

Supporting Information

Dicyclopentaannelated Hexa-*peri*-hexabenzocoronenes with a Singlet Biradical Ground State

Qiang Chen, Martin Baumgarten, Manfred Wagner, Yunbin Hu, Ian Cheng-Yi Hou, Akimitsu Narita,* and Klaus Müllen*

anie_202102932_sm_miscellaneous_information.pdf

Table of Contents

Table of Contents	S1
1. General Methods	S2
2. Synthetic Details	S3
3. Supplementary MS Spectra	S8
4. Supplementary UV-vis Absorption Spectra	S11
5. Theoretical Calculations	S14
6. NMR Spectra	S16
7. References	S32
8. Cartesian Coordinates and Spin Densities	S33

1. General Methods

All reactions working with air- or moisture-sensitive compounds were carried out under argon atmosphere using standard Schlenk line techniques. Unless otherwise noted, all starting materials were purchased from commercial sources and used without further purification. All other reagents were used as received. Thin layer chromatography (TLC) was done on silica gel coated aluminum sheets with F254 indicator and column chromatography separation was performed with silica gel (particle size 0.063 - 0.200 mm). Melting points were determined on a Büchi hot stage apparatus and were uncorrected. Nuclear Magnetic Resonance (NMR) spectra were recorded using Bruker DPX 300 and Bruker DPX 500 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm relative to the residual of solvents (CD₂Cl₂, ¹H: 5.32 ppm, ¹³C: 53.84 ppm; C₂D₂Cl₄, ¹H: 6.00 ppm, ¹³C: 73.78 ppm; THF-d₈, ¹H: 3.58 ppm, ¹³C: 67.57 ppm. Abbreviations: s = singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet). Coupling constants (J) were recorded in Hertz. Accurate mass measurements were performed on a SYNAPT G2-Si high definition Q-TOF mass spectrometer (Waters Corp., Manchester, UK) by matrix-assisted laser desorption/ionization (MALDI). The instrument was operated at a resolution of 20 000 (M/ΔM) and calibrated by clusters of red phosphorous in a mass range of 100 to 8000 Da. Data processing was done with MassLynx software V4.1. Or on a G6545A Q-ToF (Agilent GmbH, Waldbronn, Germany) with atmospheric pressure chemical ionization (APCI) mass spectrometer. UV-vis absorption spectra were recorded on a Perkin-Elmer Lambda 900 spectrometer at room temperature using a 10 mm quartz cell. Cyclic voltammetry (CV) measurements were performed on a GSTAT-12 in a three-electrode cell in o-dichlorobenzene solution of *n*-Bu₄NPF₆ (0.1 M) at a scan rate of 50 mV/s at room temperature. A silver wire, a Pt wire and a glassy carbon electrode were used as the reference electrode, the counter electrode, and the working electrode, respectively. EPR spectra were recorded in solid or diluted and oxygen-free solutions by using a Bruker Xband spectrometer ESP300 E, equipped with an NMR gauss meter (Bruker ER035), a frequency counter (Bruker ER 041 XK) and a variable temperature control continuous flow N2 cryostat (Bruker B-VT 2000).

2. Synthetic Details

(2,3-dibromo-1,4-phenylene)bis(trimethylsilane) (2)^[1]

To a 250-mL round bottom flask charged with a stirring bar was added 20 mL of dry tetrahydrofuran. After cooling to -78 °C under argon atmosphere, *n*-butyllithium (82.4 mL, 0.13 mol, 1.6 M in *n*-hexane) and *N*,*N*-diisopropylamine (13.4 g, 0.132 mol) were added. After 15 min of stirring, the resulting mixture was slowly added to a solution of 1,2-dibromobenzene (1) (13.0 g, 55.3 mmol) and trimethylsilyl chloride (14.34 g, 132.0 mmol) in 30 mL of THF at -78 °C. The reaction mixture was stirred at this temperature for 5 h and quenched with 1 N sulfuric acid solution. The resulting mixture was diluted with water and extracted with diethyl ether (80 mL) for three times. The combined organic layers were dried over MgSO₄ and evaporated. The residue was dissolved in a mixture of acetone and methanol (1:1, 10 mL) and crystallized at -30 °C over several days to afford the title compound (4.7 g, 22%) as a colorless solid. All spectral data was in accordance with that reported in the literature.^[1] Mp: 72.1 – 73.7 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.35 (s, 2H), 0.39 (s, 18H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 146.36, 134.61, 133.71, -0.19.

(4,4"-di-tert-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(trimethylsilane) (3)^[2]

To a 250-mL Schlenk flask charged with a stirring bar was added (2,3-dibromo-1,4-phenylene)bis(trimethylsilane) (**2**) (6.0 g, 16 mmol), 4-*tert*-butylphenylboronic acid (11.2 g, 63.1 mmol), K₃PO₄ (26.8 g, 126 mmol), and Pd(dppf)Cl₂·CH₂Cl₂ (1.29 g, 1.58 mmol). After evacuation and back filling with argon for three times, dimethylformamide (80 mL) and water (10 mL) were added. The solution was further degassed by bubbling through argon for 10 min, and heated at 100 °C for 24 h. The black reaction mixture was cooled to room temperature and diluted with 300 mL of ethyl acetate. The organic phase was washed with water (50 mL) for 6 times and then brine (50 mL), dried over MgSO₄ and evaporated. The residue was purified by silica gel column chromatography (*n*-hexane:dichloromethane = 30:1) to give the title compound (6.0 g, 77% yield) as a white solid. All spectral data was in accordance with that reported in the literature.^[2] Mp: 249.4 – 250.3 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.59 (s, 2H), 7.07 (d, *J* = 8.2 Hz, 4H), 6.84 (d, *J* = 8.2 Hz, 4H), 1.21 (s, 19H), -0.08 (s, 19H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 149.59, 148.12, 140.52, 140.04, 132.97, 131.18, 123.92, 34.73, 31.60, 0.68; HRMS (APCI) [M⁺] Calculated for C₃₂H₄₆Si₂: 486.3133; Found 486.3138.

1,4-dibromo-2,3-di-(4-tert-butylphenyl)benzene (4)

Br₂ (1.89 mL, 36.9 mmol) was added dropwise to a solution of (4,4"-di-*tert*-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(trimethylsilane) (**3**) (6.9 g, 12 mmol) dissolved in a mixture of dichloromethane (200 mL) and methanol (100 mL). The reaction mixture was stirred at 25 °C for overnight. Saturated aqueous Na₂SO₃ solution (100 mL) was added to the reaction mixture and the aqueous phase was extracted with dichloromethane (100 mL) for three times. The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude was recrystallized from methanol to afford the title compound (5.6 g, 91% yield) as a white solid. Mp: 172.3 – 173.9 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.54 (s, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 2H), 1.22 (s, 9H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 150.48, 144.87, 137.75, 133.09, 130.11, 124.66, 123.65, 34.84, 31.50; HRMS (APCI) [M⁺] Calculated for C₂₆H₂₈Br₂: 498.0552; Found 498.0558.

2,3-di-(4-tert-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (5)

A 250-mL Schlenk flask equipped with a magnetic stirring bar was charged with 1,4-dibromo-2,3-di-(4-*tert*-butylphenyl)benzene (**4**) (5.6 g, 11 mmol), bis(pinacolato)diboron (8.5 g, 34 mmol), XPhos (0.534 g, 1.12 mmol), and K₂CO₃ (9.29 g, 67.2 mmol). The flask was evacuated and backfilled with argon for three times. 1,4-Dioxane (120 mL) was added and the resulting mixture was degassed by bubbling with argon for 15 min. Under argon atmosphere, Pd(dppf)Cl₂·CH₂Cl₂ (457 mg, 0.560 mmol) was added and the reaction mixture was stirred at 110 °C for 24 h. After cooling to room temperature, water (50 mL) was added, and the aqueous layer was extracted with dichloromethane (50 mL) for three times. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. After removing the solvent in vacuo, the residue was purified by silica gel column chromatography (*n*-hexane:ethyl acetate = 20:1) to give the title compound (3.6 g, 55% yield) as a white solid. Mp: 257.3 – 258.8 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.53 (s, 2H), 7.15 (d, *J* = 8.3 Hz, 4H), 6.93 (d, *J* = 8.3 Hz, 4H), 1.26 (s, 19H), 1.07 (s, 24H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 149.39, 145.49, 140.06, 131.66, 130.62, 124.38, 84.03, 34.76, 31.66, 24.90; HRMS (APCI) [M+H⁺] Calculated for C₃₈H₅₂B₂O₄: 595.4124; Found 595.4142.

