Cell Chemical Biology, Volume 29

# **Supplemental information**

# SARS-COV-2 spike binding to ACE2 in living cells monitored by TR-FRET

Erika Cecon, Matilda Burridge, Longxing Cao, Lauren Carter, Rashmi Ravichandran, Julie Dam, and Ralf Jockers

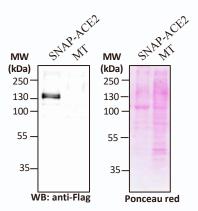



Figure S1 (related to Figure 1). Validation of SNAP-ACE2 expression in transfected HEK293 cells. Western blot of SNAP-ACE2 expression in HEK293 cells transfected with  $1\mu g$  of vector versus mock-transfected (MT) cells. Primary antibody staining against FLAG-tag on SNAP-ACE2 construct; Ponceau red staining used as loading control.

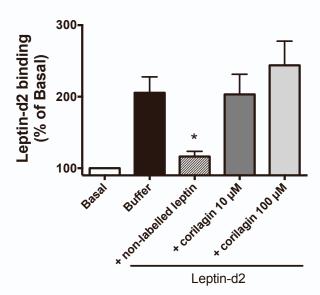



Figure S2 (related to Figure 2H). Counter-assay TR-FRET test of corilagin. Effect of corilagin (10 and 100  $\mu$ M) on the TR-FRET signal resulted from Leptin-d2 (0.5 nM) binding to Lumi4-Tb-SNAP-LepR (leptin receptor) expression in HEK293 cells. Non-specific signal is defined in the presence of excess of non-labelled leptin (100 nM). Data are expressed as mean  $\pm$  SEM of 3 independent experiments, each performed in triplicate. "Leptin-d2 binding" corresponds to the TR-FRET ratio and is expressed as % of basal (absence of d2 ligand). \*p<0.05 by one-way ANOVA followed by Dunnett's multiple comparisons test compared to the buffer-treated group.

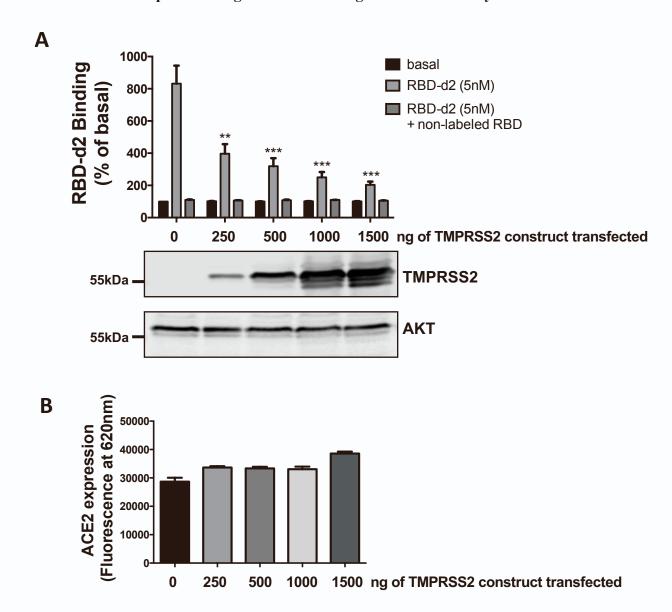



Figure S3 (related to Figure 3B). Effect of TMPRSS2 on RBD binding to ACE2. A) Binding of RBD-d2 (5 nM) to Lumi4-Tb-labelled SNAP-ACE2 (250 ng of transfected cDNA) in HEK293 cells with and without co-expression of increasing amounts (in ng of transfected cDNA construct) of TMPRSS2 in HEK293 cells. Non-specific signal is defined in the presence of excess of non-labelled RBD (1  $\mu$ M). Data are expressed as mean  $\pm$  SEM of 3 independent experiments, each performed in triplicate. TR-FRET ratio is expressed as % of basal (absence of d2). \*\*p<0.01; \*\*\*p<0.005 by one-way ANOVA followed by Dunnett's multiple comparisons test compared to the group 0 (no TMPRSS2 transfection). Bottom: Western blot of TMPRSS2 expression in HEK293 cells transfected with the indicated ng of TMPRSS2 construct. Primary antibody staining against TMPRSS2, or AKT as protein loading control. B) Lumi4-Tb-labelled SNAP-ACE2 expression assessed by Tb fluorescence measurement (620 nm). Representative data expressed as mean  $\pm$  SD (n=3).

