

Supporting Information

A Simple Biomimetic Receptor Selectively Recognizing the GlcNAc₂ Disaccharide in Water

Oscar Francesconi,* Francesco Milanesi, Cristina Nativi, and Stefano Roelens*

anie_202100560_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Synthesis and characterization of chemical materials	p. S2
General	p. S2
Materials	p. S2
NMR Spectra	p. S4
Binding studies	p. S6
NMR preliminary screening	p. S6
NMR titrations and data analysis	p. S8
Calorimetric titrations and data analysis	p. S42
Structural studies	p. S63
NMR methods	p. S63
Molecular modeling methods	p. S66
References	p. S67

Synthesis and characterization of chemical materials.

General. ESI-MS analyses were performed in negative ion mode and were recorded on an LCQ-Fleet Ion Trap equipped with a standard Ionspray interface. HRMS were performed on a Triple-TOF with a resolution of 35000 (FWHM). Chemical shifts are reported in part per million (δ) relative to 4,4-Dimethyl-4-silapentane-1-sulfonic acid (DSS) for D₂O, using the residual solvent line as secondary internal reference (4.79 ppm for spectra run in D₂O). ¹³C NMR spectra were obtained at 125 MHz in D₂O. Chemical shifts are reported in δ relative to DSS for D₂O.

Materials. Reagents were purchased from commercial suppliers and used without purification. Compound **2** was prepared according to known methods^[13]

Receptor 1.

To a solution of **2** (809 mg, 0.950 mmol) in 6.4 mL of dry CH₂Cl₂, Et₃N (784 mg, 7.62 mmol) was added under a nitrogen atmosphere. The solution was cooled to 0 °C and TMSBr (1.17 g, 7.62 mmol) was slowly added. The solution was stirred at room temperature for 22 h, then diluted with 25 mL of CH₂Cl₂ and cooled to 0 °C. After addition of 50 mL of MeOH, the solution was stirred at room temperature for 30 minutes and the solvent evaporated to give 1.84 g of crude **2** as a pale brown solid. The solid was dissolved in 50 mL of NaOH 0.3 M under an ice bath and the aqueous phase washed with AcOEt (4 x 30 mL). EtOH (120 mL) was then added to the aqueous phase and the resulting suspension was centrifugated at 3000 rpm for 20 minutes. The liquids were removed, the solid was dissolved in water (40 mL), then, NaOH 0.5 M was added under an ice bath until pH = 12 was reached. Then, HCl 0.5 M was added (160 mL) and the resulting suspension was centrifugated at 3000 rpm for 20 minutes.

160 mL of HCl 0.1 M: The suspension was centrifugated at 3000 rpm for 20 minutes, the liquids were removed and the solid was suspended in MeOH (2 x 40 mL) and the resulting suspension centrifugated at 3000 rpm for 20 minutes. The liquids were removed, and the yellow solid was dried in vacuo to obtain pure **2** (380 mg, 54%). Mp: 145.2 (dec) °C; ¹H NMR (500 MHz, D₂O, DSS as internal reference, $\partial = 0.0$): $\partial 8.02$ (d, J = 11.9 Hz, 2H, CH-4); 7.86 (d, J = 9.0 Hz, 2H, CH-14); 7.53 (d, J = 11.6 Hz, 2H, CH-2); 7.16-7.13 (m, 6H, CH-15, CH-19); 7.00 (bs, 8H, CH-16, CH-17); 4.93 (s, 4H, CH₂-11); ¹³C NMR (125 MHz, D₂O, DSS as internal reference, $\partial = 0.0$): $\partial 135.93$ (d, , J = 143.2 Hz); 135.2 (d, J = 10.7 Hz); 133.8; 133.29; 132.35; 132.28, 131.31 (CH-17); 129.99 (CH-19); 128.95 (CH-15); 127.60 (CH-16); 126.33 (CH-14); 125.93 (d, J = 16.3 Hz); 117.81 (CH-4); 117.73 (CH-2); 45.05 (CH₂-11); ³¹P NMR (202 MHz, D₂O): $\partial 12.73$; ESI-MS m/z (%): 367.67 (100%) [M-2H]²⁻, 736.25 (86%) [M-1H]⁻; HRMS (m/z): [M-2H]²⁻ calcd. for C₄₂H₃₃N₃O₆P₂, 367.58496; found, 367.58727.

NMR spectra.

Figure S1. 1H NMR spectrum of receptor 1 (500 MHz, D₂O + DSS).

Figure S2. ¹³C NMR spectrum of receptor 1 (125 MHz, $D_2O + DSS$).

Binding studies.

NMR preliminary screening. Preliminary screenings (298 K, 500 MHz) were performed in D_2O at pD 11 in presence of DSS as internal reference. Solution of reducing carbohydrates were prepared in D_2O and kept overnight at room temperature before the screening experiments, to ensure equilibration of the anomers. The spectra of the free sugars at 1 mM concentration were compared to the spectra of the equimolar mixture of sugars with receptor **1** (1 mM each) and chemical shift differences were evaluated.

Figure S3. ¹H NMR spectra (500 MHz, D₂O) of a 1 mM solution of methyl glycosides and an equimolar mixture of methyl glycosides and **1** (1 mM each) at pD 11.

Figure S4. ¹H NMR spectra (500 MHz, D₂O) of a 1 mM solution of monosaccharides and an equimolar mixture of monosaccharides and **1** (1 mM each) at pD 11.

Figure S5. ¹H NMR spectra (500 MHz, D₂O) of a 1 mM solution of disaccharides and an equimolar mixture of disaccharides and 1 (1 mM each) at pD 11. Variations of the H-1 proton signal shifts of CeB, Lac, Mal are $\Delta \delta = 0.05$, 0.01, 0.03 ppm for the α and $\Delta \delta = 0.23$, 0.10, 0.11 ppm for the β anomer respectively.

NMR titrations and data analysis. Titrations were performed at 298 K, 500 MHz in 5 mm NMR tubes using microsyringes, following a previously described technique.^{S1} Concentration of the receptor was measured using an internal standard (DMSO₂) preliminarily to each binding measurement and maintained constant during the titrations with glycosides to avoid changes in ionic strength. The stock solutions of 1 were prepared in D₂O adjusting the pD with a diluted NaOH solution in D₂O. A correction factor of +0.4 was applied to the pH values measured by the pH meter to determine the pD values (pD = pH + 0.4). DSS was used as internal reference. The alkaline stock solution of 1 was stored during the titrations under nitrogen atmosphere to avoid acid/base reactions with atmospheric CO₂. Following this strategy, constant values of pD were observed during titrations and dilution experiments. DSS was used as internal reference. Dimerization constants of receptor 1 at pD 7.4 and at pD 11, were set invariant in the non-linear regression analysis of receptor-glycosides binding data measured at pD 7.4 and pD 11, respectively. Mathematical analysis of data and graphic presentation of results was performed using the HypNMR 2006 program.⁸² BC₅₀ Calculator, the utility program for computing $BC_{50}^{0,15}$ is available for free at the corresponding author's e-mail address. Results pages and Plots of experimental and calculated shifts are reported hereafter.

Dilution of receptor 1 (D₂O, pD 7.4, 298 K, 500 MHz).

Figure S6. ¹H NMR spectroscopic spectra (500 MHz, D₂O, pD 7.4, 298 K) of receptor **1** (R) at different concentrations in dilution expertiment.

Data Table

 δ (ppm) vs. [R] (mol L⁻¹)

[R]	CH-G	CH-C	CH-F	CH-B	CH-2
	R	R	R	R	R
2.00E-05	8.3231	8.1791	7.8391	7.5525	5.2589
3.80E-05	8.2915	8.1632	7.8166	7.5496	5.2409
7.22E-05	8.2501	8.1404	7.7874	7.5459	5.2171
1.37E-04	8.1445	8.0865	7.7081	7.5396	5.1577
1.94E-04	-	8.0357	7.6338	7.5355	5.1051
2.74E-04	7.9351	7.9737	7.5398	7.5307	5.0411
3.87E-04	7.7970	7.9014	7.4248	7.5259	4.9638
5.48E-04	-	7.8232	7.2940	7.5189	-
7.74E-04	-	7.7493	7.1330	7.5106	-
1.09E-03	-	7.6710	-	7.5008	-
1.55E-03	-	7.5981	-	7.4939	-
2.94E-03	-	-	-	7.4748	4.5290
5.58E-03	-	7.4669	-	7.4655	4.4540
1.06E-02	-	7.4177	-	7.4247	4.4120

no. c no. c no. c	of spect of resor of resor	tra nance value nant nuclei	14 s 52 5						
Chi-so	quared =	= 7.38							
sig	gma =	0.00472549	283	RMS	weighted	residual	=	0.0	0387685411
	stoich coeff	V	alue	relative std devn	log beta	standard deviation	1		
Beta Beta	2 refi 4 refi	ned 4.421 ned 2.565	1E+002 3E+009	0.1557 0.2599	2.6455 9.4091	0.0676 0.1129	((R2 R4))
Indiv	vidual c	chemical sh	ifts						
		R			2				
=====	======= +	value	erro	======================================	value	error			
CH-G	+	8.35/4	0.004	+ /	6.42U5 7 1042	0.3035			
CH-F	+	7 8633	0.00	15	6 4857	0.1314			
CH-B	+	7.5491	0.003	32	7.5032	0.0267			
CH-2	+	5.2787	0.003	39	4.1586	0.1697			
	+								
		4							
	+	value	erro						
CH-G	+	6.6141	0.119	98					
CH-C	+	7.3655	0.010)9					
CH-F	+	6.3413	0.045	54					
CH-B	+	7.4446	0.005	51					
CH-2	+	4.3405	0.011	9					
Corre	elation	coefficien	ts*1000)					
	1 2	2							
1									
2	834								

Parameters are numbered as follows 1 beta 2 2 beta 4

Titration Plots

Dilution of receptor 1 (D₂O, pD 11, 298 K, 500 MHz).