4,4'-(4,4"-di-tert-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(9H-fluoren-9-one) (6)

To a 100-mL Schlenk tube charged with a magnetic stirring bar was added 2,3-di-(4-*tert*-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (**5**) (1.88 g, 3.16 mmol), 4-bromo-9*H*-fluoren-9-one (1.80 g, 6.95 mmol), Pd₂(dba)₃·CHCl₃ (289 mg, 0.316 mmol), XPhos (300 mg, 0.629 mmol) and K₂CO₃ (2.620 g, 18.96 mmol). The reaction tube was evacuated and backfilled with argon for three times before degassed 1,4-dioxane (40 mL) and H₂O (10 mL) were added. After bubbling with argon for 10 min, the Schlenk tube was then sealed and heated at 100 °C for 24 h. After cooling to room temperature, the reaction mixture was extracted with dichloromethane (50 mL) for three times. The combined organic fractions were washed with brine, dried over Na₂SO₄, and filtered, and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane:ethyl acetate = 10:1) to give the title compound (2.01 g, 91%) as yellow solid. Mp: 326.7 – 328.5 °C; ¹H NMR (500 MHz, C₂D₂Cl₄, 413 K) δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 7.4 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.36 – 7.29 (m, 3H), 7.26 (d, *J* = 6.9 Hz, 1H), 7.24 – 7.13 (m, 3H), 6.98 (t, *J* = 9.8 Hz, 1H), 6.86 (d, *J* = 6.4 Hz, 4H), 6.76 (d, *J* = 8.2 Hz, 4H), 1.14 (s, 18H); ¹³C NMR (126 MHz, C₂D₂Cl₄, 413 K) δ 192.69, 150.21, 144.68, 144.60, 142.01, 141.77, 140.44, 140.11, 138.00, 137.05, 137.00, 136.31, 134.77, 134.66, 133.94, 133.51, 132.18, 132.01, 128.98, 128.41, 128.12, 128.01, 124.44, 123.69, 122.69, 34.04, 30.86; HRMS (APCI) [M⁺] Calculated for C₅₂H₄₂O₂: 698.3179; Found 698.3185.

4,4'-(4,4"-di-*tert*-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(9-mesityl-9H-fluorene) (7)

n-BuLi (15.6 mL, 25 mmol, 1.6 M in *n*-hexane) was added to a solution of 2-bromomesitylene (5.0 g, 25 mmol) in anhydrous tetrahydrofuran (30 mL) at -78 °C over a period of 30 min. After the addition, the mixture was stirred at this temperature for 2 h. Then, thus prepared solution of mesityllithium was added dropwise to a solution of 4,4'-(4,4"-di-*tert*-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(9*H*-fluoren-9-one) (**6**) (2.0 g, 2.9 mmol) in tetrahydrofuran (100 mL) at -78 °C. After the addition, the temperature was increased to room temperature and the mixture was stirred overnight. The reaction was quenched by addition of water, and the mixture was then extracted with ethyl acetate, dried over Na₂SO₄ and evaporated. The residue was dissolved in dry dichloromethane (250 mL), to which BF₃·OEt₂ (4.3 g, 30 mmol) and Et₃SiH (3.6 g, 31 mmol) were added, and the resulting mixture was stirred at room temperature overnight. The organic layer was separated and the water aqueous phase was extracted

with dichloromethane (100 mL) for three times. The organic phases were combined, washed with brine, dried over Na₂SO₄ and evaporated. The residue was purified by column chromatography (*n*-hexane:ethyl acetate = 10:1) and recrystallized from dichloromethane/methanol to give the title compound (1.5 g, 57% yield) as white solid. Mp: 284.1 – 285.7 °C; ¹H NMR (500 MHz, $C_2D_2CI_4$, 413 K) δ 7.73 – 7.52 (m, 3H), 7.48 – 7.35 (m, 1H), 7.35 – 7.20 (m, 7H), 7.15 (tt, *J* = 9.3, 4.6 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.06 – 6.98 (m, 2H), 6.86 – 6.73 (m, 8H), 6.72 – 6.57 (m, 2H), 5.74 – 5.22 (m, 2H), 2.95 – 2.57 (m, 6H), 2.50 – 2.14 (m, 6H), 1.33 – 1.23 (d, *J* = 8.5 Hz, 2H), 1.13 (s, 18H), 0.94 – 0.75 (m, 4H); ¹³C NMR (126 MHz, $C_2D_2CI_4$, 413 K) δ 148.02, 147.88, 147.80, 147.31, 142.08, 141.93, 141.50, 141.39, 141.32, 140.16, 140.01, 138.66, 138.37, 137.93, 137.65, 137.50, 137.28, 136.56, 135.51, 134.10, 133.95, 130.48, 130.38, 130.33, 130.28, 129.43, 129.37, 128.68, 128.58, 128.53, 128.39, 126.42, 126.34, 126.24, 126.07, 125.67, 123.65, 123.55, 122.83, 122.54, 122.09, 121.96, 49.51, 33.67, 30.85, 20.94, 20.35, 18.50, 18.45, 18.28; HR (APCI) [M⁺] Calculated for C₇₀H₆₆: 906.5159; Found 906.5217.

mPHBC 8

To a degassed solution of 4,4'-(4,4"-di-*tert*-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(9-mesityl-9*H*-fluorene) (**7**) (50 mg, 0.055 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (100 mg, 0.441 mmol) in dry dichloromethane (10 mL) was added methanesulfonic acid (1.0 mL), and the resulting mixture was stirred at room temperature for 1 h. Then, trifluoromethanesulfonic acid (1.0 mL) was added and the reaction mixture was continuously stirred for another 1 h. The mixture was poured into cold water and extracted with dichloromethane. The organic phase was separated, washed with brine, dried over Na₂SO₄ and passed through a short plug of silica gel. The resulting dark green solution was evaporated and residue was purified by silica gel column chromatography (dichloromethane: *n*-hexane = 1:3) to give the title compound (2.5 mg, 5% yield) as dark green solid. Mp: >400, decomposition; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 8.88 (s, 2H), 8.73 (s, 2H), 8.29 (d, *J* = 7.3 Hz, 2H), 7.48 (s, 2H), 7.32 (d, *J* = 9.3 Hz, 2H), 7.09 (s, 4H), 6.89 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 21H), 1.71 (s, 17H); ¹³C NMR (75 MHz, CD₂Cl₂) δ 150.69, 148.87, 138.21, 137.57, 137.22, 132.11, 131.41, 129.14, 121.36, 119.78, 36.20, 32.14, 21.64, 21.51; HRMS (MALDI-TOF) [M⁺] Calculated for C₇₀H₅₂: 892.4064; Found 892.4037; UV/Vis (dichloromethane): $\lambda_{max} (\varepsilon) = 682$ nm (16008 M⁻¹cm⁻¹), 484 nm (3047 M⁻¹cm⁻¹), 427 nm (100478 M⁻¹cm⁻¹), 390 nm (11379 M ⁻¹cm⁻¹), 357 nm (18942 M⁻¹cm⁻¹), 339 nm (24055 M⁻¹cm⁻¹).

1,4-dibromo-2,5-di-(4-tert-butylphenyl)benzene (10)[3]

To a 250-mL Schlenk flask charged with a magnetic stirring bar was added 1,4-dibromo-2,5-diiodobenzene (5.00 g, 10.3 mmol), 4-*tert*butylphenylboronic acid (3.56 g, 20.0 mmol), K₂CO₃ (8.54 g, 61.8 mmol) and Pd(PPh₃)₄ (581 mg, 0.503 mmol). The flask was evacuated and backfilled with argon for three times before 1,4-dioxane (100 mL) and water (25 mL) were added. The mixture was further degassed by bubbling with argon for 15 minutes. Then the reaction was heated at 90 °C for 24 h. After cooling to room temperature, the mixture was poured into water and extracted with dichloromethane for three times. The combined organic phases were washed by brine and dried over anhydrous MgSO₄. The solvent was removed under vacuum and the residue was purified by silica gel column chromatography (*n*-hexane) to give the title compound as a white solid (3.50 g, 68% yield). All spectral data was in accordance with that reported in the literature.^[3] Mp: 261.2 – 262.1 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.65 (s, 2H), 7.49 (d, *J* = 8.2 Hz, 4H), 7.40 (d, *J* = 8.2 Hz, 4H), 1.38 (s, 18H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 151.81, 143.15, 137.10, 135.90, 129.52, 125.68, 121.83, 35.15, 31.64; HRMS (APCI) [M⁺] Calculated for C₂₆H₂₈Br₂: 498.0552; Found 498.0554.

2,5-di-(4-*tert*-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (11)

To a solution of 1,4-dibromo-2,5-di-(4-*tert*-butylphenyl)benzene (**10**) (2.0 g, 4.0 mmol) dissolved in anhydrous tetrahydrofuran (50 mL) was added dropwise *t*-BuLi (8.23 mL, 14 mmol, 1.7 M in *n*-hexane) at -78 °C under a nitrogen atmosphere. The reaction was then stirred at -78 °C for 2.5 h. 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.72 g, 20.0 mmol) was then added slowly under argon atmosphere. The resulting solution was allowed to warm slowly to room temperature and stirred overnight. The reaction was quenched with deionized water (50 mL) and extracted with ethyl acetate (50 mL) for three times. The organic phases were combined, washed with brine, dried over Na₂SO₄ and evaporated. The residue was purified by silica gel column chromatography (*n*-hexane:ethyl acetate = 30:1) to give the title compound (700 mg, 29% yield) as white solid. Mp: 172.6 – 173.7 °C; ¹H NMR (300 MHz, CD₂Cl₂, 298 K) δ 7.68 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 1.37 (s, 9H), 1.21 (s, 12H); ¹³C NMR (75 MHz, CD₂Cl₂, 298 K) δ 150.60, 145.28, 140.43, 135.27, 129.25, 125.38, 84.39, 34.96, 31.72, 24.97; HRMS (APCI) [M+H⁺] Calculated for C₃₈H₅₂B₂O₄: 595.4124; Found 595.4136.

