Amino acid δ^{13} C and δ^{15} N analyses reveal distinct species-specific patterns of trophic plasticity in a marine symbiosis

Christopher B. Wall*, Natalie J. Wallsgrove, Ruth D. Gates, Brian N. Popp *Corresponding author: chris.wall@hawaii.edu

Supplemental Information

Bulk tissue isotope analysis

Sample analytical accuracy and precision (δ^{13} C and δ^{15} N) was <0.2 ‰ based on repeated analysis of laboratory reference material (glycine and a homogenate of tuna white muscle tissue) run before and after every 10 samples. Quantification and isotopic corrections were calculated using the glycine laboratory reference material run alongside samples, and the isotopic composition of the glycine was characterized using international reference materials including USGS 32, USGS 34, USGS 35, IAEA N3, USGS 40, USGS 41, NBS 18 and NBS 19. The known values for glycine are +11.36 ‰ vs. AIR for δ^{15} N, and -36.49 ‰ vs. V-PDB for δ^{13} C.

Individual amino acid isotope analyses

Isotopic analysis of amino acids in coral host, symbiont algae, and a pooled plankton sample were performed by subjecting tissue samples to acid hydrolysis, carboxyl terminus esterification, and amine group trifluoroacetylation (Hannides et al. 2013; Shih et al. 2020). Acid hydrolysis was performed by heating (150 °C) tissues (approx. 15 mg) in 6N HCl for 70 min in a culture tube fitted with a Teflon-lined cap and filled with N_2 gas. HCl was evaporated to dryness, hydrolysate redissolved in 0.01N HCl, and filtered through a 0.2 µm polyethersulfone filter with a 0.01N HCl wash. The hydrolysate solubilized in 0.01N HCl was purified by cation exchange

(Dowex 50WX8-400), and amino acids were eluted with ammonium hydroxide. Hydrolyzed tissues were esterified by heating (110 °C) for 60 min in 1:4 acetyl chloride : isopropanol and the amine group was trifluoroacetylated by adding 3:1 methylene : trifluoroacetic anhydride (TFAA) solution to vials and heating (100 °C) for 15 min. Finally, solvent extraction in P-buffer (KH₂PO₄ + Na₂HPO₄ in milli-Q water, pH 7) was used to further purify samples (Ueda et al. 1989). Chloroform was used to partition acylated amino acids, and following solvent evaporation, sample trifluoracetylation was repeated to maximize derivitization. Samples were stored frozen in 3:1 methylene chloride : TFAA at -20 °C until analyzed.

Trophic position calculations

While values for β and Δ have been widely used in the study of a marine invertebrates and fishes to calculate trophic positions (Chikaraishi et al. 2009; Hannides et al. 2013; Shih et al. 2020) and more recently in reef corals (Fujii et al. 2020), we tested the applicability of the canonical β and Δ values for TP_{Glx-Phe}. The β values calculated for isolated Symbiodiniaceae ($3.7 \pm 0.8 \%$, propagated error, n = 6) were similar to that found by (Fujii et al. 2020) and not statistically different from $3.4 \pm 1.0 \%$ (p=0.407). In addition, the average trophic position for Symbiodiniaceae calculated using equation 1 is not different from 1 (1.04 ± 0.22), which correctly identifies Symbiodiniaceae as a primary producer and indicates that the $\Delta_{Glx-Phe}$ value of 7.6 ‰ is applicable for this alga. In other works, trophic positions in Symbiodiniaceae and hermatypic corals have been reported to range from 0.7-1.5 and 0.8-1.8, respectively (Fuji et al. 2020; Martinez et al. 2020), with trophic positions in temperate heterotrophic cnidarians (sea jellies, octocorals) ranging from 2.2-3.7 (Grossowicz et al. 2020).

Supplemental Tables

Table S1. Bulk isotope samples in plankton and suspended particles in seawater adjacent to six reefs spanning Kāne'ohe Bay in August and December 2016. Isotopes values in the pooled plankton sample used in the present study are presented for comparison (collected January 2018).

Values are mean \pm SE (*n*=12), except ^b = pooled plankton sample (*n*=1, this study). All samples were filtered from seawater collected at 3 m depth, except ^{a,b} = collected from vertical and horizontal plankton tows (63 µm mesh) (data from Wall et al., 2020).

