

Supporting Information

Copper-Photocatalyzed Hydroboration of Alkynes and Alkenes

Mingbing Zhong, Yohann Gagné, Taylor O. Hope, Xavier Pannecoucke, Mathieu Frenette, Philippe Jubault, and Thomas Poisson*

anie_202101874_sm_miscellaneous_information.pdf

Supporting Information

TABLE OF CONTENTS

1.	General information	2
2.	Synthesis and characterization of Cu-PC-1 and Cu-PC-2	3
3.	General procedures for copper-photocatalyzed hydroboration of alkynes and alkenes	. 12
4.	Condition Optimization of copper-photocatalyzed hydroboration of terminal alkyne, non	-
	terminal alkyne and terminal alkene	. 13
5.	Development of the reactions under continuous flow conditions	. 16
6.	Mechanistic studies	. 18
7.	Special data of the used LEDs	. 37
8.	Experimental data for hydroboration products	. 45
9.	References	. 64
10.	NMR spectra	. 65

1. General information

All reactions were carried out using oven-dried glassware and magnetic stirring under an argon atmosphere unless otherwise stated. Analytical thin-layer chromatography (TLC) were performed using Merck-Kiesegel 60 F254 plates and visualized by UV light (254 nm) and/or chemical staining with alizarin solution (1M in acetone). Flash column chromatography was performed with silica gel 40 (particle size 63 µm) supplied by VWR. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. Copper photocatalyzed hydroboration reactions in batch were performed using a 405 nm blue LEDs. Copper photocatalyzed hydroboration reactions in continuous flow were performed using a Vapourtec E-series continuous flow system equipped with a UV-150 Photochemical flow reactor (10 mL) and a 450 nm blue LED lamp. ¹H NMR spectra were recorded on a Bruker DXP 300 spectrometer at 300 MHz, ¹³C NMR spectra were recorded at 75 MHz, ¹⁹F NMR and ¹¹B NMR spectra were recorded on a Bruker DXP 300 spectrometer. Chemical shifts are quoted in parts per million (ppm) relative to the residual solvent peak for C₆D₆ ($\delta_{\rm H} = 7.16$ ppm, $\delta_{\rm C} = 128.06$ ppm) or for CDCl₃ ($\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm). The following abbreviations have been used: δ (chemical shift), J (coupling constant expressed in hertz), app. (apparent), br. (broad), s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m (multiplet). High-resolution mass spectra (HRMS) were recorded on Waters LCT Premier. Infrared spectra were recorded on a PerkinElmer Spectrum 100. Melting points were recorded on a Stuart Scientific Analogue SMP3. Absorption Spectra were recorded on UV/Visible Agilent Cary 60 spectrophotometer. Emission spectra were recorded on a Varian Cary Eclipse fluorescence spectrofluorimeter equipped with a xenon flash lamp as excitation source and a high performance R928 photomultiplier detector. Cyclic voltammetry measurements in dry acetonitrile with tetra-n-butylammonium tetrafluoroborate as the supporting electrolyte were carried out at 25 °C using a standard three-electrode cell, consisting of a Saturated Calomel Electrode (SCE) as the reference electrode, a platinum wire counter electrode and a carbon disk working electrode (area = 1 mm^2). The potential of the working electrode was controlled by a BioLogic SP-300 potentiostat with a scan rate of 200 mV s⁻¹. Prior the measurements, all the solutions were degassed with a flow of argon for 15 minutes, which was left over the surface of the solution during the measurements. Lamps were purchased from EvoluChem, 405 nm, 18W LED.

Dichloromethane was freshly distilled from calcium hydride under argon. Acetonitrile (99.9%, Extra dry over molecular sieves in AcroSeal® bottles) was purchased from Acros Organics. Solvents were degassed with the freeze-pump-thaw technique. Tetrakis(acetonitrile)copper(I) hexafluorophosphate was purchased from Acros Organics and used as supplied. P,P ' -(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis[N,N,N ' ,N ' -tetraethyl-phosphonous diamide] (97% purity) and 4,6-Bis(diphenylphosphino)-10H-phenoxazine (97% purity) were purchased from Sigma Aldrich and used as supplied. 1,10 –phenanthroline (99% purity) and 2,9-Dimethyl-1,10-phenanthroline (98% purity) were purchased from Alpha Aesar and used as supplied. Bis(pinacolato)diboron (98+% purity) was purchased from Alpha Aesar or Apollo Scientific Ltd and used as supplied. All other reagents were used as supplied.