4,4'-(4,4"-di-*tert*-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9H-fluoren-9-one) (12)

To a 50-mL Schlenk tube charged with a magnetic stirring bar was added 2,5-di-(4-*tert*-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (**11**) (700 mg, 1.18 mmol), 4-bromo-9*H*-fluoren-9-one (763 mg, 2.94 mmol), and Pd₂(dba)₃·CHCl₃ (216 mg, 0.236 mmol), XPhos (225 mg, 0.472 mmol) and K₂CO₃ (1.957 g, 14.16 mmol). Then the tube was evacuated and backfilled with argon for three times before degassed 1,4-dioxane (20 mL) and water (5 mL) were added. The Schlenk tube was then sealed and heated at 100 °C for 24 h. After cooling to room temperature, the mixture was extracted with ethyl acetate (50 mL) for three times. The combined organic fractions were washed with brine, dried over Na₂SO₄, filtered, and then dried in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate/*n*-hexane/dichloromethane = 10:1:1) to give the title compound (650 mg, 79% yield) as yellow solid. Mp: 340.2 – 341.2 °C; ¹H NMR (500 MHz, C₂D₂Cl₄, 413 K) δ 7.77 – 7.69 (m, 4H), 7.67 (d, *J* = 7.1 Hz, 2H), 7.47 – 7.34 (m, 4H), 7.34 – 7.23 (m, 5H), 7.23 – 7.11 (m, 9H), 7.11 – 6.98 (m, 1H), 1.28 (s, 18H); ¹³C NMR (126 MHz, C₂D₂Cl₄, 413 K) δ 192.69, 150.21, 144.67, 144.60, 142.01, 141.77, 140.44, 140.11, 138.00, 137.05, 137.00, 136.33, 134.77, 134.66, 133.94, 133.51, 132.18, 132.01, 128.98, 128.41, 128.12, 128.01, 124.44, 123.69, 122.69, 73.56, 34.04, 30.86; HRMS (APCI) [M⁺] Calculated for C₅₂H₄₂O₂: 698.3179; Found 698.3189.

4,4'-(4,4"-di-*tert*-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9-mesityl-9*H*-fluorene) (13)

n-BuLi (5.5 mL, 8.8 mmol, 1.6 M in *n*-hexane) was added dropwise to a solution of 2-bromomesitylene (1.85 g, 9.29 mmol) in anhydrous tetrahydrofuran (30 mL) at -78 °C under argon atmosphere, over a period of 30 min. After addition, the mixture was stirred at this temperature for 2 h. Thus prepared solution of mesityllithium was added slowly to a solution of 4,4'-(4,4"-di-*tert*-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9*H*-fluoren-9-one) (**12**) (650 mg, 0.929 mmol) in tetrahydrofuran (30 mL) at -78 °C. After the addition, the mixture was stirred at room temperature overnight. The reaction was quenched by addition of saturated aqueous NH₄Cl solution, extracted with ethyl acetate for three times, dried over MgSO₄ and evaporated. The residue was dissolved in dry dichloromethane (120 mL), to which BF₃·OEt₂ (1.32 g, 9.30 mmol) and Et₃SiH (1.08 g, 9.29 mmol) were added. The resulting mixture was stirred at room temperature for 12 h, and the reaction was quenched with saturated aqueous NH₄Cl solution. The organic layer was separated and the aqueous phase

was extracted with dichloromethane (100 mL) for three times. The organic phases were combined, washed with brine, dried over MgSO₄ and evaporated. The residue was purified by silica gel column chromatography (*n*-hexane:ethyl acetate = 10:1) and recrystallized from dichloromethane/methanol to give the title compound (560 mg, 66% yield) as white solid. Mp: 297.4 – 298.2 °C; ¹H NMR (500 MHz, $C_2D_2CI_4$, 413 K) δ 7.80 – 7.68 (m, 2H), 7.58 (t, *J* = 8.3 Hz, 1H), 7.42 – 7.33 (m, 2H), 7.33 – 7.27 (m, 4H), 7.27 – 7.23 (m, 6H), 7.22 – 7.15 (m, 5H), 7.13 – 7.02 (m, 6H), 6.69 (d, *J* = 10.7 Hz, 2H), 5.65 – 5.42 (m, 2H), 2.87 – 2.62 (m, 6H), 2.36 (d, *J* = 1.2 Hz, 6H), 1.32 – 1.20 (m, 20H), 1.10 – 1.04 (m, 2H), 1.03 – 0.97 (m, 2H); ¹³C NMR (126 MHz, $C_2D_2CI_4$, 413 K) δ 149.27, 147.84, 147.70, 147.64, 141.11, 140.24, 140.12, 140.06, 139.88, 139.11, 139.03, 138.88, 138.77, 138.58, 137.79, 137.71, 137.50, 137.44, 137.35, 137.24, 136.99, 136.82, 135.61, 134.00, 133.93, 132.42, 132.32, 132.18, 132.04, 130.34, 129.46, 129.39, 129.13, 129.01, 128.50, 126.51, 126.36, 126.28, 126.04, 124.12, 123.96, 123.82, 123.62, 123.47, 123.45, 122.91, 122.84, 122.77, 122.44, 122.40, 49.63, 33.94, 30.98, 20.95, 20.37, 18.42; HRMS (MALDI-TOF) [M⁺] Calculated for $C_{70}H_{66}$: 906.5159; Found 906.5130.

2,10-di-tert-butyl-6,14-dimesityl-6,14-dihydrodibenzo[ef,no]difluoreno[3,4,5,6-hijkl:3',4',5',6'-qrabc]coronene (14)

4,4'-(4,4"-Di-tert-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9-mesityl-9H-fluorene) (13) (20 mg, 0.022 mmol) was dissolved in unstabilised dichloromethane (commercially available) (12 mL) and degassed by bubbling with argon flow, which was saturated with dichloromethane vapor, for 10 min. FeCl₃ (95 mg, 0.59 mmol) dissolved in nitromethane (1 mL) was added to the above-prepared solution and the resulting mixture was stirred at room temperature for 30 min. Methanol (80 mL) was then added. The precipitate was collected by filtration and washed with methanol and n-hexane to give the title compound (17 mg, 86% yield) as light yellow powder. ¹H NMR (300 MHz, THF-*d*₈:CS₂ = 1:1, 298 K) δ 9.24 (s, 4H), 9.03 (d, *J* = 8.0 Hz, 4H), 8.93 (s, 4H), 8.71 (d, *J* = 7.3 Hz, 4H), 7.99 (d, *J* = 7.8 Hz, 4H), 7.85 (d, J = 7.8 Hz, 4H), 7.16 (d, J = 6.5 Hz, 4H), 6.64 (s, 2H), 6.50 (s, 2H), 6.36 (s, 4H), 3.20 (s, 6H), 3.00 (s, 6H), 2.33 (s, 6H), 2.23 (s, 6H), 1.89 (s, 18H), 1.84 (s, 18H), 1.04 (s, 6H), 0.61 (s, 6H). The powder was further separated by silica gel column chromatography (*n*-hexane:dichloromethane = 3:1) to give an isomer of the title compound (14-I): Mp: >400, decomposition; ¹H NMR $(300 \text{ MHz}, \text{THF}-d_8:CS_2 = 1:1, 298 \text{ K}) \delta 9.25 \text{ (s, 4H)}, 9.04 \text{ (d, } J = 8.4 \text{ Hz}, 4\text{H}), 8.00 \text{ (d, } J = 7.9 \text{ Hz}, 4\text{H}), 7.15 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.37 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.37 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.37 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.37 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.64 \text{ (s, 2H)}, 6.37 \text{ (s, 2H)}, 6.64 \text{ (s$ (s, 2H), 2.99 (s, 7H), 1.87 (s, 6H), 1.84 (s, 18H), 1.04 (s, 6H); HRMS (MALDI-TOF) [M⁺] Calculated for C₇₀H₅₄: 894.4220; Found 894.4205 and another isomer **14-II**: Mp: >400, decomposition; ¹H NMR (300 MHz, THF- d_8 :CS₂ = 1:1, 298 K) δ 8.81 (s, 4H), 8.58 (d, J = 7.8 Hz, 4H), 7.79 (d, J = 7.6 Hz, 4H), 7.20 (s, 2H), 6.47 (s, 2H), 6.32 (s, 2H), 3.30 (s, 6H), 2.29 (s, 7H), 1.92 (s, 19H), 0.48 (s, 6H); ¹³C NMR (75 MHz, THF- d_8 :CS₂ = 1:1, 298 K) \bar{o} 148.91, 144.69, 139.08, 138.28, 136.91, 136.33, 133.76, 131.37, 131.25, 130.09, 129.10, 125.60, 122.36, 121.83, 121.78, 120.26, 119.94, 119.36, 55.45, 36.55, 32.95, 23.27, 21.45, 18.88; HRMS (MALDI-TOF) [M⁺] Calculated for C₇₀H₅₄: 894.4220; Found 894.4193.