Figure S7. ¹H NMR spectroscopic spectra (500 MHz, D₂O, pD 11, 298 K) of receptor 1 (R) at different concentrations in dilution expertiment.

Data Table

R = 1

	δ (ppn	n) vs. [I	R] (mol	L-1)	
[R]	CH-G	CH-C	CH-A	CH-F	CH-B
	R	R	R	R	R
3.94E-05	8.3117	8.2243	8.0424	7.8428	7.6089
7.48E-05	8.3070	8.2235	8.0419	7.8400	7.6096
1.42E-04	8.2989	8.2207	8.0405	7.8337	7.6088
2.70E-04	8.2829	8.2154	8.0395	7.8226	7.6078
5.12E-04	8.2488	8.2045	8.0380	7.7990	7.6052
7.43E-04	8.2116	8.1925	8.0364	7.7728	7.6021
1.08E-03	8.1598	8.1758	8.0342	7.7381	7.5978
1.56E-03	8.0836	8.1506	8.0313	7.6835	-
2.26E-03	7.9856	8.1188	8.0280	7.6144	7.5837
3.28E-03	7.8659	8.0800	8.0245	7.5308	7.5746
4.75E-03	7.7224	8.0340	-	7.4291	7.5645
6.89E-03	7.5706	7.9863	8.0217	7.3208	7.5561
9.99E-03	7.4104	7.9382	8.0249	-	7.5493
1.40E-02	7.2670	7.8981	8.0305	7.0950	7.5449
1.81E-02	7.1583	7.8725	8.0362	-	7.5428
2.36E-02	7.0649	7.8495	8.0429	6.9289	7.5416

no. d no. d no. d	of spectra of resonar of resonar	nce values nt nuclei	16 92 6						
sig	gma = 0.	0010598257	2	RMS	weighted	residual	=	0.00	089083489
	stoich coeff	val	ue	relative std devn	log beta	standard deviatior	1		
Beta Beta Beta Indiv	2 refine 4 refine 8 refine vidual che	ed 1.4667E ed 4.5958E ed 2.0568E emical shif	+003 +008 +019	0.1658 0.2472 0.4825	3.1663 8.6624 19.3132	0.0720 0.1074 0.2096	(((R2 R4 R8)))
		R			2				
CH-G CH-C	+ + +	value 8.3177 8.2258	erro 0.001 0.001	or 11 10	value 8.2536 8.2093	error 0.0114 0.0038	=		
CH-A CH-F	+ +	8.0434 7.8479 7.6101	0.000	09 10 29	8.0333 7.7994 7.6054	0.0018			
CH-2	+++	5.2626	0.000	09	5.2400	0.0039			
		4			8		-		
CH-C	+	value	erro	or 1 a	value	error			
CH-C	+	7.5794	0.021	19	7.7824	0.0250			
CH-A	+	7.9777	0.004	46	8.1913	0.0221			
CH-F	+	6.5057	0.052	26	6.3138	0.0242			
CH-B CH-2	++	4.6419	0.020	28	4.8604	0.0263			

Correlation coefficients*1000

1 2 3 1 2 990 3 890 939

Parameters are numbered as follows 1 beta 2

- 2 beta 4 3 beta 8

Titration Plots Chemical shifts (δ , ppm) *vs*. concentration of R (mol L⁻¹) experimental (symbols) and calculated (lines) values

S14

1 + MeβCeB (D₂O, pD 7.4, 298 K, 500 MHz).

Figure S8. ¹H NMR spectroscopic titration (500 MHz, D₂O, pD 7.4, 298 K) of receptor **1** (5.06 10^{-4} mol L⁻¹) with incremental concentrations of Me β CeB (G).

Data Table

R = 1 $G = Me\beta CeB$

δ (ppm) vs. [G] (mol L⁻¹)

Titration $[R] = 5.06 \ 10^{-4} \ mol \ L^{-1}$

CH'-1	CH-1	CH-6	CH'-6	CH-6'	CH'-6'	CH-2	CH-G	CH-C	CH-F
G	G	G	G	G	G	G	R	R	R
-	-	-	-	-	-	-	7.8357	7.9226	7.4617
4.2508	4.1612	3.9418	3.8358	3.7604	3.6318	3.1133	-	7.9705	-
4.2530	4.1639	3.9418	3.8354	3.7599	3.6312	3.1139	-	7.9945	7.5777
4.2692	4.1774	3.9444	3.8405	3.7638	3.6385	3.1248	-	8.0373	7.6477
4.2794	4.1871	3.9469	3.8435	3.7664	3.6425	3.1326	-	8.0729	7.6892
4.2924	4.1995	3.9502	3.8483	3.7695	3.6487	3.1425	8.1669	8.0976	7.7411
4.3049	4.2120	3.9531	3.8530	3.7732	3.6545	3.1527	8.2124	8.1238	7.7821
4.3234	4.2288	3.9570	3.8590	3.7776	3.6624	3.1661	8.2723	8.1561	7.8338
4.3427	4.2468	3.9612	3.8651	3.7826	3.6708	3.1802	8.3257	8.1848	7.8790
4.3638	4.2676	3.9659	3.8727	3.7883	3.6791	3.1965	8.3715	8.2095	7.9201
4.3846	4.2869	3.9701	3.8797	3.7931	3.6904	3.2115	8.4085	8.2300	7.9512
4.4044	4.3052	3.9746	3.8864	3.7975	3.6993	3.2262	8.4373	8.2470	7.9770
4.4222	4.3221	3.9789	3.8926	3.8012	3.7077	3.2393	8.4594	8.2603	7.9972
4.4380	4.3368	3.9820	3.8976	3.8041	3.7150	3.2509	8.4757	8.2704	8.0126
4.4478	4.3460	3.9846	3.9010	3.8080	3.7195	3.2585	8.4863	8.2775	8.0219
4.4597	4.3574	3.9867	3.9051	3.8122	3.7247	3.2678	8.4964	8.2828	8.0316
	CH'-1 G 4.2508 4.2530 4.2692 4.2794 4.2924 4.3049 4.3234 4.3427 4.3638 4.3846 4.4044 4.4222 4.4380 4.4478 4.4597	CH'-1CH-1GG4.25084.16124.25304.16394.26924.17744.27944.18714.29244.19954.30494.21204.32344.22884.34274.24684.36384.26764.38464.28694.40444.30524.42224.32214.43804.33684.44784.34604.45974.3574	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

no. c no. c no. c	of spe of res of res	ctra onance va onant nuc	lues lei	16 148 10								
sig	gma =	0.00181	807032	2	RMS	wei	ghted	res	sidual =	0.	00158	8861640
	stoi coef	ch f	v	value	relativ std dev	re m	log beta	a	standard deviatio	n		
Beta Beta Beta	0 2 1 1 1 2	constant refined refined	4.420 3.416 2.126	08E+002 55E+002 55E+006	0.1680 0.1447		2.64 2.53 6.32	55 36 77	0.0730 0.0628	(((R2 GR GR2)))
Indiv	vidual	chemical	shift	s								
=====			G ======	======			R =====					
CH'-1 CH-1 CH-6 CH'-6 CH-6' CH'-6' CH-2	+ + + + + + + + +	val 4.50 4.39 3.99 3.92 3.82 3.74 3.30	ue 38 C 92 C 69 C 19 C 58 C	error 0.0044 0.0042 0.0019 0.0022 0.0020 0.0026 0.0035		valı	16	ern	cor			
CH-G CH-C CH-F	+ + + +					7.5 7.7 7.2	399 988 183	0.1 0.0 0.1	.320)778 .163			
		C =======	,2 ======			:====	L,1 =====					
CH'-1 CH-1 CH-6 CH'-6 CH-6' CH-2 CH-G CH-C CH-F	+ + + + + + + + + + + + + + + + + + + +	val 8.71 8.30 8.19 1	95 C 34 C 56 C	error).3943).2330).3475	-=	valu 0.7 0.8 3.1 2.6 2.8 1.9 0.4 8.4 8.2 8.0	1e 438 554 206 986 571 787 376 915 330	ern 0.6 0.1 0.2 0.1 0.3 0.5 0.0 0.0	cor 5846 5484 679 2457 814 8298 5160 0163 0082 0134			
CH'-1 CH-1 CH-6 CH'-6 CH'-6' CH-2 CH-2 CH-C CH-C CH-F Corre	+ + + + + + + + + + + + + + + + + + +	val 4.88 4.76 4.08 4.06 3.91 3.95 8.74 8.38 8.22 n coeffic	ue 11 C 39 C 73 C 21 C 42 C 25 C 28 C 34 C 30 C 33 C ients*	error 0.0342 0.0344 0.0315 0.0319 0.0314 0.0331 0.0334 0.0238 0.0199 0.0227 1000								
Param 1 2	neters beta beta	are numb 1,1 1,2	ered a	as follo	ows							

