Supplementary information

Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity

Yuhuan Li,^{1,2} Huayuan Tang,³ Houjuan Zhu,⁴ Aleksandr Kakinen,⁵ Di Wang,⁶ Nicholas

Andrikopoulos,² Yunxiang Sun,⁷ Aparna Nandakumar,² Eunbi Kwak,² Thomas P. Davis,^{2,5}

David Tai Leong,^{4*} Feng Ding^{3*} and Pu Chun Ke^{2,5,8*}

 ¹Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
²Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
³Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
⁴National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
⁵Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
⁶School of Life Sciences, Jilin University, Changchun 130012, China
⁷School of Physical Science and Technology, Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China

Figure S1. AFM measurement for the thickness of ultrasmall MoS_2 QDs. (A) AFM imaging of ultrasmall MoS_2 QDs. (B) Thickness analysis of ultrasmall MoS_2 QDs for cross-sections 1 and 2 selected from panel A.

Figure S2. Trypan blue staining of SH-S5Y cells after 48 h treatment by A β -o, ultrasmall MoS₂ QDs and the combination of A β -o and ultrasmall MoS₂ QDs at the molar ratios of 1:0.5 and 1:5. A β was preincubated at 400 μ M and 37 °C in MilliQ water for 5 h, and then diluted to 20 μ M for the cell viability assay.

Figure S3. TEM imaging of A β aggregation, in the forms of A β -m, A β -o and A β -f. 50 μ M of A β peptide was incubated at 37 °C for 0 h, 12 h and 30 h. Amyloid protein samples were collected at different time points according to the ThT result presented in Figure 2A and were instantly stained on formvar/carbon-coated copper grids. Scale bars: 50 nm for the image of A β -m and 100 nm for the images of A β -o and A β -f.

Figure S4. ThT kinetic assay for different concentrations of ultrasmall MoS_2 QDs. The concentration of ThT was 200 μ M.

Figure S5. ATR-FTIR amide I band spectra and deconvolution analysis of incubated A β samples (50 μ M, incubated for 1, 12 and 30 h at 37 °C) with or without ultrasmall MoS₂ QDs at the molar ratios of 1:0.5 and 1:5.

Figure S6. ATR-FTIR amide I band spectra (A, B, C) and the secondary structure distribution (D) of ultrasmall MoS₂ QDs only without A β at 1, 12 and 30 h and 37 °C in water.

Figure S7. Effects of pre-incubated A β -o on the fluidity of SH-SY5Y cell membranes in the presence and absence of ultrasmall MoS₂ QDs. (A) A flowchart illustrates the measurement time points of membrane fluidity and the addition of A β -o and ultrasmall MoS₂ QDs. (B-D) GP shifts were recorded after 1 h pre-treatment with A β -o (20 μ M) followed by another 3 h of incubation in the presence and absence of ultrasmall MoS₂ QDs (10 or 100 μ M).

Figure S8. Effects of A β -m, A β -f and ultrasmall MoS₂ QDs on the membrane fluidity of SH-SY5Y cells. A β 400 μ M was dissolved in H₂O and incubated at 37 °C for 0, 5 and 30 h, representing A β -m, A β -o and A β -f, then was further diluted into cell culture media to reach 20 μ M final concentration. After 3 h treatment, GP values and shifts were analyzed.

Figure S9. Aβ-o distribution on SH-SY5Y cells in the presence and absence of ultrasmall MoS₂ QDs with the molar ratios of 1:0.5 and 1:5. (A) Confocal images of Aβ-o (concentration: 20 µM) distribution after 3 h treatment, including Aβ-o (red), nucleus (blue), bright-field (gray) and merged images for 3 channels. Scale bar: 20 µm. (B) Corresponding Aβ-o fluorescence intensity of panel A. Data are shown as mean values (n=3) ± SEM, *** *P* < 0.001.

Figure S10. A β -o distribution on SH-SY5Y cells treated with 10 and 100 μ M of ultrasmall MoS₂ QDs. A β -o (red), nucleus (blue), bright-field (gray) and merged images for 3 channels. Scale bar: 20 μ m.

Figure S11. Actin organization in SH-SY5Y cells after 1 h and 3 h treatment by different concentrations of ultrasmall MoS₂ QDs. Actin filaments were stained by phalloidin-iFluor 488 (green). Scale bar: 20 μm.

Figure S12. Interactions between A β -f and ultrasmall MoS₂ QDs. (A) Structure of the A β fibril (A β -f). A β peptides were shown as cartoons. (B) Overlaying of final snapshots from 30 independent simulations, where preformed A β -f were illustrated by their surfaces and MoS₂ atoms were displayed in wheat spheres.

Table S1. Secondary structure distribution of incubated (1, 12 and 30 h) A β 50 μ M in the presence and absence of ultrasmall MoS₂ QDs. Secondary structure analysis (%) is derived after deconvolution of the respective ATR-FTIR raw spectra presented in Figures S5&S6 in 4 peak regions (1610~1640 cm⁻¹, 1640~1660 cm⁻¹, 1660~1675 cm⁻¹, and 1675~690 cm⁻¹). Incubation temperature: 37 °C.

Samples	β-sheet (%)	α-helix/disordered (%)	β-turn (%)
Αβ (1 h)	44.7	37.7	17.6
Aβ (12 h)	52.8	36.4	10.8
Aβ (30 h)	61.6	26.5	11.9
Aβ + MoS ₂ (1:0.5, 1 h)	44.3	41.3	14.4
Aβ + MoS ₂ (1:0.5, 12 h)	52.2	31.1	16.7
Aβ + MoS ₂ (1:0.5, 30 h)	60.4	26.5	13.1
Aβ + MoS ₂ (1:5, 1 h)	32.9	47.2	19.9
Aβ + MoS ₂ (1:5, 12 h)	34.7	42.2	23.1
Aβ + MoS ₂ (1:5, 30 h)	43.6	42.6	13.8
MoS ₂ (1 h)	39	37.1	23.9
MoS ₂ (12 h)	32.1	45	22.9
MoS₂ (30 h)	30.3	50.7	19