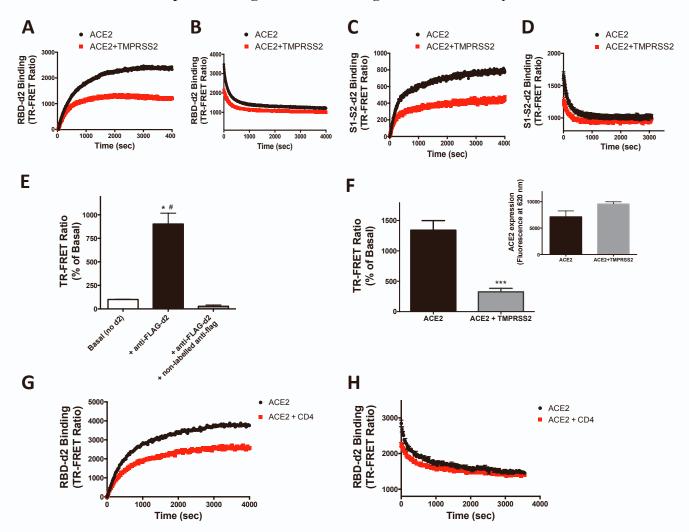



Figure S4 (related to Figure 3B-I). Effect of TMPRSS2 and CD4 on the kinetics of Spike protein binding to ACE2 and on ACE2 conformation. Representative curves of association (A,G) and dissociation (B,H) kinetics of RBD-d2 binding (5 nM) to Lumi4-Tb-SNAP-ACE2 in cells co-expressing or not TMPRSS2 (A-B; n=3) or CD4 (G-H; n=3). Dissociation was initiated by adding non-labelled RBD (1 µM). Data are expressed as mean ± SD of duplicates. C-D) Representative curves of association (C) and dissociation (D) kinetics of S1-S2-d2 binding (20 nM) to Lumi4-Tb-SNAP-ACE2 in cells co-expressing or not TMPRSS2 (n=3). Dissociation was initiated by adding non-labelled S1-S2 (200 nM). Data are expressed as mean  $\pm$  SD of duplicates. E) Intramolecular TR-FRET sensor of ACE2 conformation based on TR-FRET signal between Lumi4-Tb-SNAP-ACE2 and d2-labelled anti-FLAG antibody (2 µg/mL) Non-specific signal is defined in the presence of excess of non-labelled anti-FLAG antibody (20 µg/mL). Data are expressed as mean  $\pm$  SEM of 3 independent experiments. \*p<0,001 (vs. Basal, one-way ANOVA); #p<0,001 (vs. anti-FLAG-d2 + non-labelled anti-FLAG, one-way ANOVA). F) TR-FRET signal between Lumi4-Tb-SNAP-ACE2 and d2-labelled anti-FLAG antibody in cells expressing only SNAP-ACE2 or co-expressing SNAP-ACE2 and TMPRSS2. Data are expressed as mean ± SEM of 3 independent experiments; \*\*\*p<0,001, Student t test. Insert: Lumi4-Tb-labelled SNAP-ACE2 expression assessed by Tb fluorescence measurement (620 nm). Representative data expressed as mean  $\pm$  SD.

Table S1 (related to Figure 1). Binding constants of SARS-CoV-2 Spike binding to ACE2 in vitro reported in the literature.

| Technique | Kon<br>(10 <sup>5</sup> M <sup>-1</sup> s <sup>-1</sup> ) | Koff<br>(10 <sup>-3</sup> s <sup>-1</sup> ) | Kinetically derived $K_d = K_{off}/K_{on} (nM)$ | Reference      |
|-----------|-----------------------------------------------------------|---------------------------------------------|-------------------------------------------------|----------------|
| SPR       | 1.88                                                      | 2.76                                        | 14.7                                            | Wrapp et al.   |
| SPR       | 1.75                                                      | 7.75                                        | 44.2                                            | Shang et al.   |
| SPR       | 0.40                                                      | 3.80                                        | 94.6                                            | Wang et al.    |
| BLI       | 2.80                                                      | 6.0                                         | 22.0                                            | Chan et al.    |
| BLI       | 1.40                                                      | 0.16                                        | 1.2                                             | Walls et al.   |
| BLI       |                                                           |                                             | 20.4                                            | Glasgow et al. |
| SPR       | 3.6                                                       | 9                                           | 26                                              | Toelzer et al. |
| Mean      | $2.0 \pm 1.1$                                             | $4.9 \pm 3.3$                               | $33.8 \pm 33.0$                                 |                |

Mean values were derived from the published studies. SPR, surface plasmon resonance; BLI, biolayer interferometry.