Titration Plots

Chemical shifts (δ , ppm) *vs*. concentration of G (mol L⁻¹) experimental (symbols) and calculated (lines) values

1 + MeβCeB (D₂O, pD 11, 298 K, 500 MHz).

Figure S9. ¹H NMR spectroscopic titration (500 MHz, D₂O, pD 11, 298 K) of receptor 1 (5.55 10^{-4} mol L⁻¹) with incremental concentrations of Me β CeB (G).

Data Table

R = 1 $G = Me\beta CeB$

δ (ppm) vs. [G] (mol L⁻¹)

Titration $[R] = 5.55 \ 10^{-4} \ mol \ L^{-1}$

[G]	CH'-1	CH-1	CH-6	CH'-6	CH-6'	CH'-6'	CH-2	CH-G	CH-C	CH-F
	G	G	G	G	G	G	G	R	R	R
2.92E-04	4.1655	4.0841	3.9193	3.7996	3.7347	3.5884	3.0446	8.2206	8.1711	7.7858
4.13E-04	4.1793	4.0969	3.9233	3.8054	3.7388	3.5960	3.0559	8.2429	8.1833	7.8045
5.84E-04	4.1946	4.1104	3.9266	3.8100	3.7428	3.6031	3.0667	8.2665	8.1965	7.8252
8.25E-04	4.2150	4.1277	3.9307	3.8170	3.7475	3.6110	3.0812	8.2929	8.2097	7.8477
1.17E-03	4.2372	4.1492	3.9356	3.8244	3.7534	3.6213	3.0975	8.3201	8.2245	7.8718
1.65E-03	4.2624	4.1724	3.9410	3.8331	3.7594	3.6325	3.1163	8.3476	8.2385	7.8966
2.33E-03	4.2902	4.1988	3.9476	3.8431	3.7666	3.6448	3.1360	8.3755	8.2532	7.9221
3.30E-03	4.3196	4.2261	3.9539	3.8529	3.7740	3.6576	3.1582	8.4005	8.2666	7.9459
4.66E-03	4.3494	4.2535	3.9604	3.8627	3.7820	3.6692	3.1796	8.4260	8.2806	7.9691
6.59E-03	4.3761	4.2791	3.9663	3.8722	3.7885	3.6808	3.1996	8.4464	8.2919	7.9893
9.31E-03	4.3999	4.3019	3.9714	3.8808	3.7942	3.6938	3.2177	8.4632	8.3006	8.0054
1.32E-02	4.4204	4.3210	3.9761	3.8880	3.7983	3.7033	3.2323	8.4768	8.3080	8.0186
2.50E-02	4.4529	4.3511	3.9829	3.8992	3.8054	3.7182	3.2563	8.4969	8.3209	8.0309

no. 0: no. 0: no. 0:	f spectr f resona f resona	a nce values nt nuclei	14 s 130 10						
Chi-sq	uared =	6.98							
sign Beta Beta Beta	ma = 0 stoich coeff 0 2 co 1 1 re 1 2 re	.000979120 nstant 1.4 fined 3.2 fined 2.8	541 value 4666E+003 1598E+002 3496E+006	RMS wei relative std devn 0.1775 0.2383	ghted log bet 3.16 2.49 6.45	l residual = g standar La deviati 63 097 0.0771 648 0.1035	0. d on ((00083 R2 GR GR2	700662)))
Indivi	dual che	mical shi: G	fts		R				
CH'-1 CH-1 CH-6 CH'-6 CH-6' CH'-6'	+ + + + + + + +	value 4.5196 4.4154 3.9975 3.9225 3.8215 3.7481	error 0.0058 0.0055 0.0019 0.0024 0.0020 0.0029	val	===== ue	error			
CH-2 CH-G CH-C CH-F	+ + + +	0,2	0.0044	7.9 8.0 7.3	930 909 215 1,1 =====	0.2024 0.1167 0.1554			
CH'-1 CH-1 CH-6 CH'-6 CH-6' CH-2 CH-2 CH-G CH-C CH-F	+ + + + + + + + + + + + + + + + + + +	value 8.3548 8.1952 8.2206 1,2	error 0.2306 0.1337 0.1799	val -0.9 -0.8 2.8 1.9 2.5 1.2 -0.7 8.5 8.3 8.0	ue 746 523 082 944 673 173 689 330 491 364	error 1.1777 1.1225 0.2650 0.4170 0.2828 0.5421 0.8729 0.0093 0.0071 0.0121			
CH'-1 CH-1 CH-6 CH'-6 CH'-6' CH-2 CH-G CH-C CH-F Correl	+ + + + + + + + + + + + + + 1 2	value 4.5074 4.4573 3.9878 3.9309 3.7791 3.7742 3.3105 8.5420 8.3256 8.1530	error 0.1530 0.1320 0.0435 0.0559 0.0527 0.0659 0.1110 0.0368 0.0253 0.0192 cs*1000						
2 · Parame 1] 2]	-79 eters ar beta 1,1 beta 1,2	e numbered	d as follo	ows					

Titration Plots

1 + MeβMal (D₂O, pD 7.4, 298 K, 500 MHz).

Figure S10. ¹H NMR spectroscopic titration (500 MHz, D₂O, pD 7.4, 298 K) of receptor **1** (4.01 10^{-4} mol L⁻¹) with incremental concentrations of MeβMal (G).

Data Table

$$R = 1$$
 $G = Me\beta Mal$

δ (ppm) vs. [G] (mol L⁻¹)

Titration $[R] = 4.01 \ 10^{-4} \ mol \ L^{-1}$

[G]	CH'-1	CH-1	CH-6	CH'-6	CH-6'	CH'-6'	CH-2	CH-G	CH-C	CH-F
	G	G	G	G	G	G	G	R	R	R
1.53E-04	5.3133	4.2729	3.8724	3.8149	3.5109	3.1897	7.9759	-	7.5625	7.1870
2.16E-04	5.3147	4.2739	3.8730	3.8150	3.5114	3.1903	7.9882	-	7.5692	7.1923
3.04E-04	5.3152	4.2746	3.8736	3.8154	3.5118	3.1911	7.9883	-	7.5738	7.2025
4.29E-04	5.3163	4.2761	3.8749	3.8156	3.5125	3.1927	7.9931	-	7.5810	7.2055
6.05E-04	5.3175	4.2778	3.8758	3.8157	3.5132	3.1939	8.0041	-	7.5882	7.2162
8.53E-04	5.3190	4.2801	3.8771	3.8162	3.5142	3.1963	8.0208	-	7.6147	7.2284
1.20E-03	5.3219	4.2844	3.8802	3.8168	3.5163	3.1996	-	-	7.6505	7.2498
1.69E-03	5.3251	4.2890	3.8831	3.8178	3.5184	3.2033	-	8.1146	7.6874	7.2702
2.39E-03	5.3290	4.2945	3.8867	3.8189	3.5210	3.2080	8.0880	8.1537	7.7284	7.2952
3.37E-03	5.3336	4.3013	3.8914	3.8199	3.5240	3.2139	8.1151	8.2074	7.7767	7.3240
4.76E-03	5.3396	4.3099	3.8967	3.8216	3.5279	3.2209	8.1452	8.2669	7.8258	7.3533
6.70E-03	5.3463	4.3196	3.9029	3.8232	3.5323	3.2289	8.1734	8.3227	7.8748	7.3815
9.45E-03	5.3539	4.3308	3.9103	3.8251	3.5373	3.2383	8.1988	8.3729	7.9173	7.4057
1.33E-02	5.3618	4.3419	3.9175	3.8274	3.5425	3.2474	8.2204	8.4142	7.9523	7.4251
1.88E-02	5.3685	4.3517	3.9236	3.8287	3.5467	3.2559	8.2355	8.4441	7.9787	7.4406
2.65E-02	5.3739	4.3597	3.9289	3.8303	3.5502	3.2623	8.2465	8.4650	7.9971	7.4501

no. d	of	spe	ctra	16						
no. d	of	res	onance val	lues 151						
no. d	of	res	onant nuci	lei 10						
si	gma	=	0.00194	509826	RMS we:	ighted re	sidual =	0.	00177	679918
				_		_				
	S	toi	ch	value	relative	log	standard			
	С	oef	f		std devn	beta	deviation			
				1 0550-000						
Beta	1	1	refined	1.8579E+002	0.0334	2.2690	0.0145	(GR)
Beta	0	2	constant	4.4208E+002		2.6455		(R2)

