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Experimental Procedures

All polycrystalline metal working electrodes in this study (Fe, Co, Ni, Cu, as metal foils > 99.95%
purity, and Ru, Rh, Pd, Ir, Pt, Au as metal disks, MaTeck, Germany; 99.9% purity!) were
rigorously polished and rinsed thoroughly in ultra-pure water (18.2 MQ, TOC < 5 ppb) before use.
Afterward, a quick transfer to the SFC (scanning flow cell) setup was carried out to perform
electrochemical measurements. The in-house developed SFC was contacted with a force of
500 mN during each experiment to gain an exposed electrode surface of 0.011 cm? reproducibly.
The argon purged electrolyte was pumped to the ICP-MS (Perkin Elmer, NexION 350x) at a
regularly calibrated flow rate of around 200 uL min~'. The SFC setup featured an Ag/AgCl
(Metrohm, 3 M KCI) reference electrode connected to the outgoing tube, a graphite rod in the
electrolyte inlet tube was used as a counter electrode the above mentioned polycrystalline noble
metals were set up as the working electrodes. All three electrodes were connected to a potentiostat
(Gamry, Reference 600) controlled by a custom LabVIEW software. More details regarding the
experimental setup and the online ICP-MS technique can be found in previous publications.?= All
potentials are referred to as V vs. the reversible hydrogen electrode (RHE) by regular calibration
of the Ag/AgCl reference electrode in each electrolyte. The electrolytes were prepared from
sodium hydroxide (99.99% Merck Suprapur®, 0.05 mol L), potassium hydroxide (99.99%
Sigma-Aldrich Semiconductor grade, 0.05 mol L), or sulfuric acid (96% Merck Suprapur®,
0.1 mol L") by dilution with ultra-pure water. A uniform electrochemical procedure has been used
to gather dissolution rates as well as total amounts. Here, a 300 s oxidation step, which, unless
stated otherwise, was 200 mV over the first thermodynamic M/M"" transition. Physical material
properties were extracted for stable bulk metal configurations from The Materials Project and
correlated to the measured dissolution properties.*-

Calibration of the ICP-MS was carried out daily for all investigated metals by a three-point
calibration curve from freshly prepared standard solutions (Merck Centripur, 1 g L' metal
solutions in 2% HNOs3). Furthermore, an internal standard was used to monitor the instrument's
performance throughout the day. (°’Fe, 3°Co, *®Ni, 3Cu using 20 pg L' of 7*Ge; '>Ru using
10 pg L' of '93Rh; '%Rh using 10 pg L' of '5In; 1%Pd using 50 pg L' of 13°Te; 1%3Ir, 19°Pt, 1°7Au
using 10 pg L' of '87Re). Finally, the last measurement of a standard solution at the end of the
day to reproduce the calibration curve ensured the instrument's accuracy. The analyte signal was
converted from counts into ng cm 2 s™! using the calibration curve, the internal standards signal,
the flow rate, and the electrode area.

Theoretical values and descriptors

Binding energies AEo were taken from Ref.® where they were calculated for the most closed
packed surfaces at a quarter of monolayer coverage. Generally, O binding energy is computed as:

H,0 + *— 0" + H,, where H,0 and H; are in the gas phase.



Cohesive energies (AEcon) were extracted from the Materials Project database? for the most
stable bulk structures:

Metal (Materials Project ID) Crystal system AEcon, €V
Au (mp-81) cubic 2.99
Cu (mp-30) cubic 3.50
Pd (mp-2) cubic 3.70
Fe (mp-13) cubic 5.05
Co (mp-54) hexagonal 5.16
Pt (mp-126) cubic 5.53
Rh (mp-74) cubic 5.98
Ru (mp-33) hexagonal 7.02
Ir (mp-101) cubic 7.22
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Figure S1. Comparison of dissolution rates for the investigated noble metals in the acidic (0.1 M
H>SO4, solid line) and alkaline (0.05 M NaOH, pale line) electrolyte. After a reductive equalization
of all metals during reduction at 0.05 V, a 200 mV oxidative step experiment was performed,
followed by a second reductive step down to 0.05 V.
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Figure S2. Example of 3d metal corrosion in an acidic (0.1 M H2SOj4) electrolyte when stepping
to an overpotential of 200 mV at t = 300 s.
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Figure S3. Ni dissolution during oxidation at 200 mV overpotential in an alkaline (0.05 M
NaOH) environment.
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Figure S4. Dependence of anodic Ru dissolution in alkaline (0.05 M NaOH) on overpotential.
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Figurle S5. Dissolution rates®f the investigated noble metals in acidic (0.1 M H2SOs, solid line)
and alkaline (0.05 M NaOH, pale line) electfolyte. After a reductive equalization of all metals
during reduction at 0.05 V, a 20 mV oxidative step experiment was performed. The oxidation
was followed by a £.SV at 2 mV%~! down to §.05 Vrug.
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Figure S6. Dissolution associated with the reduction from Figure 2, plotted as a function of
AHo ads. (alkaline, 0.05 M NaOH: solid squares, acidic, 0.1 M H2SOas: hollow squares)
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