In-situ generation of pPHBC 16

2,10-Di-*tert*-butyl-6,14-dimesityl-6,14-dihydrodibenzo[*ef*,*no*]difluoreno[3,4,5,6-*hijk*/:3',4',5',6'-*qrabc*]coronene (**13**) (4.0 mg, 0.0045 mmol) was placed in an NMR tube under argon protection and dry tetrahydrofuran- d_8 (0.6 mL) was added. At room temperature, *n*-BuLi (6.0 µL, 0.0096 mmol, 1.6 M in *n*-hexane) was added, generating a dark green solution of **15**. UV/Vis (tetrahydrofuran): λ_{max} (ε) = 692 nm (8286 M⁻¹cm⁻¹), 646 nm (7398 M⁻¹cm⁻¹), 535 nm (5808 M⁻¹cm⁻¹), 464 nm (20626 M⁻¹cm⁻¹), 444 nm (20070 M⁻¹cm⁻¹), 352 nm (57704 M⁻¹cm⁻¹); ¹H NMR (300 MHz, THF- d_8 , 298 K) δ 9.36 (s, 4H), 9.14 (d, *J* = 8.3 Hz, 4H), 8.16 (d, *J* = 8.4 Hz, 4H), 7.09 (s, 4H), 2.47 (s, 18H), 1.94 (s, 18H); ¹³C NMR (75 MHz, THF- d_8 , 298 K) δ 138.80, 136.39, 134.22, 133.54, 132.68, 132.33, 132.11, 131.55, 128.75, 120.60, 120.41, 116.48, 112.82, 42.48, 37.30, 35.65, 32.72, 30.12. To the above-prepared mixture containing **15** was added a solution of I_2 (2.5 mg, 0.009 mmol) in tetrahydrofuran- d_8 (0.1 mL) to generate *p*PHBC **16** as indicated by the change of the color of the solution to brown. UV/Vis (tetrahydrofuran): λ_{max} (ε) = 770 nm (3960 M⁻¹cm⁻¹), 698 nm (2202 M⁻¹cm⁻¹), 565 nm (5598 M⁻¹cm⁻¹), 463 nm (9788 M⁻¹cm⁻¹), 419 nm (21576 M⁻¹cm⁻¹).

3. Supplementary MS Spectra

Figure S1. MALDI-TOF MS spectrum after oxidation of 7 with FeCl₃ (26 eq.) in dichloromethane at room temperature.

Figure S2. MALDI-TOF MS spectrum of reaction mixture after oxidation of 7 with DDQ/MSA in dichloromethane followed by addition of TFMSA; inset shows experimental isotopic distribution pattern of product.

Figure S3. MALDI-TOF MS spectrum of mPHBC 8 before (left) and after (right) reducing with excess hydrazine solution in tetrahydrofuran; inset shows experimental isotopic distribution pattern of dehydrogenated mPHBC.

Figure S4. MALDI-TOF MS spectrum of 2,10-di-tert-butyl-6,14-dimesityl-6,14-dihydrodibenzo[ef,no]difluoreno[3,4,5,6-hijkl:3',4',5',6'-qrabc]coronene (14).

Figure S5. MALDI-TOF MS spectrum after the oxidation of 14 with DDQ (left) and DMF/^tBuOK (right).

Figure S6. MALDI-TOF MS spectrum measured after in situ deprotonation and oxidation of 14, showing formation of oxidized species of pPHBC 16.

4. Supplementary UV-vis Absorption Spectra

Figure S7. UV-vis absorption and fluorescence spectra of HBC-C12 in toluene at a concentration of 10⁻⁵ M.

Figure S8. UV-vis absorption spectra of mPHBC 8 in dichlormethane ($c = 3.64 \times 10^{-5}$ M); inset: photograph of the solution.

Figure S9. Time-dependent UV-vis absorption spectra of a solution of mPHBC 8 in dichloromethane (c = 2.97 × 10⁻⁵ M) under nitrogen and in dark.

WILEY-VCH

Figure S10. Changes of the absorption intensity at 682 nm with time. The half-life time was estimated according to the zero-order kinetics to be 456 h (19 days).

Figure S11. UV-vis absorption spectral changes of *m*PHBC **8** solution in dichloromethane $(c = 2.97 \times 10^{-5} \text{ M})$ (5, 10, and 15 minutes) after the addition of hydrazine (tetrahydrofuran solution).

Figure S12. UV-vis absorption spectrum of dianion 15 in tetrahydrofuran ($c = 5.0 \times 10^{-5}$ M); inset: photograph of the solution.

Figure S14. Time-dependent UV-vis absorption of in situ generated pPHBC 16.

Figure S15. Uv-vis absorption intensity changes of *in situ* generated *p*PHBC **16** in tetrahydrofuran ($c = 5.0 \times 10^{-5}$ M) at 770 nm with time. The half-life time was estimated according to the zero-order kinetics to be 6.8 h.

5. Theoretical Calculations

All calculations were performed with Gaussian 09, Revision D.01 using the 6-31G(d,p) basis set.^[4] Geometrical optimizations were performed using the broken-symmetry unrestricted B3LYP method for singlet states with the keyword guess=mix and the unrestricted B3LYP method for triplet states. Time-dependent density functional theory (TD-DFT) calculations were performed on the broken-symmetry unrestricted B3LYP method for singlet states. Diradical characters (y_0) were calculated using the spin unrestricted UHF method based on the occupation numbers of natural orbitals (UNO) (equations 1 and 2, where T is the orbital overlap between the highest occupied natural orbital (HONO) and the lowest unoccupied natural orbital (LUNO) and n is the occupation numbers of UNO).^[5] Nucleus-independent chemical shift (NICS) analysis was performed by the GIAO-UB3LYP/6-31G(d,p) method.^[6]

$$y_0 = 1 - \frac{2T}{1+T^2}$$
 (1)
 $T = \frac{n_{HONO} - n_{LUNO}}{2}$ (2)

Table S1. Calculated (UB3LYP/6-31G(d,p)) relative energy, singlet-triplet gap (ΔE_{S-T}) of the closed-shell singlet (CS), open-shell singlet (OS), and open-shell triplet (OT) states of *m*PHBC **8** and *p*PHBC **16**.

	CS (kcal/mol)	OS (kcal/mol)	OT (kcal/mol)	Δ <i>E</i> _{S-T} (kcal/mol)
<i>m</i> PHBC 8	0	-0.00063	1.80	-1.80
<i>p</i> PHBC 16 *	0	-3.02	-2.84	-0.18

*Energy were calculated at UBLYP/6-31G(d,p) level of theory.

Table S2. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and compositions of major electronic transitions of singlet state of *m*PHBC 8 (A: α spin; B: β spin).

Wavelength (nm)	Osc. Strength (f)	Major contributions
1728.97	0.0019	HOMO(A)->LUMO(A) (50%), HOMO(B)->LUMO(B) (50%)
1011.54	0.0761	H-1(A)->LUMO(A) (10%), HOMO(A)->LUMO(A) (35%), HOMO(B)->LUMO(B) (35%) H-2(A)->LUMO(A) (6%), H-2(B)->LUMO(B) (5%), H-1(B)->LUMO(B) (7%)
958.59	0.002	H-1(A)->LUMO(A) (43%), H-1(B)->LUMO(B) (44%) H-2(A)->LUMO(A) (4%), H-2(B)->LUMO(B) (4%)
820.87	0.0038	H-2(A)->LUMO(A) (35%), H-1(A)->LUMO(A) (10%), H-2(B)->LUMO(B) (35%), H-1(B)->LUMO(B) (11%)
743.48	0.0859	H-3(A)->LUMO(A) (34%), H-3(B)->LUMO(B) (37%) 1(B)->LUMO(B) (7%), HOMO(B)->LUMO(B) (5%)
719.83	0.0003	H-2(A)->LUMO(A) (46%), H-2(B)->LUMO(B) (42%) H-1(A)->LUMO(A) (4%), H-1(B)->LUMO(B) (5%)
659.84	0.3905	H-1(A)->LUMO(A) (21%), H-3(B)->LUMO(B) (12%), H-2(B)->LUMO(B) (10%), H-1(B)->LUMO(B) (23%) H-3(A)->LUMO(A) (9%), H-2(A)->LUMO(A) (5%), HOMO(A)->LUMO(A) (8%), HOMO(B)->LUMO(B) (8%)
619.70	0.104	H-3(A)->LUMO(A) (50%), H-3(B)->LUMO(B) (42%) HOMO(A)->L+1(A) (2%), HOMO(B)->L+1(B) (2%)

Table S3. Selected TD-DFT (B3LYP/6-31G(d,p)) calculated energies, oscillator strength and compositions of major electronic transitions of pPHBC dianion 15.

Wavelength (nm)	Osc. Strength (f)	Major contributions
587.99	0.0000	H-1->LUMO (99%)
565.23	0.2107	HOMO->LUMO (91%) H-2->L+1 (5%)
542.22	0.2095	HOMO->L+1 (91%) H-2->LUMO (7%)
505.48	0.0	H-1->L+1 (98%)

445.44	0.0	HOMO->L+2 (92%) H-3->LUMO (2%), H-1->L+3 (3%)	
440.80	0.0317	H-2->LUMO (59%), H-1->L+2 (31%) HOMO->L+1 (6%)	
435.06	1.3013	H-2->LUMO (20%), H-1->L+2 (51%), HOMO->L+3 (22%)	

Table S4. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and compositions of major electronic transitions of singlet state of *p*PHBC **16** (A: α spin; B: β spin).