Individual chemical shifts

		G		R R	
	+	value	error	value	error
CH '- 1	+	5.3910	0.0017		
CH-1	+	4.3842	0.0019		
CH-6	+	3.9449	0.0017		
CH '- 6	+	3.8347	0.0015		
CH3	+	3.5615	0.0016		
CH-2	+	3.2830	0.0018		
CH-C	+			8.2716	0.0258
CH-G	+			8.3829	0.0383
CH-F	+			7.9889	0.0387
CH-B	+			7.4950	0.0258
	+				
		1,1		0,2	
	====== +	1,1 ===================================	error	0,2 ====================================	error
====== CH'-1	====== + +	1,1 value 3.9648	error 0.0662	0,2	error
====== CH'-1 CH-1	======= + + +	1,1 value 3.9648 2.3238	error 0.0662 0.0890	0,2 value	error
====== CH'-1 CH-1 CH-6	======= + + + +	1,1 value 3.9648 2.3238 2.6062	error 0.0662 0.0890 0.0632	0,2 value	error
====== CH'-1 CH-6 CH'-6	 + + + + +	1,1 value 3.9648 2.3238 2.6062 3.4697	error 0.0662 0.0890 0.0632 0.0365	0,2 value	error
====== CH'-1 CH-1 CH-6 CH'-6 CH3	 + + + + + + + + +	1,1 value 3.9648 2.3238 2.6062 3.4697 2.6269	error 0.0662 0.0890 0.0632 0.0365 0.0502	0,2 value	error
CH'-1 CH-1 CH-6 CH'-6 CH3 CH-2	 + + + + + + + + + +	1,1 value 3.9648 2.3238 2.6062 3.4697 2.6269 1.5599	error 0.0662 0.0890 0.0632 0.0365 0.0502 0.0766	0,2 value	error
CH'-1 CH-1 CH-6 CH'-6 CH3 CH-2 CH-C		1,1 value 3.9648 2.3238 2.6062 3.4697 2.6269 1.5599 8.2561	error 0.0662 0.0890 0.0632 0.0365 0.0502 0.0766 0.0048	0,2 value	error 0.0934
CH'-1 CH-1 CH-6 CH'-6 CH3 CH-2 CH-C CH-C CH-G		1,1 value 3.9648 2.3238 2.6062 3.4697 2.6269 1.5599 8.2561 8.5083	error 0.0662 0.0890 0.0632 0.0365 0.0502 0.0766 0.0048 0.0059	0,2 value 6.8802 6.4217	error 0.0934 0.1399
====== CH'-1 CH-6 CH'-6 CH3 CH-2 CH-C CH-C CH-G CH-F	+ + + + + + + + + + + + + + +	1,1 value 3.9648 2.3238 2.6062 3.4697 2.6269 1.5599 8.2561 8.5083 8.0230	error 0.0662 0.0890 0.0632 0.0365 0.0502 0.0766 0.0048 0.0059 0.0061	0,2 value 6.8802 6.4217 5.9277	error 0.0934 0.1399 0.1386

Titration Plots

S29

1 + MeβLac (D₂O, pD 7.4, 298 K, 500 MHz).

Figure S11. ¹H NMR spectroscopic titration (500 MHz, D₂O, pD 7.4, 298 K) of receptor 1 (4.22 10^{-4} mol L⁻¹) with incremental concentrations of Me β Lac (G).

Data Table

R = 1 $G = Me\beta Lac$

δ (ppm) vs. [G] (mol L⁻¹)

Titration $[R] = 4.22 \ 10^{-4} \ mol \ L^{-1}$

[G]	CH'-1	CH-1	CH-6	CH'-4	CH3	CH-2	CH-C	CH-G	CH-F
	G	G	G	G	G	G	R	R	R
1.61E-04	4.3631	4.3134	3.9732	3.8984	3.5420	3.2404	7.9943	-	7.5810
2.27E-04	4.3635	4.3139	3.9738	3.8986	3.5421	3.2412	7.9965	-	7.5811
3.20E-04	4.3639	4.3146	3.9740	3.8987	3.5423	3.2418	8.0020	-	7.5849
4.51E-04	4.3647	4.3155	3.9742	3.8989	3.5425	3.2424	8.0078	-	7.5916
6.36E-04	4.3661	4.3170	3.9745	3.8991	3.5429	3.2431	8.0178	-	7.6140
8.97E-04	4.3679	4.3189	3.9749	3.8994	3.5434	3.2443	8.0304	-	7.6329
1.26E-03	4.3698	4.3211	3.9753	3.9000	3.5440	3.2459	-	-	7.6567
1.78E-03	4.3727	4.3243	3.9760	3.9007	3.5449	3.2481	-	8.1005	7.6896
2.51E-03	4.3764	4.3284	3.9772	3.9015	3.5461	3.2509	8.0897	8.1544	7.7264
3.55E-03	4.3809	4.3333	3.9779	3.9026	3.5474	3.2539	8.1152	8.1998	7.7679
5.00E-03	4.3868	4.3401	3.9801	3.9040	3.5491	3.2586	8.1450	8.2565	7.8135
7.04E-03	4.3936	4.3477	3.9817	3.9055	3.5511	3.2635	8.1763	8.3132	7.8618
9.94E-03	4.4013	4.3561	3.9837	3.9071	3.5533	3.2690	8.2050	8.3671	7.9065
1.40E-02	4.4077	4.3633	3.9853	3.9086	3.5552	3.2737	8.2272	8.4065	7.9407
2.65E-02	4.4200	4.3770	3.9884	3.9112	3.5586	3.2828	8.2644	8.4694	7.9930

no. o: no. o: no. o:	fs] fr fr	pec esc esc	etra onance val onant nucl	lues lei	15 126 9								
sign	ma :	=	0.00148	77912	1	RI	MS weig	ghted re	sidual =	0.	00135	16784	14
	sto coe	oic eff	ch E		value	rela std o	tive devn	log beta	standard deviation				
Beta Beta	1 0	1 2	refined constant	1.86 4.42	42E+002 08E+002	0.0	450	2.2705 2.6455	0.0195	((GR R2))	

Individual chemical shifts

		G		R	
	+	value	error	value	error
СН'-1	+	4.4349	0.0017		
CH-1	+	4.3936	0.0018		
CH-6	+	3.9924	0.0013		
СН'-4	+	3.9147	0.0013		
CH3	+	3.5632	0.0013		
CH-2	+	3.2938	0.0015		
CH-C	+			8.1092	0.0283
CH-G	+			8.2328	0.0459
CH-F	+			7.8012	0.0435
	+				
		1,1		0,2	
	+	value	error	value	error
СН'-1	+	3.1512	0.0752		
CH-1	+	2.9625	0.0828		
CH-6	+	3.6562	0.0326		
СН'-4	+	3.6244	0.0313		
CH3	+	3.1858	0.0339		
CH-2	+	2.3484	0.0583		
CH-C	+	8.3035	0.0038	7.5589	0.0978
CH-G	+	8.5352	0.0052	7.0000	0.1556
CH-F	+	8.0467	0.0052	6.7354	0.1496

Titration Plots

Chemical shifts (δ , ppm) *vs*. concentration of G (mol L⁻¹) experimental (symbols) and calculated (lines) values

1 + MeβGlcNAc₂ (D₂O, pD 7.4, 298 K, 500 MHz).

Figure S12. ¹H NMR spectroscopic titration (500 MHz, D₂O, pD 7.4, 298 K) of receptor 1 (5.46 10^{-4} mol L⁻¹) with incremental concentrations of MeβGlcNAc₂ (G).

