive and valuable feedback for improving the manuscript.

1. One of the main claims
of the paper is the
demonstration of the
current flaws of
extravasation studies of
tumoral tissue with
quantitative assays,
demonstrating the
superiority of microscopy
techniques in these types of
studies. This claim would
be more convincing if the
authors mentioned
references demonstrating
that intermittent vascular
perfusion is not currently
considered as a factor
hindering drug delivery
studies (line 60, line 303)

We fully agree that adding references to the mentioned statements makes them more
convincing and thank the reviewer for pointing this out. We have slightly extended the
sentence in lines 303-304 and added a number of references to the works employing
transcardial perfusion for studying compound extravasation in tumor tissue assuming
efficiency of transcardial perfusion in blood removal:

“Even though the phenomenon of intermittent vascular perfusion in GBM has been
known for years®, it has not been considered as a factor causing serious methodological
limitations in drug delivery studies, and transcardial perfusion has been widely employed
for blood removal in tumor vessels'*?3>37

2. Although optical clearing
methods are a nice choice
to optimize extravasation
studies. clearing techniques
often use aggressive
compounds that can affect
the tissue’s structure and
properties, and not only its
size (line 481). In fact,
some optical clearing
methods may actually
increase the permeability of
the BBB. Therefore, the
results of extravasation
spots count in OCS may not
be entirely accurate. This
should be indicated
somewhere in the text.

We thank the reviewer for rising this important point. Preserving an adequate picture of
BBB permeability and tissue structure in general was one of our main concerns.
Therefore, the samples were perfusion-fixed and postfixed with methanol-free (as an
additional precaution for minimizing the effects on BBB permeability) formalin for 24
hours prior to starting the clearing procedure. To prevent any possible fixation
deterioration over time, we proceeded with gradual dehydration steps straight away after
completing the postfixation with only brief washing in PBS. Since the dehydration also
contributes to the sample fixation, it is safe to assume that the distortion of the
extravasation picture due to presumed changes in BBB permeability was negligible. In
general, the optical tissue clearing protocol that we have chosen is fast and have
comparatively mild effects on the tissue. In addition, it did not include dichloromethane
incubation step (an aggressive delipidation agent). The imaging was done during the first
day after clearing procedure completion, in order to avoid any potential tissue changes
resulting from long-term incubation in refractive index-matching agent ethyl cinnamate.
At the same time, we agree that even with all listed considerations taken into account,
current literature lack information about every potential effect of complete dehydration
and RI-matching with ethyl cinnamate on the tissue and extravasation patterns in
particular, which are yet to be studied. Therefore, we agree that there can be a possibility
of confounding extravasation assessment with such sample processing. A few lines
indicating such risks were added (lines 322-327):

“It is also important to note that various tissue clearing methods often use aggressive
compounds®’, which can have versatile effects on the tissue as well as extravasation
patterns, and are yet to be comprehensively studied. Such potential effects can be limited
by using optical clearing methods with relatively mild tissue treatment like the one
described in the present study, on one hand, and, on the other, by ensuring robust
chemical fixation of the studied compound and the tissue sample in general.”

3. Reference 20 of line 84
does not seem to prove the
importance of transcardial
perfusion in this type of
studies.

We found the mentioned work to be relevant for referencing because the authors used
transcardial perfusion for their vessel permeability assay, which was based on analyzing
Evans Blue extravasation. As described in the subsection “vessel permeability assay” in
Materials and Methods section, in their experiments, transcardial perfusion was used for
removing the blood and previously injected Evans Blue from the tumor vasculature. This
was followed by incubation in formamide for the dye extraction and subsequent
absorbance measurements. The transcardial perfusion was used for presumed removal of
the intravascular fraction of the Evans Blue in order to obtain only extravascular fraction
of the compound in the solution for absorbance measurements.




4. On page 21, it would be
nice to add some reference
or derivation of the CF
formula.

The extended explanation is now added in lines 686-695:

“An underestimation of vessel diameter produced by the method was measured on 100
vessel segments with different diameter. These measurements were further used for the
curve fitting with exponential decay function, which allowed to calculate the correction
factor (CF) with the following formula. For correcting initial diameter measurements,
they were multiplied by the value of the CF.”

5. There is a missing
definition of scale bars in
Figure SH, Supplementary
Figure 2 D and E,
Supplementary Figure 6 E
and F.

We are thankful that these errors were pointed out, they are now corrected.

6. Regarding the vessel
lumen filling strategy
presented on page 20, a
further explanation of the
“analyze particles”
implementation to obtain
binary masks of the lumen
would be of great help to
facilitate reproducibility of
the workflow.