Wavelength (nm)	Osc. Strength (f)	Major contributions
1025.43	0.0598	HOMO(A)->LUMO(A) (48%), HOMO(B)->LUMO(B) (47%)
1019.61	0.0	H-2(A)->LUMO(A) (10%), H-1(A)->LUMO(A) (36%), H-2(B)->LUMO(B) (10%), H-1(B)->LUMO(B) (36%) HOMO(A)->LUMO(A) (3%), HOMO(B)->LUMO(B) (3%)
982.75	0.0	HOMO(A)->LUMO(A) (46%), HOMO(B)->LUMO(B) (47%) H-1(A)->LUMO(A) (2%), H-1(B)- >LUMO(B) (3%)
982.05	0.0008	H-1(A)->LUMO(A) (41%), H-1(B)->LUMO(B) (40%) H-2(A)->LUMO(A) (8%), H-2(B)->LUMO(B) (8%)
721.34	0.0	H-2(A)->LUMO(A) (35%), H-1(A)->LUMO(A) (11%), H-2(B)->LUMO(B) (35%), H-1(B)->LUMO(B) (11%) HOMO(A)->L+1(A) (2%), HOMO(B)->L+1(B) (2%)
670.66	0.0411	H-2(A)->LUMO(A) (38%), H-2(B)->LUMO(B) (38%) H-1(A)->LUMO(A) (8%), H-1(B)->LUMO(B) (8%)
619.95	0.0785	H-3(A)->LUMO(A) (45%), H-3(B)->LUMO(B) (45%)
617.36	0.0	H-3(A)->LUMO(A) (46%), H-3(B)->LUMO(B) (46%)

6. NMR Spectra

WILEY-VCH

SUPPORTING INFORMATION

Figure S19. ¹³C NMR spectrum of (4,4"-di-tert-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(trimethylsilane) (3) (75 MHz, CD₂Cl₂, 298 K).

Figure S21. ¹³C NMR spectrum of 1,4-dibromo-2,3-di-(4-tert-butylphenyl)benzene (4) (75 MHz, CD₂Cl₂, 298 K).

WILEY-VCH

SUPPORTING INFORMATION

Figure S23. ¹³C NMR spectrum of 2,3-di-(4-tert-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (5) (75 MHz, CD₂Cl₂, 298 K).

WILEY-VCH

SUPPORTING INFORMATION

Figure S25. ¹³C NMR spectrum of 4,4'-(4,4"-di-*tert*-butyl-[1,1':2',1"-terphenyl]-3',6'-diyl)bis(9H-fluoren-9-one) (6) (125 MHz, C₂D₂Cl₄, 413 K).

Figure S27. ¹³C NMR spectrum of 4,4'-(4,4''-di-*tert*-butyl-[1,1':2',1''-terphenyl]-3',6'-diyl)bis(9-mesityl-9H-fluorene) (7) (125 MHz, C₂D₂Cl₄, 413 K).

Figure S33. ¹³C NMR spectrum of 1,4-dibromo-2,5-di-(4-tert-butylphenyl)benzene (10) (75 MHz, CD₂Cl₂, 298 K).

Figure S35. ¹³C NMR spectrum of 2,5-di-(4-tert-butylphenyl)-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (11) (75 MHz, CD₂Cl₂, 298 K).

Figure S37. ¹³C NMR spectrum of 4,4'-(4,4"-di-*tert*-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9H-fluoren-9-one) (12) (125 MHz, C₂D₂Cl₄, 413 K).

Figure S39. ¹³C NMR spectrum of 4,4'-(4,4"-di-*tert*-butyl-[1,1':4',1"-terphenyl]-2',5'-diyl)bis(9-mesityl-9H-fluorene) (13) (125 MHz, C₂D₂Cl₄, 413 K)).

Figure S40. ¹H NMR spectrum of 2,10-di-*tert*-butyl-6,14-dimesityl-6,14-dihydrodibenzo[*ef*,*no*]difluoreno[3,4,5,6-*hijkl*:3',4',5',6'-*qrabc*]coronene (14) (300 MHz, THF-*d*₈:CS₂ = 1:1, 298 K). The isomeric mixture was used for further experiments.

Figure S41. ¹H NMR spectrum of 2,10-di-*tert*-butyl-6,14-dimesityl-6,14-dihydrodibenzo[*ef,no*]difluoreno[3,4,5,6-*hijkl*:3',4',5',6'-*qrabc*]coronene (14-I) (300 MHz, THF- d_8 :CS₂ = 1:1, 298 K). The impurity peaks are from the other isomer 14-II, which could not be completely removed due to the very low solubility of both isomers. The peak shifts are ascribed to the differences in the concentration in each measurement.^[7]

THF-d8:CS2 = 1:1, 298 K).

Figure S43. ¹³C NMR spectrum of 2,10-di-tert-butyl-6,14-dimesityl-6,14-dihydrodibenzo[ef,no]difluoreno[3,4,5,6-hijkl:3',4',5',6'-qrabc]coronene (14-II) (75 MHz, THF-d₈:CS₂ = 1:1, 298 K).

Figure S44. ¹H,¹H-COSY NMR spectrum of 2,10-di-*tert*-butyl-6,14-dimesityl-6,14-dihydrodibenzo[*ef,no*]difluoreno[3,4,5,6-*hijkl*:3',4',5',6'-*qrabc*]coronene (14-II) (300 MHz, THF- d_8 :CS₂ = 1:1, 298 K).

Figure S45. ¹H,¹H-NOESY NMR spectrum of 2,10-di-*tert*-butyl-6,14-dimesityl-6,14-dimesityl-6,14-dihydrodibenzo[*ef,no*]difluoreno[3,4,5,6-*hijkl*:3',4',5',6'-*qrabc*]coronene (14-II) (300 MHz, THF- d_8 :CS₂ = 1:1, 298 K).

Figure S47. ¹³C NMR spectrum of pPHBC dianion (15) (75 MHz, THF-d₈, 298 K).

7. References

- [1] M. Di Giovannantonio, O. Deniz, J. I. Urgel, R. Widmer, T. Dienel, S. Stolz, C. Sanchez-Sanchez, M. Muntwiler, T. Dumslaff, R. Berger,
- A. Narita, X. Feng, K. Müllen, P. Ruffieux, R. Fasel, ACS Nano 2018, 12, 74-81. Z. Qiu, S. Asako, Y. Hu, C. W. Ju, T. Liu, L. Rondin, D. Schollmeyer, J. S. Lauret, K. Müllen, A. Narita, J. Am. Chem. Soc. 2020, 142, [2] 14814-14819
- J. Liu, A. Narita, S. Osella, W. Zhang, D. Schollmeyer, D. Beljonne, X. Feng, K. Müllen, *J. Am. Chem. Soc.* 2016, 138, 2602-2608. R. D. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, [3] [4] B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
- O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- S. Yamanaka, M. Okumura, M. Nakano, K. Yamaguchi, J. Mol. Str. 1994, 310, 205-218. [5] [6]
- a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. Schleyer, Chem. Rev. 2005, 105, 3842-3888; b) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. Schleyer, Org. Lett. 2006, 8, 863-866.
- [7] J. Wu, A. Fechtenkotter, J. Gauss, M. D. Watson, M. Kastler, C. Fechtenkotter, M. Wagner, K. Mullen, J. Am. Chem. Soc. 2004, 126, 11311-11321