Data Table

R = 1 $G = Me\beta Glc NAc_2$

δ (ppm) vs. [G] (mol L⁻¹)

Titration $[R] = 5.46 \ 10^{-4} \ mol \ L^{-1}$

[G]	CH-1	CH-6'	CH3	Ac'	Ac	CH-C	CH-G
	G	G	G	G	G	R	R
0.00E+00	-	-	-	-	-	7.9463	7.5285
2.20E-04	4.0751	3.7183	3.4293	2.0829	-	8.1064	-
3.11E-04	4.0774	3.7234	3.4319	2.0821	-	8.1513	-
4.39E-04	4.0908	3.7287	3.4343	2.0812	-	8.1789	-
6.19E-04	4.1191	3.7374	3.4387	2.0799	1.7809	8.2139	7.8962
8.73E-04	-	3.7497	3.4441	2.0781	1.8123	8.2540	7.9495
1.23E-03	4.1978	3.7621	3.4503	2.0760	1.8419	8.2841	7.9918
1.73E-03	4.2313	3.7775	3.4570	2.0737	1.8736	8.3045	8.0259
2.45E-03	4.2733	3.7913	3.4635	2.0715	1.9043	8.3205	8.0514
3.45E-03	4.3004	3.8017	3.4688	2.0698	1.9284	8.3343	8.0706
4.86E-03	4.3302	3.8107	3.4731	2.0684	1.9493	8.3481	8.0840
6.86E-03	4.3504	3.8186	3.4767	2.0672	1.9660	8.3613	8.0938
9.67E-03	4.3684	3.8236	3.4796	2.0662	1.9787	8.3734	8.0996
1.36E-02	4.3819	3.8286	3.4815	2.0652	1.9894	8.3832	8.1042
1.92E-02	4.3919	3.8322	3.4831	2.0644	1.9971	8.3928	8.1078

no. no. no.	of spe of res of res	ctra onance valu onant nucle	15 es 93 i 7				
si	gma =	0.0020827	6193	RMS wei	ghted	residual =	0.00178095364
Beta Beta Beta	stoi coef 1 1 1 2 0 2	ch f refined 3 refined 2 constant 4	value .5677E+003 .2306E+007 .4208E+002	relative std devn 0.0963 0.2059	log beta 3.552 7.348 2.645	standard deviation 4 0.0418 4 0.0894 5	(GR) (GR2) (R2)
Indi	vidual	chemical s G	hifts		R		
CH-1 CH-6' CH3 Ac'	+++++++++++++++++++++++++++++++++++++++	value 4.4214 3.8422 3.4880 2.0631	error 0.0026 0.0015 0.0014 0.0013	val	ue	error	
Ac CH-C CH-G	+ + + +	2.0194	0.0022	7.9 6.7	737 497	0.0781 0.1138	
====:	======	1,1 ===========		======================================	1,2	========	
CH-1 CH-6' CH3 Ac' Ac	+ + + + +	3.3006 3.4590 3.3064 2.1262 1.1726 8.4080	0.0740 0.0280 0.0171 0.0130 0.0543	4.3 3.7 3.4 2.0 1.8	181 986 678 686 893 519	0.0164 0.0104 0.0099 0.0098 0.0340 0.0267	
CH-G	+ +	8.1160 0,2	0.0023	8.2	420	0.0203	
===== CH-1 CH-6' CH3 Ac'	======= + + + + + + +	value	error	==			
CH-C CH-G	+ +	7.8710 9.7161	0.2208 0.3201				
Corro 1 2	elatio 1 399	n coefficie 2	nts*1000				
Para 1	meters beta	are number	ed as follo	ows			

2 beta 1,2

Titration Plots

1 + MeβGlcNAc (D₂O, pD 7.4, 298 K, 500 MHz).

R = 1 $G = Me\beta GlcNAc$

Titration

 $[R] = 4.97 \ 10^{-4} \ mol \ L^{-1}$

Figure S13. Superposition of ¹H NMR spectra registered at incremental concentrations of MeβGlcNAc (0.329 mM, 0.623 mM, 1.18 mM, 2.23 mM, 4.21 mM, 7.57 mM, 15.1 mM, 28.5 mM) in a 0.497 mM solution of **1**. Expansion of the saccharide region.

Table S1. Cumulative formation constants $(\log \beta_n)^{[a]}$ and intrinsic median binding concentration $(BC_{50}^0, \text{mM})^{[b]}$ for receptor **1** to Me β CeB (R:G) complexes, measured at 298 K from NMR data in D₂O at pD 11.^[c]

R:G	$\log \beta_n$	$BC_{50}{}^{0}$
1:1	2.50±0.08	1.39±0.29
2:1	6.46±0.10	
[a] Formation constants were obt	ained by nonlinear least-square rec	pression analysis of NMR data

[a] Formation constants were obtained by nonlinear least-square regression analysis of NMR data. [b] Calculated from the log β values using the "BC50 Calculator" program.^[15] [c] Receptor dimerization constant at pD 11 (1: log $\beta_{dim} = 3.17 \pm 0.07$) was set invariant in the nonlinear regression analysis of NMR data. Calorimetric titrations and data analysis. Isothermal Titration Microcalorimetry experiments were performed at 298 K with a Nano-ITC instrument. After an initial injection of 3 μ L, which was excluded from data analysis, aliquots of the titrant solution, containing the glycoside, were injected stepwise into the sample cell containing a solution of the titrate 1. Titrate solutions containing 1 were prepared in H₂O adjusting the pH with a diluted NaOH solution. All experiments were performed in H₂O at pH 7.4. Heats of dilution were measured by injecting the titrant solution into neat H₂O and then subtracted from the binding heats. To remove ambiguities in the definition of binding models of receptor 1, data from indipendent titrations performed at different concentrations of the titrate were simultaneously fitted to measure the cumulative association constants and the thermodynamic parameters using the HypCal software package.^{S3} The dimerization constant log β_{dim} 2.65±0.07 of receptor 1 was set invariant in the non linear regression analysis of receptor-glycosides binding data.

Figure S14. ITC results of Me β CeB with **1** in H₂O, pH 7.4, at 298 K: a) Titration of **1** (1.25 10⁻⁴ mol L⁻¹) with Me β CeB (4.04 10⁻² mol L⁻¹); b) Titration of **1** (6.25 10⁻⁵ mol L⁻¹) with Me β CeB (4.04 10⁻² mol L⁻¹); c) Titration of **1** (3.13 10⁻⁵ mol L⁻¹) with Me β CeB (4.04 10⁻² mol L⁻¹).

Data Table

R = 1 $G = Me\beta CeB$ [G] = 4.04 10⁻² mol L⁻¹

Titration 1: $[R] = 1.25 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-30.9766	-27.6163	3	1.21E-07	1.18E-07	1.029299	945
2	-582.334	-489.594	20	9.27E-07	1.15E-07	8.039663	945
3	-400.243	-314.737	20	1.72E-06	1.13E-07	15.2016	945
4	-299.109	-218.062	20	2.49E-06	1.10E-07	22.51839	945
5	-241.943	-162.067	20	3.24E-06	1.08E-07	29.99338	945
6	-199.557	-125.591	20	3.98E-06	1.06E-07	37.63	945
7	-171.782	-99.1094	20	4.71E-06	1.04E-07	45.43173	945
8	-153.049	-78.1583	20	5.41E-06	1.01E-07	53.40214	945
9	-135.395	-65.943	20	6.11E-06	9.92E-08	61.54489	945
10	-122.045	-50.2804	20	6.79E-06	9.71E-08	69.8637	945
11	-114.121	-45.7163	20	7.45E-06	9.51E-08	78.36238	945
12	-103.462	-35.4923	20	8.10E-06	9.31E-08	87.04481	945
13	-101.806	-36.1191	20	8.74E-06	9.11E-08	95.91496	945

Titration 2: $[R] = 6.25 \ 10^{-5} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-21.4848	-18.1244	3	1.21E-07	5.89E-08	2.058599	945
2	-328.267	-235.527	20	9.27E-07	5.76E-08	16.07933	945
3	-231.113	-145.607	20	1.72E-06	5.64E-08	30.4032	945
4	-180.018	-98.9708	20	2.49E-06	5.52E-08	45.03679	945
5	-151.376	-71.4999	20	3.24E-06	5.40E-08	59.98677	945
6	-135.309	-61.343	20	3.98E-06	5.29E-08	75.26	945
7	-112.061	-39.3888	20	4.71E-06	5.18E-08	90.86346	945
8	-100.561	-25.6711	20	5.41E-06	5.07E-08	106.8043	945
9	-92.6911	-23.2389	20	6.11E-06	4.96E-08	123.0898	945
10	-94.6884	-22.9239	20	6.79E-06	4.86E-08	139.7274	945
11	-86.4853	-18.0804	20	7.45E-06	4.75E-08	156.7248	945
12	-80.3039	-12.3341	20	8.10E-06	4.65E-08	174.0896	945
13	-76.5588	-10.8719	20	8.74E-06	4.55E-08	191.8299	945