We thank the reviewer for drawing additional attention to the reproducibility of the
workflow. In order to facilitate the communication of the workflow details in the best
possible way, we slightly extended an explanation in the method section (lines 678-679)
and added a schematic depiction of the workflow stages as well as its effects on the
image. This is now depicted in the newly added supplementary figure (Supplementary fig.
7), which is referred to in lines 237, 238, 407 and 683. In addition, we are ready to
provide the code for postprocessing of the binary masks of vasculature (which include
vessel lumen filling) upon request, and we added this statement in lines 735-737.

Lines 678-679:

“The plug-in was set to provide binary masks, which corresponded to the lumens of
hollow vessels in a given optical section, since those were recognized as 2D particles by
the plug-in.”

Lines 735-737:

“Code availability: Code for image postprocessing is available upon request by
contacting the corresponding authors.”

Newly added supplementary figure 7 with figure legend:
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Supplementary Figure 7. Performance of the in-house developed workflow for the adjustable
vessel lumen filling. (a) Schematic depiction of one iteration of the developed workflow for the
adjustable filling of the vessel lumens. (b) Binary mask of the vessels after filling holes operation in
the xy plane demonstrating the lumen above established size limit not being filled. (¢) Binary mask
ofthe vessels after filling holes in xz plane (cyan) and yz plane (blue). (d) Binary mask of the vessels
after the first iteration of the lumen filling workflow and 2D median filtering demonstrating the
lumen above established size limit being filled. Scale bars, 50um. In b-d an arrow point at the large
vessel segmented as a hollow tube. 3D rendering of the vasculature (white) with lumen filled using
standard “fill hole” operation in Fiji (magenta) (e), and using developed workflow (cyan) (f), an
arrow points on the space between small vessel being erroneously filled. Binary mask of the vessel




lumens produced by standard “fill hole” operation in Fiji (g), and developed workflow (h), arrows
point on the imprecisions in the mask produced by standard “fill hole” operation. Binary masks of
the vessels after lumen filling done using standard “fill hole” operation in Fiji (i) and developed
workflow (j) arrows point on the spaces surrounded by small capillaries being filled by standard “fill
hole” operation in Fiji. Scale bars, 100um.

Reviewer #2

We are very grateful to the reviewer for such thorough examination of our work and
positive feedback arising from comprehensive understanding of our work with regard to
both methodological details as well as general context.

1. Figure 3M-P: it might
help the reader if the
authors added a small label
within the panels indicating
to which cell lines the
histograms refer to

The figure is now modified in accordance to the comment:
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2. Line 475: "liquid
nitrogen-colled" is probably
a typo for "liquid nitrogen-
cooled".

We are thankful for spotting this typo, which is now corrected.

3. Figure 6D: it might help
to add a scale to the color
bar, or at least indicate
min/max values

The scale indicating min/max values is now added to all figures containing spatial graphs
with such color-coding, which are Fig. 6, Fig. 7 and Supplementary Fig. 10. In all
mentioned figures, the scale was added in the way exemplified below (excerpt from Fig.

6):




——
Following addition to the figure legends was made after color-coding specification:
“numbers for minimum and maximum vessel diameter are presented in um.”

4. Supplementary Figure 2,
D-F: the label of the
vertical scale is missing,
probably it's the same as
panel G

The vertical scale is placed properly now, so it serves all the panels:

Velume (fmm?)
o358838288
—
E
=a§88§§ _
oB5288E
gsgsé

1 -
Separate tumors

& & & A & &
L

5. It might be of interest to
know a few more details on
their confocal imaging
setup (e.g. voxel size, total
acquisition time, dataset
size, etc).

The information is now added to the method section (lines 627-628):

“Voxel size was equal to 0.69 um X0.69 um X3 um. Total imaging time of OCSs

(unidirectional scan) was on average ~ 15 hours. The size of the datasets from OCS (two
channels) was on average ~60 GB.”

Reviewer #3

We thank the reviewer for investing the time to consider our work, providing valuable
comments for the manuscript improvement and rising many interesting and important
points of discussion.