8. Cartesian Coordinates and Spin Densities

mPHBC 8

С	-0.70666000	-0.83938000	0.00094200
С	-1.40332200	0.39582300	-0.00068500
С	-0.70778000	1.62517500	-0.00072100
С	0.70582700	1.62003000	0.00144700
С	1.39212000	0.38560900	0.00173600
c.	0.68609300	-0 84442600	0.00036200
c	1 3/920/00	-2 11967500	0.00270200
0	2 91954000	-2.11907500	0.00210200
	2.01004000	0.36091600	0.00216400
	1.46049200	2.84681300	0.00369900
C	-1.45375800	2.85656700	-0.00336200
С	-2.82911700	0.40251600	-0.00124100
С	-1.37978400	-2.10923700	-0.00131500
С	-2.89256700	2.85570300	-0.00730900
С	-3.55727400	4.08880000	-0.00907700
С	-2.87228800	5.30796400	-0.00765500
С	-1.47190700	5.27877800	-0.00443900
С	-0.73212900	4.08636400	-0.00203200
С	0.75085700	4.07969400	0.00190100
c.	1 49812200	5 27243300	0.00388500
c	2 80/00000	5 2897/500	0.00731400
c	2.03403300	4 06052500	0.00731400
0	2 00227700	4.00032300	0.00310200
C	2.90237700	2.03441000	0.00767000
	3.62116500	1.54708400	0.00941200
C	5.02239500	1.32312000	0.02138200
С	5.61723200	0.03907600	0.02183000
С	4.81091600	-1.11698800	0.00192200
С	3.43249900	-0.85692400	-0.00016200
С	2.72132200	-2.06906700	0.00618200
С	3.62554100	-3.15784300	0.01716500
С	2.98993200	-4.43397100	0.00655500
С	1.59271300	-4.53125400	0.00183800
С	0.70372200	-3.40542700	0.00225200
С	-0.74431100	-3.39999100	-0.00084400
С	-1.64212000	-4.51875300	-0.00051400
С	-3.03867900	-4.41038500	-0.00536800
c	-3 66434700	-3 12945400	-0.01603900
c	-2 75151800	-2 04797300	-0 00489800
c	-3 /5311600	-0.8303/100	0.00124800
ĉ	4 02220000	1 07011000	0.00124000
0	-4.03330000 E 62020200	-1.07911900	-0.00109900
0	-3.03026300	0.06391000	-0.02142000
	-5.02545600	1.36284800	-0.02104900
C	-3.62182900	1.57563200	-0.00882300
С	-4.99044300	-2.55435200	-0.01263000
С	4.95599600	-2.59373000	0.01349700
С	3.70596900	6.60008500	0.00865000
С	2.80786900	7.85153300	0.00659900
С	4.59679900	6.65149800	1.27292300
С	4.60164500	6.65085400	-1.25224100
С	-3.60185400	6.66684600	-0.00928700
С	-5.13407100	6.51035800	-0.01187900
С	-3.20398800	7.46706400	1.25383900
С	-3.19956900	7.46628600	-1.27149700
С	6.23312700	-3.33980600	0.03045400
С	6.61471700	-4.07279000	1,17881600
Ċ	7.83021700	-4.76317800	1.17341600
C	8.68042200	-4.76002400	0.06479200
-			

С	8.28745300	-4.02929500	-1.05982400
С	7.08466600	-3.31915400	-1.09980400
С	6.69926900	-2.57700200	-2.35988000
С	5.75552300	-4.09188600	2.42372000
С	9.97153600	-5.54337200	0.07153900
С	-6.27428100	-3.28880900	-0.03012400
C	-7.12651200	-3.25950200	1.09940700
Ċ	-8.33681200	-3 95673900	1 05813100
c	-8 73665000	-4 68270600	-0.06711100
c	-7 88537900	-4 69483800	-1 17489200
c	-6 66258100	-4 01749700	-1 17899200
ĉ	-5 80264700	-4 04501900	-2 42322600
ĉ	6 72464100	2 52152000	2 2500 4700
c	10 02651200	-2.52152900	2.33994700
	-10.03051300	4 09750400	0.07501000
	-4.63943600	4.08750400	-0.01084500
н	-0.94577700	6.22507500	-0.00360000
н	0.97312600	6.21664000	0.00252600
н	4.65531600	4.05822400	0.01109200
н	5.69604700	2.17444700	0.03447900
Н	6.70190200	-0.02649400	0.04135800
Н	3.57442000	-5.35004800	-0.00237900
н	1.16085400	-5.52785800	-0.00514300
Н	-1.21830600	-5.51880600	0.00645500
Н	-3.63018400	-5.32196600	0.00345000
Н	-6.71544400	0.02706600	-0.04132800
н	-5.69223700	2.21949200	-0.03452800
н	3.43149000	8.75099800	0.00785200
н	2.17015100	7.89507000	-0.88247800
н	2.16637400	7.89522000	0.89294600
н	5.18679600	7.57474100	1.28571200
н	5.29546500	5.81099800	1.31450400
н	3.98806300	6.62422400	2.18243800
н	3,99637700	6.62274600	-2.16404600
н	5 19142300	7 57426100	-1 26344500
н	5 30071000	5 81052700	-1 29052200
н	-5 60472100	7 49860000	-0.01301700
н	-5 /8832700	5 97656800	-0.8997/100
н	-5 /0135100	5 97716200	0.87513800
ц	-3.71010000	8 43885400	1 26348200
	2 12702200	7 65256200	1.20340200
	2.12702300	6.00790500	1.29755700
	-3.46000000	0.92789300	2.10394900
	-3.47007000	0.92077200	-2.10225100
н	-3.70527100	8.43827000	-1.28327400
н	-2.12238300	7.65229900	-1.31175300
н	8.12353900	-5.31190600	2.06582300
н	8.93226100	-4.01513100	-1.93598400
н	7.42073500	-2.76929000	-3.15841500
Н	5.70949200	-2.88242900	-2.71552100
н	6.65388700	-1.49467900	-2.20195900
н	5.46676300	-3.08049100	2.72719700
Н	4.82592200	-4.65060400	2.27236300
Н	6.29131800	-4.55680700	3.25561800
Н	10.37409200	-5.64285000	1.08400700
Н	9.82235200	-6.55773600	-0.31975300
Н	10.73368700	-5.06561300	-0.55155000
Н	-8.98227500	-3.93572600	1.93366500
н	-8.18378600	-5.24006400	-2.06776100

н	-6.34219100	-4.50493100	-3.25548600
Н	-5.50408200	-3.03643800	-2.72660500
Н	-4.87851000	-4.61250700	-2.27107200
Н	-6.67915600	-1.43961600	2.20245200
Н	-7.45819400	-2.70741100	3.15811700

*p*PHBC **16**

С	-1.20592100	-0.70816600	-0.01940600
С	-1.20010300	0.71887700	0.00783700
С	0.00584300	1.43818100	0.02092200
С	1.20593000	0.70951900	0.00599900
С	1.20010300	-0.71752600	-0.02123000
С	-0.00583800	-1.43684200	-0.03374500
С	-0.01098000	-2.88386600	-0.05942400
С	2.42317500	-1.45424400	-0.03189100
С	2,43574400	1.43567200	0.01745700
С	0.01098300	2.88515600	0.04928900
c	-2.42318300	1.45555800	0.02050200
c	-2.43572400	-1.43435500	-0.02888000
c	-1.22881400	3.60957500	0.06431000
č	-1 18141400	5 01350800	0.09243100
c.	0.02034700	5 72701100	0 10568400
c	1 21964500	4 99959500	0.08966100
c	1 25972600	3 60044900	0.06248400
c	2 52964700	2 84982400	0.00240400
c	3 85305600	3 37110100	0.04775000
c	5.0180/100	2 57392400	0.00020000
c	1 91573300	1 16/10100	0.04552000
c	3 59/8/800	0.68760400	0.00104600
c	3 58887500	-0 71632600	-0.01/78500
c	4 90548900	-1 20/53300	-0.01437200
c c	4.90540900	-2 61578300	-0.01437200
c c	3 82301100	-2.01070000	-0.03377000
c	2 50421000	-2 86951600	-0.05861800
c c	1 22881800	-2.00931000	-0.03001000
c c	1 181/1800	-5.00032200	-0.07201300
c c	-0.02034200	-5.01250000	-0.03033700
c	-1 21964000	-4 99838000	-0.09576300
c	-1 25972400	-3 59919400	-0.07084500
ĉ	-7.52064300	-2.84857100	-0.07004300
c	-2.32904300	-2.04037100	-0.05390400
c	-5.03307300	-2.57280000	-0.00004500
c	-4.01566000	-2.37200000	-0.03094000
c	2 50490700	-1.10290900	-0.01103000
ĉ	2 59990700	0.71762900	-0.01112700
c	-3.30009700	1 20573100	0.00474000
c	4.90535000	2 61600500	0.00998100
c	-4.99521900	2.01090500	0.05231000
C	-3.02309200	3.40375900	0.06767600
C	-2.50420900	2.07070900	0.05047500
	-5.78451200	0.02550500	0.00100100
	0.06929900	7.26761400	0.13561400
	-1.33450700	7.90162300	0.15760900
	0.82522200	7.73402200	1.40257700
	0.80804700	7.78302400	-1.12244900
	-0.06929100	-1.20040400	-0.13846300
0	1.33452000	-7.90051700	-0.15886900
		-7.78009500	1.11997100
	-0.82459800	-1.13466300	-1.40513100
C	5.78452700	-0.02441700	-0.00207000
C	-1.20181400	0.03094100	0.00435700