		10	nn		Г	
Bulk tissue isotope values	Effect	af	22	MS	F	<u>p</u>
$\delta^{13}C$	Fraction	1	1.401	1.401	1.532	0.251
	Treatment	2	3.772	1.886	2.062	0.190
	Residual	8	7.317	0.915		
$\delta^{15}N$	Fraction	1	4.083	4.083	14.770	0.005
	Treatment	2	0.105	0.053	0.190	0.831
	Residual	8	2.212	0.277		
C:N	Fraction	1	0.132	0.132	0.723	0.420
	Treatment	2	2.218	1.109	6.086	0.025
	Residual	8	1.457	0.182		
$\delta^{13}C_{H-S}$	Treatment	1	0.763	0.382	7.897	0.064
	Residual	2	0.145	0.048		
$\delta^{15}N_{\rm H\text{-}S}$	Treatment	1	0.063	0.032	0.288	0.769
	Residual	2	0.330	0.110	0.000	

Table S2. Statistical analyses of carbon and nitrogen isotope values (δ^{13} C, δ^{15} N) in bulk tissues of coral and Symbiodiniaceae exposed to Light-by-Feeding nutrition treatments*.

*'Fraction' is host coral (H) or symbiont Symbiodiniaceae tissue (S). 'Treatment' represents combination of Lightby-Feeding nutrition treatments: Light–Not Fed, Light–Fed, Dark–Fed. Significant p-values (p<0.05) are in bold. **Table S3.** Carbon and nitrogen isotope values (δ^{13} C, δ^{15} N) of amino acids measured in pooled samples of coral host (*Montipora capitata*) and endosymbiont algae (Symbiodiniaceae) along with a size-fractioned plankton sample*.

Amino acid $\delta^{13}C$ (‰)	Coral	Symbiodiniaceae	Pooled plankton
Alanine (Ala)	-15.35 ± 0.29	-16.98 ± 0.66	-20.83
Aspartic acid (Asp)	-10.35 ± 0.39	-9.55 ± 0.69	-15.38
Glutamic acid (Glx)	-8.11 ± 0.54	-10.38 ± 0.47	-16.12
Glycine (Gly)	-13.44 ± 0.66	-17.25 ± 1.26	-19.48
Isoleucine (Ile)	-14.21 ± 0.59	-15.09 ± 0.93	-21.81
Leucine (Leu)	-24.69 ± 0.43	-24.94 ± 0.45	-27.84
Lysine (Lys)	-11.59 ± 0.33	-12.08 ± 0.56	-19.34
Phenylalanine (Phe)	-19.94 ± 0.50	-20.34 ± 0.42	-24.88
Proline (Pro)	-10.32 ± 0.26	-12.16 ± 0.73	-17.28
Serine (Ser)	-9.13 ± 0.70	-8.72 ± 0.81	-11.03
Threonine (Thr)	-10.53 ± 1.01	-9.67 ± 0.70	-17.90
Tyrosine (Tyr)	-21.08 ± 0.61	-20.70 ± 0.53	-25.22
Valine (Val)	-24.26 ± 0.55	-25.27 ± 0.69	-27.20
Amino acid $\delta^{15}N$ (‰)			
Alanine (Ala)	7.02 ± 0.47	5.37 ± 0.69	12.53
Aspartic acid (Asp)	6.44 ± 0.36	5.38 ± 0.25	8.94
Glutamic acid (Glx)	6.38 ± 0.23	5.77 ± 0.33	11.55
Glycine (Gly)	2.84 ± 0.58	4.03 ± 0.63	5.60
Isoleucine (Ile)	6.26 ± 0.79	5.93 ± 0.70	7.25
Leucine (Leu)	4.65 ± 0.41	2.82 ± 0.30	6.72
Lysine (Lys)	3.08 ± 0.28	2.89 ± 0.53	3.84
Phenylalanine (Phe)	1.35 ± 0.38	2.03 ± 0.76	0.57
Proline (Pro)	6.81 ± 0.43	4.05 ± 0.41	11.99
Serine (Ser)	3.73 ± 0.58	3.72 ± 0.48	6.05
Threonine (Thr)	-1.06 ± 0.77	1.04 ± 0.93	-1.98
Tyrosine (Tyr)	2.11 ± 0.35	4.43 ± 0.60	4.62
Valine (Val)	6.24 ± 0.42	5.97 ± 0.32	9.79

*Coral and Symbiodiniaceae values are pooled across three nutrition treatments, which had limited effects on carbon and nitrogen isotope values. Values are mean \pm SE (n = 6), except for the pooled plankton sample ($63 - 250 \mu m$) (n = 1).