1. In the manuscript, optical
clearing was used to avoid
the level of overestimation
arising from sectioning
artifacts. However, almost
all optical cleaning methods
will cause fluorescence
loss, which will affect the
subsequent statistical
results. This article does not
consider how this factor
will affect the experimental
results;

We are thankful to the reviewer for rising such an important concern. Many clearing
protocols can indeed be deteriorating to the fluorophores in the tissue. However, this is
largely a concern for endogenous fluorescent proteins (e.g. GFP or YFP), which are
sensitive to organic solvent-based clearing procedures and have a half-life in final
clearing solution of up to two days'. In our study, we used TRITC-labelled dextran for
extravasation analysis. TRITC is characterized by a much higher stability compared to the
fluorescent proteins. Furthermore, its stability is comparable with Alexa Fluor dyes,
which have been reported to be stable for many months in index-matching solutions 2. In
addition, we would also like to emphasize that by the time of imaging, the samples were
incubated in refractive index-matching solution for 6 hours only. Furthermore, for manual
extravasation spot quantification, we used the dataset from an upper quarter of the tumor,
which has been imaged the first. Taking all these factors into account, we assume the
fluorescent loss in the studied samples to be negligible.
1. Ertiirk, A. et al. Three-dimensional imaging of solvent-cleared organs using
3DISCO. Nat. Protoc. 7, 1983-1995 (2012).
2. Renier, N. et al. IDISCO: A simple, rapid method to immunolabel large tissue
samples for volume imaging. Cell 159, 896-910 (2014).

2. In Fig. 2A, lectin is used
for cardiac perfusion with
PBS, which is performed

A fundamental difference between the two experimental operations is that in case of
introducing the lectin through transcardial perfusion, it can only reach the vessels in the
tumor, which are accessible for the circulation during the few minutes of the procedure.




after dextran. But in Fig. 41,
lectin and dextran are
injected and circulated
together. Is there any
difference between these
two experimental
operations?

In such settings, lectin circulation can be affected by a decrease in the vessel tone of the
dying animal. Contrary, when the lectins are introduced one hour prior to the endpoint
through intravenous injection, they can provide a much more extensive labelling of the
tumor vasculature, since they can reach the vessels with perfusion cycles below one hour
and are delivered through physiological circulation with proper vessel tone maintained.
The fact that dextran and lectin share one hour of circulation (after two hours of dextran
circulation only) is not presumed to affect the outcome of the experiment, since no
interactions between the two molecules are expected (the specific binding site of the
WGA is N-Acetyl-D-glucosamine’, which is not a part of dextran chemical structure®).

3. Gallagher, J. T. Carbohydrate-binding properties of lectins: A possible approach to
lectin nomenclature and classification. Biosci. Rep. 621-632 (1984).

4, Neely, W. B. Dextran: Structure and Synthesis. Adv. Carbohydr. Chem. 15, 341—
369 (1961).

3. There are some problems
with the statistical results in
the article. For example, the
error bar in Fig.5H is too

large, some results in Fig. 7
do not have error bar. These
statistics are not credible.

The error bars in the fig. 5h is large because they reflect standard deviation of
extravasation spot counts in the validation datasets, which were taken from two different
tumors and different regions with regard to imaging depths. Generally, it is natural to
have a highly heterogeneous extravasation patterns both between the tumors as well as
within one tumor°. Therefore, in this context, we consider large error bars to be expected
and not problematic for any of the study conclusions. In Fig. 7h,m,n the error bars are not
shown because the data represents single tissue subset derived from one single tumor to
exemplify how interregional differences can be determined with our workflow.

5. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nature
Reviews Clinical Oncology (2010). doi:10.1038/nrclinonc.2010.139
6. Sarkaria, J. N. et al. Is the blood-brain barrier really disrupted in all glioblastomas?

A critical assessment of existing clinical data. Neuro. Oncol. 20, 184—191 (2018).

4. Please specify the
hyperparameters (such as
learning rate, batch size,
epoch, etc) and optimizer
used in the machine
learning model.

This information is now added to the method section (lines 703-708). We have also added
a note that the network was directly adopted from the work of Simonian and Zisserman’
without any additional training, and that all methodological details can be found in the
original work. Please see the excerpt below:

“For feature extraction the software employs very deep convolutional neural network the
VGG-19, which was adopted by Zeiss Microscopy from the work of Simonian and
Zisserman’® without any considerable changes or additional training. According to the
authors, the training of the neural network was done using mini-batch gradient descent as
optimization algorithm for multimodal logistic regression objective, the batch size was
256 and the number of epochs was 74, for more details please refer to the original work”.
From the 3rd layer of the VGG-19, 256 features were extracted and used to train random
forest classification algorithm™”

7. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-
Scale Image Recognition. Proc. Int. Conf. Learn. Represent. 1-14 (2014).

5. Please specify the dataset
used when training the
machine learning model.

We have added the information regarding the training datasets used in the present study,
as well as training procedure in general. Please see lines 203 and 648-649 for the model
used to segment dextran extravasation in 3D images from cleared tissue samples, lines
552-555 for models used to segment intravascular dextran and lectin stainings, for
perfusion degree measurements in 2D images from slide scanner, and lines 669-672 for
models used for vessel segmentation in 3D images from cleared tissue samples.