Н	-5.74788000	-2.83627300	2.71582700
Н	-10.79287300	-4.96696300	0.54933800
Н	-10.44068900	-5.54310400	-1.08818400
Н	-9.89870100	-6.46866800	0.31237700
С	-7.97563900	0.51459200	-1.11810900
С	-9.37285400	0.50901500	-1.09119500
С	-10.09206100	0.04343500	0.01263800
С	-9.37053600	-0.42352500	1.11440000
С	-7.97334600	-0.44377100	1.13215100
С	-7.25336900	-0.92853800	2.37097500
С	-7.25878800	1.00068700	-2.35822600
С	-11.60200900	0.02036000	0.00459500
С	7.26180500	-0.03121700	0.00313100
С	7.98101400	0.44702100	-1.11825800
С	9.37807200	0.43070600	-1.08931000
С	10.09205500	-0.04045700	0.01558000
С	9.36534800	-0.50211900	1.11612700
С	7.96799100	-0.51160000	1.13186200
С	7.24255200	-0.99072600	2.36970300
С	7.26969800	0.93879100	-2.35931800
С	11.60180400	-0.07478400	0.00975600
Н	-2.11772700	5.55602300	0.10366800
Н	2.15897400	5.54145400	0.09815900
Н	3.99700300	4.44680700	0.09606800
Н	5.98420500	3.07078300	0.07575100
Н	5.95714000	-3.12108200	-0.07490200
Н	3.95855400	-4.47947200	-0.09867700
Н	2.11773100	-5.55483900	-0.10853400
Н	-2.15897100	-5.54025300	-0.10329700
Н	-3.99703500	-4.44573100	-0.09666500
Н	-5.98428200	-3.06975400	-0.07252100
Н	-5.95706700	3.12210700	0.07803500
Н	-3.95852300	4.48054900	0.09796600
Н	-1.24318800	8.99214700	0.17944400
Н	-1.91644900	7.63855200	-0.73179700
Н	-1.90479100	7.60148700	1.04280000
Н	0.87384400	8.82814800	1.43550900
Н	1.85124000	7.35573600	1.42959600
Н	0.31895100	7.38896400	2.30984900
Н	0.28857000	7.47433700	-2.03535800
Н	0.85764000	8.87760400	-1.11310100
Н	1.83294800	7.40499500	-1.17856500
Н	1.24319300	-8.99106800	-0.17926200
н	1.90527500	-7.60160900	-1.04417300
н	1.91599700	-7.63622700	0.73048000
н	-0.85820300	-8.87468700	1.11216400
н	-1.83359100	-7.40203100	1.17504700
н	-0.28963500	-7.47008600	2.03269600
н	-0.31784000	-7.39094900	-2.31264100
H	-0.8/328000	-8.82883400	-1.43651500
н	-1.85056800	-7.35632900	-1.43321100
Н	-9.91390300	0.87378500	-1.96171300
н	-9.90960000	-0.77494400	1.99158900
H	-7.96145100	-1.10392400	3.18526100
Н	-0.71142500	-1.86321400	2.192/5/00
н	-0.51330800	-0.19878200	2.71534800
Н	-0.52566200	0.26734000	-2.70972500
н	-7.96985100	1.18451800	-3.16804300

Н	-6.70941500 1.93	075700	-2.17872300	H	ł	6.69080300	-1.91931800	2.18993700
Н	-12.01192000 0.8	2190200	-0.61723700	H	ł	6.53026900	0.21190300	-2.71100400
Н	-11.98204700 -0.9	2788500	-0.39626000	Н	ł	6.72861400	1.87391600	-2.18085500
Н	-12.00953300 0.1	3146000	1.01393300	Н	ł	7.98310200	1.11572300	-3.16861200
н	9.92318500 0.79	139800	-1.95900100	Н	ł	12.01870000	0.72841300	-0.60530500
н	9.90042800 -0.85	785400	1.99400900	н	1	12.00843500	0.02559100	1.02055000
н	7 94849800 -1 17	471500	3 18394200	н	4	11 97543000	-1 02269100	-0.39786300
н	6 51013600 -0 25	368700	2 71/07000		•	11.07040000	1.02200100	0.007 00000
	0.01010000 -0.20	500700	2.71437300					
۳D	UPC diapion 15							
PΡ				0		0.00570500	7 70004000	4 4200000
~	4 04455000 0 70	305500	0.00450400		, ,	-0.82572500	-7.72834000	-1.43692900
C	-1.21155800 -0.70	1785500	-0.02152100	0	j	5.80747600	-0.02353300	-0.00330800
С	-1.20567500 0.71	951400	0.01370100	C	;	-7.28117400	0.03047000	0.00340200
С	0.00596700 1.44	000600	0.02896200	C)	-8.01703300	0.67991100	-1.02641400
С	1.21158100 0.70	996500	0.01095600	C)	-9.41545800	0.68002600	-0.99949800
С	1.20567700 -0.71	740500	-0.02424200	C)	-10.14133800	0.04240900	0.00966300
С	-0.00595400 -1.43	3791000	-0.03905000	C)	-9.41630900	-0.59698800	1.01889300
С	-0.01129600 -2.88	8077100	-0.07253500	C)	-8.01827700	-0.61011800	1.03865200
С	2.43151200 -1.45	409100	-0.03744900	C)	-7.30894400	-1.25446500	2.20690500
С	2.44402500 1.43	638500	0.02381100	C)	-7.30778900	1.32754400	-2.19294300
С	0.01131100 2.88	281700	0.06456200	С	2	-11.65275500	0.01725600	-0.00536400
C	-2.43153000 1.45	616600	0.02845000	C	2	7,28116900	-0.03102300	0.00144600
Ċ.	-2 44398000 -1 43	430800	-0.03289500	C		8 02484000	0.61194300	-1 02668700
c	-1 23612600 3.60	570700	0.08285000	C		9 42321000	0.60025500	-0.99652200
ĉ	-1 18500600 5.00	200200	0.00200000		~	10 1/120800	-0.04317500	0.01444600
c		290200	0.11702300		~	0.40952200	-0.04317500	1 0221 4000
		921500	0.13265700		~	9.40653500	-0.07623600	1.02214900
	1.22380000 4.99	952600	0.11336200		, ,	8.01045700	-0.67761200	1.03862200
C	1.26/31200 3.59	662200	0.08021900	0	j	7.29298500	-1.31568400	2.20531500
С	2.52929500 2.84	605500	0.06244300	C	;	7.32377400	1.26538400	-2.19494900
С	3.86266400 3.36	354100	0.08797300	C)	11.65249300	-0.08094000	0.00326500
С	5.02489800 2.57	246100	0.06757900	H	1	-2.12453300	5.55293300	0.12970800
С	4.94634800 1.15	047300	0.00575400	H	ł	2.16489700	5.54073300	0.12247100
С	3.60708600 0.68	071200	0.00231700	Н	ł	4.00552800	4.44139000	0.13309000
С	3.60108500 -0.70	844600	-0.01615500	Н	ł	5.98688900	3.08099300	0.11628300
С	4.93598300 -1.18	983700	-0.01470100	Н	ł	5.96001600	-3.12957200	-0.11744000
С	5.00222300 -2.61	270000	-0.07333300	Н	ł	3.96762700	-4.47297100	-0.13653900
С	3.83356600 -3.39	391600	-0.09485200	Н	ł	2.12454600	-5.55099400	-0.13344900
С	2.50416500 -2.86	493000	-0.07293800	Н	ł	-2.16488100	-5.53877300	-0.12650300
Ċ	1 23614300 -3 60	369900	-0.08930200	Н	4	-4 00557100	-4 43960400	-0 13332800
Ċ.	1 18601100 -5.01	093800	-0 12162300	н	4	-5 98705000	-3 07920400	-0 11341200
c	-0.02024000 -5.71	726700	-0 1367/300	H		-5 95981700	3 13135900	0.12068100
ĉ	1 22279400 4 00	755400	0.11012200			2 06755000	4 47474000	0.12666500
c	1 26720700 2 50	161000	0.09679000		ו ו	1 22050200	9.00516000	0.13000300
	-1.20/29/00 -3.58	401000	-0.06676900		1	-1.23950300	0.99516900	0.22092500
	-2.52928000 -2.84	404300	-0.06896900		1	-1.91406000	7.63752300	-0.69338700
C	-3.86267600 -3.36	165700	-0.09073600	н	1	-1.90127000	7.59302700	1.07627500
C	-5.02489200 -2.57	058500	-0.06873900	H	1	0.88302700	8.82488500	1.47404800
С	-4.94618000 -1.14	852800	-0.00940100	H	1	1.84649400	7.33700500	1.46258300
С	-3.60701500 -0.67	863100	-0.01046400	H	1	0.31522500	7.38102000	2.33935400
С	-3.60113100 0.71	052700	0.00806300	H	ł	0.28220000	7.48321400	-1.99699100
С	-4.93612600 1.19	178400	0.01116100	H	ł	0.86473800	8.88455800	-1.07358200
С	-5.00219500 2.61	457300	0.07243100	Н	ł	1.82658600	7.39714700	-1.14655500
С	-3.83351900 3.39	579400	0.09236000	Н	ł	1.23952100	-8.99332500	-0.22073400
С	-2.50414800 2.86	693800	0.06658500	н	ł	1.90148200	-7.59218800	-1.07757600
С	-5.80746900 0.02	534500	0.00171300	Н	ł	1.91389900	-7.63461600	0.69214000
Ċ	0.06979400 7.26	177400	0.16884100	Н	1	-0.86494200	-8.88121700	1.07322900
Ċ.	-1.33114600 7 90	255800	0.19450600	н	4	-1.82683200	-7.39374700	1.14428000
c	0.82600100 7.72	878000	1 43523700	Ц	4	-0.28261900	-7 47878700	1 99512200
c C	0.80716100 7.72	780700	-1 08544000			-0.31473700	-7 38167000	-2 34134700
c	-0.06077200 -7.25	000000	-0 17002400		, 1	-0.88270200	-8 824/8800	-1 /7//6200
2		068600	-0.10556400			-1 8/610100	-7 3365/500	-1 46404000
c	0.00720500 7.30		1 00202000		1	-1.04019100	-1.33034300	1 90600000
U U	-0.00/30300 -/./8	9443300	1.00302000	H	1	-9.93408300	1.17749100	-1.00022900