Table S4. Statistical analyses of carbon isotope values (δ^{13} C) in coral and Symbiodiniaceae amino acids exposed to Light-by-Feeding nutrition treatments*.

Amino acid $\delta^{I3}C$	Effect	df	SS	MS	F	р
Nonessential amino acids		U				1
Alanine (Ala)	Fraction	1	7.928	7.928	4.849	0.059
	Treatment	2	2.386	1.193	0.730	0.512
	Residual	8	13.080	1.635		
Aspartic acid (Asp)	Fraction	1	1.937	1.937	0.870	0.378
	Treatment	2	1.110	0.555	0.249	0.785
	Residual	8	17.798	2.225		
Glycine (Gly)	Fraction	1	43.514	43.514	16.281	0.004
5 (57	Treatment	2	38.910	19.455	7.279	0.016
	Residual	8	21.382	2.673		
Glutamic acid (Glx)	Fraction	1	15.418	15.418	15.500	0.004
	Treatment	2	7.177	3.589	3.608	0.076
	Residual	8	7.958	0.995		
Proline (Pro)	Fraction	1	10 096	10 096	5 023	0.055
	Treatment	2	1 963	0.981	0 488	0.631
	Residual	8	16.081	2.010	0.100	0.001
Serine (Ser)	Fraction	1	0.510	0.510	0 191	0.674
Serine (Ser)	Treatment	2	13 333	6 667	2 498	0.074
	Residual	8	21.353	2.669	2.490	0.144
		1	0.427	0.427	0.220	0 (52
Tyrosine (Tyr)	Fraction	1	0.427	0.427	0.220	0.052
	Pesidual	2	5.794 15.577	1.897	0.974	0.418
	Kesiduai	0	15.577	1.947		
Essential amino acids						
Isoleucine (Ile)	Fraction	1	2.301	2.301	0.509	0.496
	Treatment	2	0.536	0.268	0.059	0.943
	Residual	8	36.157	4.520		
Leucine (Leu)	Fraction	1	0.181	0.181	0.146	0.713
	Treatment	2	1.819	0.910	0.734	0.510
	Residual	8	9.913	1.239		
Lysine (Lys)	Fraction	1	0.715	0.715	0.458	0.518
	Treatment	2	0.083	0.041	0.027	0.974
	Residual	8	12.498	1.562		
Phenylalanine (Phe)	Fraction	1	0.472	0.472	0.340	0.576
	Treatment	2	1.717	0.858	0.619	0.562
	Residual	8	11.093	1.387		
Threonine (Thr)	Fraction	1	2.197	2.197	0.446	0.523
~ /	Treatment	2	5.526	2.763	0.561	0.591
	Residual	8	39.372	4.922		
Valine (Val)	Fraction	1	3.055	3.055	1.273	0.292
~ /	Treatment	2	4.477	2.239	0.933	0.432
	Residual	8	19 199	$2\ 400$		

*'Fraction' is host coral or symbiont Symbiodiniaceae tissue. 'Treatment' represents combination of Lightby-Feeding nutrition treatments: Light–Not Fed, Light–Fed, Dark–Fed. Significant p-values (p<0.05) are in bold. **Table S5.** Statistical analyses of nitrogen isotope values ($\delta^{15}N$) in coral and Symbiodiniaceae amino acids exposed to Light-by-Feeding nutrition treatments*.