Titration 3: $[R] = 3.13 \ 10^{-5} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-5.956317667	-2.596000333	3	1.21E-07	2.94E-08	4.123795525	945
2	-201.274375	-108.534725	20	9.27E-07	2.88E-08	32.21018667	945
3	-152.692475	-67.186525	20	1.72E-06	2.82E-08	60.90385113	945
4	-131.606875	-50.559875	20	2.49E-06	2.76E-08	90.21791916	945
5	-114.939075	-35.062675	20	3.24E-06	2.70E-08	120.1658049	945
6	-103.531325	-29.565625	20	3.98E-06	2.64E-08	150.7612124	945
7	-94.42565	-21.752975	20	4.71E-06	2.59E-08	182.0181423	945
8	-89.067975	-14.1778	20	5.41E-06	2.53E-08	213.9508977	945
9	-81.4659	-12.013775	20	6.11E-06	2.48E-08	246.5740911	945
10	-83.05675	-11.292275	20	6.79E-06	2.42E-08	279.9026508	945
11	-81.4706	-13.0657	20	7.45E-06	2.37E-08	313.951828	945
12	-80.8955	-12.925675	20	8.10E-06	2.32E-08	348.7372036	945
13	-77.3666	-11.6797	20	8.74E-06	2.27E-08	384.2746955	945

Reagent Reagent number name 1 R 2 G sigma = 0.00363 relative log standard std devn beta deviation Formation constants Value 0.3790E+03 0.0722 2.5787 0.0314 1 1 Beta A refined 5.2786 2 1 Beta B refined 0.1899E+06 0.6580 0.2857 2.6455 0.0676 2 0 Beta C constant 0.4421E+03 Formation entalpies Value standard deviation 15.5995 -DeltaH A refined 0.6640 -DeltaH B refined -109.3421 46.6052 -DeltaH C refined -108.9897 20.9161 Thermodynamic Functions, kJ/mol - DeltaG° - DeltaH° T DeltaS° 15.5995 0.6640 -0.8803 0.8176 14.7191 0.1790 А 30.1304 1.6311 -109.3421 46.6052 139.4725 47.5953 В -108.9897 20.9161 С 15.1006 0.1055 124.0903 20.9163 Correlation coefficients*1000 Run timed at 14.31 on 4 Sep 2020 2 588 3 -823 -432 260 -596 -380 4 5 812 711 -910 69 1 2 3 4 Order of parameters: Beta A 1 2 Beta В 3 -DeltaH A 4 -DeltaH B 5 -DeltaH C

Results table

Addition	Qobs	Qcalc	residual	QTobs	QTcalc
(µL)	(mJ)	(mJ)	(mJ)	(mJ)	(mJ)
1.1300	-0.0276				
21.1300	-0.4896	-0.4898	2.0000e-4	-0.5172	-0.5174
41.1300	-0.3147	-0.3163	1.6000e-3	-0.8319	-0.8337
61.1300	-0.2181	-0.2200	1.9000e-3	-1.0500	-1.0537
81.1300	-0.1621	-0.1613	-8.0000e-4	-1.2121	-1.2150
101.1300	-0.1256	-0.1230	-2.6000e-3	-1.3377	-1.3380
121.1300	-0.0991	-0.0967	-2.4000e-3	-1.4368	-1.4347
141.1300	-0.0782	-0.0779	-3.0000e-4	-1.5149	-1.5126
161.1300	-0.0659	-0.0640	-2.0000e-3	-1.5809	-1.5765
181.1300	-0.0503	-0.0534	3.1000e-3	-1.6312	-1.6300
201.1300	-0.0457	-0.0452	-5.0000e-4	-1.6769	-1.6752
221.1300	-0.0355	-0.0387	3.2000e-3	-1.7124	-1.7139
241.1300	-0.0361	-0.0335	-2.6000e-3	-1.7485	-1.7474
1.5400	-0.0181				
21.5400	-0.2355	-0.2308	-4.8000e-3	-0.2537	-0.2489
41.5400	-0.1456	-0.1447	-9.0000e-4	-0.3993	-0.3936
61.5400	-0.0990	-0.0989	-1.0000e-4	-0.4982	-0.4925
81.5400	-0.0715	-0.0717	2.0000e-4	-0.5697	-0.5642
101.5400	-0.0613	-0.0543	-7.0000e-3	-0.6311	-0.6185
121.5400	-0.0394	-0.0425	3.1000e-3	-0.6705	-0.6610
141.5400	-0.0257	-0.0341	8.4000e-3	-0.6961	-0.6951
161.5400	-0.0232	-0.0280	4.7000e-3	-0.7194	-0.7231
181.5400	-0.0229	-0.0233	4.0000e-4	-0.7423	-0.7464
201.5400	-0.0181	-0.0197	1.6000e-3	-0.7604	-0.7661
221.5400	-0.0123	-0.0169	4.5000e-3	-0.7727	-0.7830
241.5400	-0.0109	-0.0146	3.7000e-3	-0.7836	-0.7976
0.4800	-2.6000e-3				
20.4800	-0.1085	-0.1146	6.0000e-3	-0.1111	-0.1172
40.4800	-0.0672	-0.0702	3.0000e-3	-0.1783	-0.1874
60.4800	-0.0506	-0.0473	-3.2000e-3	-0.2289	-0.2347
80.4800	-0.0351	-0.0340	-1.0000e-3	-0.2639	-0.2687
100.4800	-0.0296	-0.0256	-4.0000e-3	-0.2935	-0.2943
120.4800	-0.0218	-0.0200	-1.8000e-3	-0.3153	-0.3143
140.4800	-0.0142	-0.0160	1.8000e-3	-0.3294	-0.3302
160.4800	-0.0120	-0.0131	1.1000e-3	-0.3414	-0.3433
180.4800	-0.0113	-0.0109	-4.0000e-4	-0.3527	-0.3542
200.4800	-0.0131	-9.2000e-3	-3.9000e-3	-0.3658	-0.3634
220.4800	-0.0129	-7.9000e-3	-5.1000e-3	-0.3787	-0.3713
240.4800	-0.0117	-6.8000e-3	-4.9000e-3	-0.3904	-0.3781

Titration Plots

1 + MeβMal (H₂O, pH 7.4, 298 K).

Figure S15. ITC results of MeβMal with **1** in H₂O, pH 7.4, at 298 K: a) Titration of **1** (2.50 10^{-4} mol L⁻¹) with MeβMal (4.04 10^{-2} mol L⁻¹); b) Titration of **1** (1.25 10^{-4} mol L⁻¹) with MeβMal (4.04 10^{-2} mol L⁻¹)

Data Table

R = 1 $G = Me\beta Mal$ [G] = 4.04 10⁻² mol L⁻¹

Titration 1: $[R] = 2.50 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-21.102	-11.5977	3	1.21E-07	2.36E-07	0.51465	945
2	-550.989	-443.994	20	9.27E-07	2.31E-07	4.019831	945
3	-470.059	-372.192	20	1.72E-06	2.26E-07	7.600801	945
4	-403.38	-308.473	20	2.49E-06	2.21E-07	11.2592	945
5	-349.554	-258.811	20	3.24E-06	2.16E-07	14.99669	945
6	-309.931	-223.443	20	3.98E-06	2.12E-07	18.815	945
7	-276.198	-192.986	20	4.71E-06	2.07E-07	22.71586	945
8	-250.262	-174.693	20	5.41E-06	2.03E-07	26.70107	945
9	-225.74	-143.412	20	6.11E-06	1.98E-07	30.77245	945
10	-199.48	-122.548	20	6.79E-06	1.94E-07	34.93185	945
11	-188.203	-113.932	20	7.45E-06	1.90E-07	39.18119	945
12	-172.74	-99.8081	20	8.10E-06	1.86E-07	43.5224	945
13	-164.805	-85.9617	20	8.74E-06	1.82E-07	47.95748	945

Titration 2: $[R] = 1.25 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-18.383	-8.87876	3	1.21E-07	1.18E-07	1.029299	945
2	-371.732	-264.736	20	9.27E-07	1.15E-07	8.039663	945
3	-309.987	-212.12	20	1.72E-06	1.13E-07	15.2016	945
4	-256.678	-161.771	20	2.49E-06	1.10E-07	22.51839	945
5	-222.233	-131.491	20	3.24E-06	1.08E-07	29.99338	945
6	-198.057	-111.569	20	3.98E-06	1.06E-07	37.63	945
7	-179.709	-96.4967	20	4.71E-06	1.04E-07	45.43173	945
8	-159.616	-84.048	20	5.41E-06	1.01E-07	53.40214	945
9	-146.976	-64.6484	20	6.11E-06	9.92E-08	61.54489	945
10	-130.566	-53.6335	20	6.79E-06	9.71E-08	69.8637	945
11	-125.921	-51.6502	20	7.45E-06	9.51E-08	78.36238	945
12	-113.831	-40.8998	20	8.10E-06	9.31E-08	87.04481	945
13	-113.2	-34.357	20	8.74E-06	9.11E-08	95.91496	945