Lines 202-203:

“For segmentation of extravasation spots, the model was trained on image stacks from
different tumor regions and different imaging depths.”

Lines 552-555:

“Training dataset for the main model consisted of five large 2D images acquired with
slide scanner, which were partly but extensively annotated. For modification of the model
mentioned above, certain training images were replaced by the annotated images
containing instances of extensive dextran extravasation providing high background
levels.”




Lines 648-649:

“The training dataset consisted of five different image stacks, each containing on average
13 partly annotated images.”

Lines 669-672:

“Training dataset for model used for segmentation of tumor vasculature consisted of five
image stacks each containing on average 18 partly annotated images. In case of the
model for normal brain vasculature segmentation, four image stacks with on average
three partly annotated images each comprised training dataset.”

6. When performing
segmentation, why not use
the commonly used U-Net,
but use VGG19 to extract
256 features and classified
by random forest? Please
compare and provide the
advantages of this method.

We are thankful for this interesting question, as it is definitely important to discuss. One
of our main priorities in designing the image analysis workflows was to make them user-
friendly and possible to employ and customize for biomedical scientists without a specific
background in programming and machine learning. The reasons behind our choice
favoring approach like Intellesis were two-fold. On one hand, Intellesis require much
smaller amounts of training data (~10-100 annotated samples), and hence much less
hands-on work compared to training a neural network from scratch, which would require
thousands of annotated samples in a training dataset®. This is due to the fact that while
Intellesis takes advantage of deep learning, it employs the neural network with pre-trained
weights only for feature extraction, which are then passed on to random forest classifier
and used for pixel classification. In such settings, no training is required for the network
itself, but for the classifier only. Another point of consideration for us was availability of
a user interface in the segmentation software, because training a neural network requires a
certain expertise in programing and deep learning. When we were designing the presented
workflows, there were no software or plug-ins providing a user interface for training U-
Net (to our knowledge, he first manuscript describing such development was deposited
16™ of October 2019 on bioRxiv’). We would like to emphasize that while we consider
machine learning and deep learning in particular to be optimal approaches for
segmentation of heterogeneous images from optically cleared samples and definitely key
parts of the developed workflows, the development of a deep learning-based
segmentation method itself was not our purpose. Thus, meticulous comparison of
different machine learning-based segmentation approaches lies outside of the scope of our
manuscript. Therefore, we do not discourage people to try other machine learning-based
approaches as a replacement for Intellesis in the presented workflow including U-Net.

A part of discussion section touching upon the workflows was slightly
extended with addition of brief comparison between Intellesis and neural networks in
general (lines 335-341):

“It is also important to note that while the exemplified segmentation approach takes
advantage of deep learning (through employing a convolutional neural network with pre-
trained weights for feature extraction, which are used afterwards for pixel classification
by random forest of decision trees), it is not as time-consuming as training of a neural
network from scratch®. This is because the used neural network (VGG-19) is already
pre-trained and training is required for the classifier only, which needs orders of
magnitude less training data compared to a neural network.”

8. Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep
learning for fluorescence image reconstruction. Nat. Methods (2019).
doi:10.1038/s41592-019-0458-z

9. Gomez-de-Mariscal, E. ef al. Deeplmagej: A user-friendly plugin to run deep
learning models in ImagelJ. Bioarxiv (2019).

7. It is better to list the
specific information of
CPU, GPU and RAM when
describing machine
learning method.

We thank the reviewer for pointing this out, the requested information is now added to the
method section (lines 711-712):

“The workstation used for image analysis had following characteristics, CPU: dual Xeon
processors E5-2670, 2.6 GHz (96 GB RAM), GPU: GeForce RTX 2080Ti (11 GB RAM).”

8. Please pay attention to
keep the consistency of
each image, such as text
size, etc.

We are thankful for drawing our attention to this issue, all the figures are now examined
and the inconsistencies are corrected.




REVIEWERS' COMMENTS:

Reviewer #2 (Remarks to the Author):

Compared to the first submission, the authors have satisfactorily addressed the issues that were
raised by the reviewers. The manuscript can now be considered for publication.

Reviewer #3 (Remarks to the Author):

The author's response in general is satisfactory. I have no other questions and recommend
publishing.



We are very delighted to see such positive referees’ comments. We are thankful to the reviewers for
investing their time and expertise into considering our manuscript, as well as for the fair and efficient

review process.