Amino acid $\delta^{15}N$	Effect	df	SS	MS	F	p
Trophic amino acids						
Alanine (Ala)	Fraction	1	8.168	8.168	3.392	0.103
()	Treatment	2	1.858	0.929	0.386	0.692
	Residual	8	19.262	2.408		
Aspartic acid (Asp)	Fraction	1	3.333	3.333	6.317	0.036
	Treatment	2	1.420	0.710	1.346	0.314
	Residual	8	4.221	0.528		
Glutamic acid (Glx)	Fraction	1	1 1 1 5	1 1 1 5	2 361	0 163
Olutanile acid (Olx)	Treatment	2	0.035	0.467	0.990	0.103
	Desidual	2	0.333	0.407	0.990	0.415
	Residual	0	3.777	0.472		
Isoleucine (Ile)	Fraction	1	0.338	0.338	0.091	0.771
~ /	Treatment	2	3.858	1.929	0.518	0.615
	Residual	8	29.800	3.725		
· · / ·		-	0.00.5	0.005	10.004	
Leucine (Leu)	Fraction	1	9.995	9.995	19.904	0.002
	Treatment	2	3.809	1.904	3.792	0.069
	Residual	8	4.017	0.502		
Proline (Pro)	Fraction	1	22 935	22 935	28 936	0.001
r tolinie († 10)	Treatment	2	4 117	2 0 5 9	20.990	0.135
	Posidual	2	4.117	2.039	2.391	0.155
	Residual	0	0.541	0.795		
Valine (Val)	Fraction	1	0.225	0.225	0.220	0.652
	Treatment	2	0.042	0.021	0.020	0.980
	Residual	8	8.170	1.021		
Source amino acida						
Glucino (Clu)	Fraction	1	4 226	1 226	1 650	0.225
Glyclife (Gly)	Traction	1	4.220	4.220	1.030	0.255
	l realment	2	1.569	0.785	0.306	0.744
	Residual	8	20.487	2.561		
Lysine (Lys)	Fraction	1	0.105	0.105	0.080	0.785
5(5-)	Treatment	2	0 245	0.123	0.093	0.912
	Residual	8	10 530	1 316	0.090	0.91
	itesitutui	0	10.000	1.510		
Serine (Ser)	Fraction	1	0.001	0.001	0.000	0.986
	Treatment	2	1.661	0.831	0.440	0.659
	Residual	8	15.113	1.889		
Phenylalanine (Phe)	Fraction	1	1 400	1 400	0.536	0.485
r nenylalainne (r ne)	Traction	1	0.801	0.400	0.550	0.465
	Desided	2	0.801	0.400	0.133	0.801
	Residual	8	20.916	2.615		
Threonine (Thr)	Fraction	1	13.327	13.327	2.658	0.142
	Treatment	2	3.612	1.806	0.360	0.708
	Residual	8	40.117	5.015		
	D ue et i	1	16 162	16.163	0.050	0.015
I yrosine (I yr)	Fraction	1	16.163	16.163	8.950	0.017
	Treatment	2	0.128	0.064	0.035	0.965
	Residual	8	14 448	1 806		

*'Fraction' is host coral or symbiont Symbiodiniaceae tissue. 'Treatment' represents combination of Lightby-Feeding nutrition treatments: Light-Not Fed, Light-Fed, Dark-Fed. Significant p-values (p<0.05) are in bold. **Table S6.** Fractional contribution of heterotrophy (%) to coral nutrition calculated using a simple two component linear mixing model and δ^{15} N amino acid trophic position (TP_{Glx-Phe}). End-member TP_{Glx-Phe} used to calculate % heterotrophy are (*i*) *Montipora capitata* coral hosts (*ii*) symbionts isolated from *M*. *capitata*, (*iii*) a pooled Kāne'ohe Bay plankton sample, and (*iv*) modeled values for marine consumers feeding on zooplankton prey. All uncertainties represent standard deviation of propagated errors.

Treatment		TP _{Glx-}	Phe	% Primary consumers ^b vs. Translocation ^a	% Zooplanktivory ^c vs. Translocation	
	Coral host	Symbiont algae	Primary consumers	Zooplankton consumers		
Light-Not Fed	1.35 ± 0.17	0.90 ± 0.17	2.00 ± 0.22	3.00 ± 0.20	$41 \pm 15\%$	21 ± 7%
Light-Fed	1.13 ± 0.17	1.12 ± 0.16	2.00 ± 0.22	3.00 ± 0.20	$1 \pm 19\%$	$1 \pm 9\%$
Dark-Fed	1.16 ± 0.16	1.11 ± 0.18	2.00 ± 0.22	3.00 ± 0.20	$6 \pm 19\%$	$3 \pm 9\%$

^{*a*} Translocation $TP_{Glx-Phe}$ of symbionts = autotrophy, a diet consisting symbiont products

^b Primary production TP_{Glx-Phe} based on digested symbiont cells, free-living primary producers, and/or allochthonous particulates preyed upon by zooplankton

^c Zooplanktivory TP_{Glx-Phe} of zooplankton consumers, with trophic enrichment (+1 TP_{Glx-Phe}) of predators vs. prey

Supplemental Figures

Figure S1. $(a,c) \delta^{13}$ C and $(b,d) \delta^{15}$ N values of individual amino acids in coral hosts and Symbiodiniaceae symbionts according to tissue fraction (*top panel*) and nutrition treatments (*bottom panel*) in relationship to a pooled plankton sample. Values are mean \pm SD (n = 2) [*top*] and mean \pm SE (n = 6) [*bottom*], except for the plankton sample (n = 1). X-axis *symbols* indicate significant differences (p < 0.05) between fractions (host and symbiont, *) and treatments (†).