Reagent Reagent number name 1 R 2 G sigma = 0.00596 Formation constants Value relative log standard std devn beta deviation Beta A refined 0.1756E+03 0.0309 2.2444 0.0134 1 1 2.6455 0.0676 2 0 Beta B constant 0.4421E+03 Formation entalpies Value standard deviation -DeltaH A refined 20.7240 0.4795 -DeltaH B refined 23.7075 6.1583 Thermodynamic Functions, kJ/mol - DeltaG° - DeltaH° T DeltaS° 12.8113 0.0766 15.1006 0.0574 20.7240 0.4795 -7.9127 0.4721 А 23.7075 6.1583 В -8.6070 6.1585 Correlation coefficients*1000 Run timed at 13.42 on 1 Sep 2020 2 175 3 670 825 2 1 Order of parameters: Beta 1 Α -DeltaH A 2 3 -DeltaH B

Results table

Addition	Qobs	Qcalc	residual	QTobs	QTcalc
(µL)	(mJ)	(mJ)	(mJ)	(mJ)	(mJ)
0.5200	-0.0116				
20.5200	-0.4440	-0.4507	6.7000e-3	-0.4556	-0.4623
40.5200	-0.3722	-0.3708	-1.4000e-3	-0.8278	-0.8331
60.5200	-0.3085	-0.3082	-2.0000e-4	-1.1363	-1.1413
80.5200	-0.2588	-0.2590	2.0000e-4	-1.3951	-1.4003
100.5200	-0.2234	-0.2198	-3.7000e-3	-1.6185	-1.6201
120.5200	-0.1930	-0.1883	-4.7000e-3	-1.8115	-1.8084
140.5200	-0.1747	-0.1628	-0.0119	-1.9862	-1.9712
160.5200	-0.1434	-0.1418	-1.6000e-3	-2.1296	-2.1130
180.5200	-0.1225	-0.1245	2.0000e-3	-2.2522	-2.2375
200.5200	-0.1139	-0.1100	-3.9000e-3	-2.3661	-2.3475
220.5200	-0.0998	-0.0979	-1.9000e-3	-2.4659	-2.4454
240.5200	-0.0860	-0.0875	1.6000e-3	-2.5519	-2.5329
0.6700	-8.9000e-3				
20.6700	-0.2647	-0.2585	-6.2000e-3	-0.2736	-0.2674
40.6700	-0.2121	-0.2059	-6.2000e-3	-0.4857	-0.4733
60.6700	-0.1618	-0.1671	5.3000e-3	-0.6475	-0.6404
80.6700	-0.1315	-0.1378	6.3000e-3	-0.7790	-0.7782
100.6700	-0.1116	-0.1153	3.7000e-3	-0.8906	-0.8934
120.6700	-0.0965	-0.0977	1.2000e-3	-0.9871	-0.9911
140.6700	-0.0840	-0.0837	-4.0000e-4	-1.0711	-1.0748
160.6700	-0.0646	-0.0724	7.8000e-3	-1.1358	-1.1472
180.6700	-0.0536	-0.0632	9.6000e-3	-1.1894	-1.2105
200.6700	-0.0517	-0.0557	4.0000e-3	-1.2410	-1.2662
220.6700	-0.0409	-0.0493	8.4000e-3	-1.2819	-1.3155
240.6700	-0.0344	-0.0440	9.6000e-3	-1.3163	-1.3595

Titration Plots

Experimental (symbols) and calculated (cross and lines) heats

1 + MeβLac (H₂O, pH 7.4, 298 K).

Figure S16. ITC results of MeβLac with **1** in H₂O, pH 7.4, at 298 K: a) Titration of **1** (5.00 10^{-4} mol L⁻¹) with MeβLac (4.05 10^{-2} mol L⁻¹); b) Titration of **1** (2.50 10^{-4} mol L⁻¹) with MeβLac (4.05 10^{-2} mol L⁻¹)

Data Table

R = 1 $G = Me\betaLac$ [G] = 4.05 10⁻² mol L⁻¹

Titration 1: $[R] = 5.00 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-12.6643	-10.3446	3	1.22E-07	4.71E-07	0.257962	945
2	-355.837	-255.389	20	9.29E-07	4.61E-07	2.014891	945
3	-337.515	-246.202	20	1.72E-06	4.51E-07	3.809807	945
4	-321.21	-231.573	20	2.49E-06	4.42E-07	5.643533	945
5	-307.439	-220.479	20	3.25E-06	4.32E-07	7.516906	945
6	-294.123	-207.986	20	3.99E-06	4.23E-07	9.430786	945
7	-278.541	-197.392	20	4.72E-06	4.14E-07	11.38605	945
8	-269.484	-193.411	20	5.43E-06	4.05E-07	13.38358	945
9	-254.601	-175.159	20	6.12E-06	3.97E-07	15.42431	945
10	-242.224	-165.482	20	6.80E-06	3.89E-07	17.50916	945
11	-229.656	-152.557	20	7.47E-06	3.80E-07	19.63909	945
12	-211.43	-136.949	20	8.12E-06	3.72E-07	21.81507	945
13	-203.921	-128.65	20	8.76E-06	3.64E-07	24.03809	945

Titration 2: $[R] = 2.50 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-25.6331	-23.3134	3	1.22E-07	2.36E-07	0.515924	945
2	-428.45	-328.001	20	9.29E-07	2.31E-07	4.029781	945
3	-378.526	-287.214	20	1.72E-06	2.26E-07	7.619614	945
4	-337.159	-247.522	20	2.49E-06	2.21E-07	11.28707	945
5	-301.294	-214.334	20	3.25E-06	2.16E-07	15.03381	945
6	-270.68	-184.543	20	3.99E-06	2.12E-07	18.86157	945
7	-250.135	-168.986	20	4.72E-06	2.07E-07	22.77209	945
8	-226.28	-150.207	20	5.43E-06	2.03E-07	26.76716	945
9	-209.695	-130.252	20	6.12E-06	1.98E-07	30.84862	945
10	-190.567	-113.825	20	6.80E-06	1.94E-07	35.01832	945
11	-174.747	-97.6488	20	7.47E-06	1.90E-07	39.27817	945
12	-166.944	-92.464	20	8.12E-06	1.86E-07	43.63013	945
13	-159.098	-83.8265	20	8.76E-06	1.82E-07	48.07619	945

Reagent Reagent number name 1 R 2 G sigma = 0.00992 Formation constants Value relative log standard std devn beta deviation Beta A refined 0.2043E+03 0.0517 2.3103 0.0225 1 1 2.6455 0.0676 2 0 Beta B constant 0.4421E+03 Formation entalpies Value standard deviation -DeltaH A refined 23.8721 0.6050 -DeltaH B refined 101.0108 2.8812 Thermodynamic Functions, kJ/mol - DeltaG° - DeltaH° T DeltaS° 23.8721 0.6050 13.1871 0.1283 -10.6850 0.6996 А 15.1006 0.0628 101.0108 2.8812 В -85.9102 2.8819 Correlation coefficients*1000 Run timed at 16.38 on 28 Aug 2020 2 -689 3 -261 862 2 1 Order of parameters: Beta 1 Α 2 -DeltaH A 3 -DeltaH B

Results table

Addition	Qobs	Qcalc	residual	QTobs	QTcalc
(µL)	(mJ)	(mJ)	(mJ)	(mJ)	(mJ)
0.8100	-0.0103				
20.8100	-0.2554	-0.2342	-0.0212	-0.2657	-0.2445
40.8100	-0.2462	-0.2478	1.6000e-3	-0.5119	-0.4923
60.8100	-0.2316	-0.2474	0.0158	-0.7435	-0.7397
80.8100	-0.2205	-0.2387	0.0183	-0.9640	-0.9784
100.8100	-0.2080	-0.2258	0.0178	-1.1720	-1.2042
120.8100	-0.1974	-0.2108	0.0135	-1.3694	-1.4150
140.8100	-0.1934	-0.1955	2.0000e-3	-1.5628	-1.6105
160.8100	-0.1752	-0.1804	5.3000e-3	-1.7379	-1.7909
180.8100	-0.1655	-0.1662	7.0000e-4	-1.9034	-1.9571
200.8100	-0.1526	-0.1530	4.0000e-4	-2.0560	-2.1101
220.8100	-0.1369	-0.1409	3.9000e-3	-2.1929	-2.2509
240.8100	-0.1287	-0.1298	1.1000e-3	-2.3216	-2.3807
1.4200	-0.0233				
21.4200	-0.3280	-0.3169	-0.0111	-0.3513	-0.3402
41.4200	-0.2872	-0.2776	-9.7000e-3	-0.6385	-0.6178
61.4200	-0.2475	-0.2416	-5.9000e-3	-0.8861	-0.8594
81.4200	-0.2143	-0.2102	-4.1000e-3	-1.1004	-1.0696
101.4200	-0.1845	-0.1833	-1.2000e-3	-1.2849	-1.2529
121.4200	-0.1690	-0.1605	-8.5000e-3	-1.4539	-1.4134
141.4200	-0.1502	-0.1412	-9.0000e-3	-1.6041	-1.5546
161.4200	-0.1303	-0.1249	-5.4000e-3	-1.7344	-1.6795
181.4200	-0.1138	-0.1110	-2.8000e-3	-1.8482	-1.7905
201.4200	-0.0976	-0.0992	1.5000e-3	-1.9458	-1.8897
221.4200	-0.0925	-0.0890	-3.4000e-3	-2.0383	-1.9788
241.4200	-0.0838	-0.0803	-3.5000e-3	-2.1221	-2.0590

Titration Plots

1 + MeβGlcNAc₂ (H₂O, pH 7.4, 298 K).