9.41545600	0.00002000	-0.99949600
10.14133800	0.04240900	0.00966300
9.41630900	-0.59698800	1.01889300
8.01827700	-0.61011800	1.03865200
7.30894400	-1.25446500	2.20690500
7.30778900	1.32754400	-2.19294300
11.65275500	0.01725600	-0.00536400
7.28116900	-0.03102300	0.00144600
8.02484000	0.61194300	-1.02668700
9.42321000	0.60025500	-0.99652200
0.14130800	-0.04317500	0.01444600
9.40853300	-0.67623600	1.02214900
8.01045700	-0.67761200	1.03862200
7.29298500	-1.31568400	2.20531500
7.32377400	1.26538400	-2.19494900
1.65249300	-0.08094000	0.00326500
2.12453300	5.55293300	0.12970800
2.16489700	5.54073300	0.12247100
4.00552800	4.44139000	0.13309000
5.98688900	3.08099300	0.11628300
5.96001600	-3.12957200	-0.11744000
3.96762700	-4.47297100	-0.13653900
2.12454600	-5.55099400	-0.13344900
2.16488100	-5.53877300	-0.12650300
4.00557100	-4.43960400	-0.13332800
5.98705000	-3.07920400	-0.11341200
5.95981700	3.13135900	0.12068100
3.96755000	4,47474900	0.13666500
1.23950300	8,99516900	0.22092500
1.91406000	7.63752300	-0.69338700
1 90127000	7 59302700	1 07627500
0 88302700	8 82488500	1 47404800
1 84649400	7 33700500	1 46258300
0.31522500	7 38102000	2 33935400
0 28220000	7 48321400	-1 99699100
0 86473800	8 88455800	-1 07358200
1 82658600	7 39714700	-1 14655500
1 23952100	-8 99332500	-0 22073400
1 90148200	-7 59218800	-1 07757600
1 91389900	-7 63461600	0.69214000
0 86494200	-8 88121700	1 07322900
1 82683200	-7 39374700	1 14428000
0 28261900	-7 47878700	1 99512200
0.31473700	-7 38167000	-2 34134700
0.88279300	-8 82448800	-1 47446800
1 84619100	-7 33654500	-1 46494900
9 95408500	1 17749100	-1 80622900
0.00-00000	1.17749100	1.00022300

S35

Н	-9.95589900	-1.08247200	1.83241300	Н	9.94209600	-1.16597200	1.83709600
Н	-8.01285700	-1.47085200	3.01861900	Н	7.99334300	-1.53893700	3.01823700
н	-6.81154500	-2.19043100	1.93094100	Н	6.50846400	-0.65149100	2.58178800
Н	-6.51895100	-0.59746800	2.58454100	Н	6.78734500	-2.24677900	1.92797500
Н	-6.52222100	0.66845000	-2.57609600	Н	6.53282900	0.61333600	-2.57907600
Н	-8.01281000	1.55144000	-3.00165100	Н	6.82902700	2.20231000	-1.91744500
Н	-6.80485200	2.25958100	-1.91382700	Н	8.03231600	1.48220100	-3.00251500
Н	-12.06444500	0.89846000	-0.51049400	Н	12.07247300	0.79207800	-0.50913800
Н	-12.04679500	-0.86533500	-0.52991600	Н	12.06118600	-0.09948700	1.02039400
Н	-12.06388400	-0.00749300	1.01061700	Н	12.04041600	-0.97170800	-0.51192400
Н	9.96789200	1.09301900	-1.80207300				

Mulliken charges and spin densities distribution of triplet biradical form of m PHBC 8

1 C	-0.013793 -0.001861	36 C 0.153812	-0.086512
2 C	0.075038 0.004583	37 C -0.164381	0.065753
3 C	-0.020927 -0.003869	38 C -0.121431	0.124782
4 C	-0.024327 -0.000823	39 C 0.155126	-0.136259
5 C	0.074062 0.002896	40 C -0.088482	0.146964
6 C	-0.013655 0.000520	41 C -0.068545	-0.078946
7 C	0.134955 -0.018928	42 C 0.088461	0.166646
8 C	0.047532 -0.060937	43 C -0.169810	0.602461
9 C	0.042657 0.032663	44 C -0.169627	0.603634
10 C	0.040561 0.037329	45 C -0.036669	0.001245
11 C	0.046263 -0.061475	46 C -0.004355	0.000040
12 C	0.135299 -0.017626	47 C 0.009599	-0.000319
13 C	0.052510 -0.048454	48 C 0.009463	-0.000319
14 C	-0.148650 0.047646	49 C -0.035723	0.001312
15 C	0.166928 -0.025338	50 C -0.002909	0.000020
16 C	-0.138247 0.050254	51 C 0.008413	-0.000374
17 C	0.062072 -0.018824	52 C 0.008484	-0.000374
18 C	0.059638 -0.016635	53 C -0.033255	-0.067683
19 C	-0.151090 0.045965	54 C 0.132598	0.040579
20 C	0.167943 -0.024156	55 C -0.116515	-0.013765
21 C	-0.138726 0.049971	56 C 0.153401	0.029530
22 C	0.054494 -0.047037	57 C -0.116456	-0.013853
23 C	0.087018 0.167461	58 C 0.132372	0.040430
24 C	-0.069598 -0.078489	59 C -0.023528	0.001410
25 C	-0.088837 0.147923	60 C -0.023510	0.001400
26 C	0.155206 -0.135676	61 C -0.029962	0.000304
27 C	-0.121153 0.122546	62 C -0.033171	-0.067561
28 C	-0.164605 0.067812	63 C 0.132306	0.040390
29 C	0.153770 -0.088526	64 C -0.116483	-0.013841
30 C	-0.089376 0.128304	65 C 0.153402	0.029520
31 C	-0.073314 -0.018535	66 C -0.116535	-0.013766
32 C	0.070991 0.103351	67 C 0.132639	0.040547
33 C	0.070834 0.101376	68 C -0.023553	0.001397
34 C	-0.073392 -0.016751	69 C -0.023539	0.001409
35 C	-0.089706 0.126837	70 C -0.030012	0.000304

Mulliken charges and spin densities distribution of triplet biradical form of pPHBC 16

1 C	0.074493	0.007092	10 C 0.1	10524	0.074574
2 C	0.076168	0.006010	11 C 0.04	16877	-0.053416
3 C	-0.102883	-0.011173	12 C 0.04	18557	-0.053446
4 C	0.074551	0.007088	13 C 0.02	26573	-0.065667
5 C	0.076108	0.006015	14 C -0.14	42014	0.087142
6 C	-0.102888	-0.011177	15 C 0.16	34339	-0.046728
7 C	0.110543	0.074574	16 C -0.13	32484	0.093488
8 C	0.046922	-0.053418	17 C 0.02	29182	-0.066166
9 C	0.048511	-0.053445	18 C 0.10)2035	0.163055

19 C	-0.0741	23 -0.	075499
20 C	-0.0910	04 0.	148238
21 C	0.1561	93 -0.	133017
22 C	-0.1353	866 0.	100810
23 C	-0.1353	327 0.	102654
24 C	0.1559	71 -0.	133766
25 C	-0.0908	316 0.	147255
26 C	-0.0730	59 -0.	075823
27 C	0.1034	76 0.	161870
28 C	0.0265	77 -0.	065667
29 C	-0.1420	0.44 0.	087140
30 C	0.1643	39 -0.	046727
31 0	-0 1325	16 0	093485
32 0	0.0291	86 -0	066167
33 0	0.0201	26 0	163050
34 0	-0.0741	28 -0	075488
35 0	, -0.0741 , _0.0011	20 -0.	1/8220
36 0	0.0311	23 0.	132008
27 0	0.1300	90 -0. 250 0	100706
30 0	0.1352		100790
30 0	0.1504	40 U.	102000
39 0		00 0	133///
40 C		90 U.	14/2//
41 C	-0.0730	.056 -0	075836
42 C	0.1034	89 0.	161881
43 C	-0.1725	074 U .	604408
44 C	; -0.0354	83 0.	002400
45 C	-0.0032	206 0.	000038
46 C	0.0093	65 -0.	000683
47 C	0.0093	81 -0.	000696
48 C	-0.0354	74 0.	002400
49 C	-0.0032	223 0.	000038
50 C	0.0093	58 -0.	000696
51 C	0.0093	62 -0.	000684
52 C	-0.1725	648 0 .	604411
53 C	-0.0326	58 -0.	067280
54 C	0.1323	38 0.	039804
55 C	-0.1165	516 -0.	013453
56 C	0.1531	84 0.	028590
57 C	-0.1165	510 -0.	013413
58 C	0.1325	68 0.	039707
59 C	-0.0235	58 0.	001384
60 C	-0.0235	627 0.	001417
61 C	-0.0300	97 0.	000289
62 C	-0.0326	65 -0.	067277
63 C	0.1322	61 0.	039790
64 C	-0.1164	75 -0.	013449
65 C	0.1531	77 0.	028593
66 C	-0.1165	645 -0.	013421
67 C	0.1326	48 0.	039728
68 C	-0.0235	35 0.	001368
69 C	-0.0235	55 0.	001430
70 C	-0.0300	94 0.	000289