Figure S2. (*a*) Trophic position and (*b*) summed variance (ΣV) index calculations for individual amino acid δ^{15} N values in coral hosts and Symbiodiniaceae symbionts across nutrition treatments in relation to a pooled plankton sample. Values are mean \pm SD (n = 2), except for the plankton sample (n = 1), where ΣV cannot be calculated.

Figure S3. δ^{15} N weighted means for trophic and source amino acids according to coral tissue fractions (host, symbiont) and experimental nutrition treatments. Values are mean \pm SD (n = 2).

Figure S4. Comparison of δ^{13} C values for nonessential and essential amino acids in a plankton sample from Kāne'ohe Bay, O'ahu, Hawai'i and plankton and particulate organic material (POM) from Palmyra (reported in Fox et al., 2019). Values are mean \pm SE (n = 6 - 9), except for the Hawai'i plankton (n = 1).

Figure S5. Principal component (PC) analyses of mean-normalized essential amino acid δ^{13} C (δ^{13} C_{EAA}) values in cultured microalgae, coastal and oceanic plankton and particulate organic matter (POM), and Symbiodiniaceae symbionts isolated from two coral species. Data matrixes in (*a*) and (*b*) are identical, except for the inclusion of symbiont samples in (*b*). Ellipses represent 90 % standard deviation with arrows for individual mean-normalized amino acids being significant (*p*<0.05) correlation vectors. Data from Hawai'i (this study), Palmyra (Fox et al. 2019), the Red Sea (McMahon et al. 2015), Station Aloha (Hannides et al. 2008), and cultures (Larsen et al. 2013).

References

- Chikaraishi, Y., N. O. Ogawa, Y. Kashiyama, and others. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids:
 Trophic level estimation by amino acid δ¹⁵N. Limnol. Oceanogr. Methods 7: 740–750. doi:10.4319/lom.2009.7.740
- Fox MD, Elliott Smith EA, Smith JE, Newsome SD. 2019 Trophic plasticity in a common reefbuilding coral: Insights from δ¹³C analysis of essential amino acids. Funct. Ecol. **33**, 2203–2214. doi:10.1111/1365-2435.13441
- Fujii, T., Y. Tanaka, K. Maki, N. Saotome, N. Morimoto, A. Watanabe, and T. Miyajima. 2020.
 Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy. Microorganisms 8: 1221.
 doi:10.3390/microorganisms8081221
- Grossowicz, M., E. Shemesh, S. Martinez, Y. Benayahu, and D. Tchernov. 2020. New evidence of *Melithaea erythraea* colonization in the Mediterranean. Estuar. Coast. Shelf Sci. 236: 106652. doi:10.1016/j.ecss.2020.106652
- Hannides, C. C. S., B. N. Popp, H. G. Close, and others. 2020. Seasonal dynamics of midwater zooplankton and relation to particle cycling in the North Pacific Subtropical Gyre. Prog. Oceanogr. 182: 102266. doi:10.1016/j.pocean.2020.102266
- Larsen, T., M. Ventura, N. Andersen, D. M. O'Brien, U. Piatkowski, and M. D. McCarthy. 2013. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS One 8: e73441. doi:10.1371/journal.pone.0073441
- Martinez, S., Y. Kolodny, E. Shemesh, and others. 2020. Energy sources of the depth-generalist mixotrophic coral *Stylophora pistillata*. Frontiers in Marine Science **7**: 988. doi:10.3389/fmars.2020.566663

McMahon, K. W., S. R. Thorrold, L. A. Houghton, and M. L. Berumen. 2015. Tracing carbon

flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia **180**: 809–821. doi:10.1007/s00442-015-3475-3

- Shih, J. L., K. E. Selph, C. B. Wall, N. J. Wallsgrove, M. P. Lesser, and B. N. Popp. 2020. Trophic ecology of the tropical Pacific sponge *Mycale grandis* inferred from amino acid compound-specific isotopic analyses. Microb. Ecol. **79**: 495–510. doi:10.1007/s00248-019-01410-x
- Wall, C. B., M. Kaluhiokalani, B. N. Popp, M. J. Donahue, and R. D. Gates. 2020. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME J. 14: 945–958. doi:10.1038/s41396-019-0570-1