Figure S17. ITC results the titration of 1 (4.04 10^{-4} mol L⁻¹) with MeβGlcNAc₂ (1.06 10^{-2} mol L⁻¹) in H₂O, pH 7.4, at 298 K

Data Table

$$R = 1$$
 $G = Me\beta GlcNAc_2$
[G] = 1.06 10⁻² mol L⁻¹

Titration: $[R] = 4.04 \ 10^{-4} \ mol \ L^{-1}$

Injection	Q	Corrected Q	inj volume	mol G	mol R	mol G / mol R	total volume
	(µJ)	(µJ)	(µL)	(mol)	(mol)		(µL)
1	-141.752	-126.83	3	3.18E-08	4.18E-07	0.076031	945
2	-1898.54	-1673.16	20	2.43E-07	4.09E-07	0.593867	945
3	-1590.97	-1423.57	20	4.50E-07	4.01E-07	1.122899	945
4	-1294.78	-1286.4	20	6.52E-07	3.92E-07	1.66337	945
5	-1073.32	-1126.42	20	8.51E-07	3.84E-07	2.215527	945
6	-906.664	-957.795	20	1.04E-06	3.76E-07	2.779622	945
7	-781.13	-821.685	20	1.23E-06	3.68E-07	3.355914	945
8	-688.656	-716.257	20	1.42E-06	3.60E-07	3.944666	945
9	-617.208	-636.098	20	1.60E-06	3.52E-07	4.546148	945
10	-564.001	-584.506	20	1.78E-06	3.45E-07	5.160635	945
11	-515.716	-533.281	20	1.95E-06	3.38E-07	5.788408	945
12	-476.9	-488.287	20	2.13E-06	3.31E-07	6.429755	945
13	-435.708	-434.053	20	2.29E-06	3.24E-07	7.084968	945

Reagent Re number 1 2	agent name R G						
sigma =	0.01205	5					
Formation	constants	s Value	relative std devn	log beta	standard deviation		
Beta A re Beta B re Beta C co	fined fined nstant	0.3066E+04 0.5192E+08 0.4421E+03	0.1560 0.5175	3.4865 7.7153 2.6455	0.0677 0.2247 0.0676	1 1 2 1 2 0	
Formation	entalpies	s Value	standard				
-DeltaH A -DeltaH B -DeltaH C	refined refined refined	42.4924 -98.6733 -293.3921	4.5528 7.2566 16.2613				
+++++++++	+++++++++	-++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	-++++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++
Thermodyn	amic Funct	cions, kJ/mo	1				
	- Del	LtaG°	_	DeltaH°		T De	eltaS°
A B C	19.9011 44.0392 15.1006	0.3866 1.2829 0.2656	42.49 -98.67 -293.39	924 4. 733 7. 921 16.	5528 2566 2613	-22.5913 142.7125 308.4927	4.4236 8.2500 16.2634
++++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	-++++++++++++++++++++++++++++++++++++++	+++++++++	+++++++++++
Correlati	on coeffic	cients*1000	Rui	n timed a	at 10.03 on	20 Oct 20)20
2 952 3 372 4 -526 5 646 1	634 -739 -951 434 -359 2 3	283 4					
Order of 1 2 3 4 5	parameters Beta A Beta B -DeltaH A -DeltaH B -DeltaH C	5:					

Results table

Addition	Qobs	Qcalc	residual	QTobs	QTcalc
(µL)	(mJ)	(mJ)	(mJ)	(mJ)	(mJ)
1.5200	-0.1268				
21.5200	-1.6732	-1.6732	0.0000	-1.8000	-1.8000
41.5200	-1.4236	-1.4227	-9.0000e-4	-3.2236	-3.2227
61.5200	-1.2864	-1.2960	9.6000e-3	-4.5100	-4.5187
81.5200	-1.1264	-1.1086	-0.0179	-5.6364	-5.6272
101.5200	-0.9578	-0.9524	-5.4000e-3	-6.5942	-6.5796
121.5200	-0.8217	-0.8286	6.9000e-3	-7.4159	-7.4082
141.5200	-0.7163	-0.7295	0.0133	-8.1321	-8.1378
161.5200	-0.6361	-0.6488	0.0127	-8.7682	-8.7866
181.5200	-0.5845	-0.5819	-2.6000e-3	-9.3527	-9.3685
201.5200	-0.5333	-0.5256	-7.7000e-3	-9.8860	-9.8941
221.5200	-0.4883	-0.4774	-0.0108	-10.3743	-10.3715
241.5200	-0.4341	-0.4359	1.8000e-3	-10.8083	-10.8074

Titration Plots

S62

Structural studies.

NMR methods. NMR experiments were performed at 500 MHz in D₂O at pD 11 at 298 K. The experiments on the complex were performed using an equimolar solution of **1** (R) and Me β GlcNAc₂ (G). Because of broad signals observed for the complex, due to a medium-exchange equilibrium in the NMR time scale, related to the strong binding, a concentration of 15 mM for both **1** and Me β GlcNAc₂ was used to obtain an acceptable signal to noise ratio for NOESY experiments. Alkaline pD was used to obtain sharper signal of the receptor at operative 15 mM concentration. In addition to standard 1D ¹H NMR spectra, COSY, TOCSY, HSQC and NOESY experiments (500 ms mixing time) were also acquired to assign the resonances of all the molecular entities and to detect the relevant intramolecular and intermolecular contacts.

Figure S18. 500 MHz NOESY spectrum of an equimolar mixture of Me β GlcNAc₂ and 1 (15 mM each) in D₂O at 298 K. Intramolecular NOE cross peaks of the receptor 1 are indicated by squares and schematically represented (solid and dashed squares and lines were used to indicate strong and medium NOEs).

Figure S19. Superposition of 500 MHz HSQC and 1H-NMR spectra acquired at 298.15 K (in red) and 323.15 K (in blue) of an equimolar mixture of Me β GlcNAc₂ and **1** (15 mM each) in D₂O at 298 K. Temperature-dependent chemical shift variations are indicated by arrows and were used to assign proton signals of broad peaks at 298.15 K.

Figure S20. 500 MHz NOESY spectrum of an equimolar mixture of Me β GlcNAc₂ and 1 (15 mM each) in D₂O at 298 K. Unambiguous intermolecular NOE cross peaks are indicated by squares.

Molecular modeling methods. Initial structures of MeßGlcNAc2 and receptor 1 were built and minimized using conjugate gradients with the OPLS 2005 force field, water was set as solvent and an extended cutoff was used to treat remote interactions. Each phosphonate group of the receptor was considered monoprotonated, accordingly with the degree of protonation observed for a structurally correlated receptor at neutral pH.^[11] A maximum number of 5000 iterations were employed with the Polak-Ribiere Conjugate Gradient (PRCG) scheme, until the convergence energy threshold was 0.05. Once the optimum geometries had been achieved, a conformational search protocol was adopted for the receptors, using a Monte Carlo torsional sampling method (MCMM) with automatic setup during the calculation, energy window of 21 kJ mol⁻¹, 1000 maximum number of steps, and 100 steps per torsion of the bond to be rotated. The best structures obtained from this calculation in terms of energy were chosen and then, the disaccharide was manually docked within the receptors cleft with different starting relative orientations and further minimized. Minimization results afford different structures which were employed as input for further conformational search protocols without any constraints. Several complexes were found to be stable, in which the sugar was located inside the receptor cleft. The lowest energy structures were analyzed to check the agreement with experimental NMR data. The protocol returned a family of structures, containing the minimum energy structure of the conformational search, in agreement with the observed NOE data.

Figure S21. Molecular modelling results from conformational search for the complex of 1 with Me β GlcNAc₂. Superposition of the 16 energy minimum structures, within an energy window of 10.0 kJ mol⁻¹, identified among the 156 structures obtained from the calculation.

References.

- S1. A. Vacca, C. Nativi, M. Cacciarini, R. Pergoli, S. Roelens, J. Am. Chem. Soc. 2004, 126, 16456-16465.
- S2. C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi, A. Vacca, *Anal. Biochem.* **1995**, *231*, 374-382.
- S3. P. Gans, A. Sabatini, A. Vacca, J. Solution Chem. 2008, 37, 467-476.