2. Synthesis and characterization of Cu-PC-1 and Cu-PC-2

Cu-PC-1: [Cu(xantphosTEPD)(phen)]PF₆

[Cu(xantphosTEPD)(phen)]PF₆. To a solution of tetrakisacetonitrile copper(I) hexafluorophosphate (74.5 mg, -(9,9-Dimethyl-9H-xanthene-4,5-0.2 mmol) in dry dichloromethane (16 mL) was added P,P ' diyl)bis[N,N,N',N' -tetraethyl-phosphonous diamide] (xantphosTEPD, 120 mg, 0.2 mmol). The reaction mixture was stirred at room temperature for two hours under argon atmosphere. A solution of 1,10phenanthroline (phen, 36 mg, 0.2 mmol) in dry dichloromethane (4 mL) was then added dropwise and the resulting reaction mixture was stirred for another one hour. The reaction mixture was then concentrated under reduced pressure to one tenth of the original volume and the resulting solution was added dropwise with a syringe pump (1 drop/sec) to 100 mL of n-hexane under stirring. The yellow precipitate was collected by filtration and dried under vacuum to give the desired copper complex [Cu(xantphosTEPD)(phen)]PF₆ (183.8 mg, 0.194 mmol, 97%) as a yellow solid, mp: 264-266 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.55 (d, J = 9 Hz, 2H), 8.26 (m, 2H), 8.06 (s, 2H), 7.70 (m, 4H), 7.31-7.26 (m, 4H), 2.93 (s, 16H), 1.78 (s, 6H), 0.77 (s, 24H). ¹³C NMR (75 MHz, CDCl₃): 154.5, 154.4, 154.3, 148.8, 142.9, 142.8 (2), 137.5, 135.0, 129.8, 129.3, 127.5, 126.1, 126.0, 125.9, 125.0, 124.0, 41.7, 41.6 (2), 35.8, 34.1, 22.3, 14.0. IR (ATR): v_{max} 3060, 1556, 1499, 1481, 1461, 1434, 1391, 1300, 1259, 1215, 1094, 1026, 975, 835, 744, 694, 556, 509 cm⁻¹. HRMS (ESI) m/z calcd for C₄₃H₆₀N₆OP₂Cu⁺ [M-PF₆]⁺: 801.3600, found: 801.3593.

Cyclic voltammetry, absorption and emission spectra of Cu-PC-1

A solution of $(Et)_4N^+$ BF₄⁻ as supporting electrolyte (488 mg, 0.09 M) was prepared in HPLC-grade acetonitrile (25 mL) and degassed with N₂. A cyclic voltammogram of this solution was measured, then the [Cu(XantphosTEPD)(phen)]PF₆ (23.7 mg, 1 mM) powder was added and the solution was degassed again with N₂ for over 10 minutes. The cyclic voltammograms were measured using a silver wire reference electrode, a platinum working electrode and a platinum counter electrode using a scanning rate of 100 mV/s. Extra degassing under N₂ was necessary to see the reduction peaks that formed Cu(0). Water was avoided in these experiments to prevent its redox chemistry within the voltage limits needed to see both Cu(0) and Cu(II) formation.

To adjust the redox potentials from Ag/AgCl to SCE, the potentials were reduced by 47 mV.

Figure S1. Cyclic voltammetry of Cu-PC-1 (1 mM) in deoxygenated acetonitrile to observe the redox peaks associated with Cu(II)/Cu(I)(orange) and solvent (grey).

Figure S2. Cyclic voltammetry of Cu-PC-1 (1 mM) in deoxygenated acetonitrile to observe the redox peaks associated with Cu(0)/Cu(I) (blue) and solvent (grey).

The excited state redox potentials were calculated using the Rehm and Weller equation [Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Israel Journal of Chemistry. 1970;8(2):259-71.]:

$$E_{1/2}^{*} = E_{1/2}^{*} + E_{00}$$

$$E_{1/2}^{*} e^{ixi} = E_{1/2}^{*} e^{ixi} - E_{00}^{*}$$

Where $E_{1/2}^*$ is the excited state reduction (red) or oxidation (oxi) potentials. $E_{1/2}$ is the oxidation or reduction potentials of the ground state, measured with cyclic voltammetry (Figure S1 and S1). E_{00} is the energy gap between the zeroth vibrational level of the ground and excited state, which can be calculated by finding the overlap in the normalized UV-visible spectrum and the emission spectrum (figure S3), then converting that value into eV.

Figure S3. Normalized UV-Visible spectrum (green) and emission spectrum (solvent corrected $\lambda_{ex} = 420$ nm, purple) of Cu-PC-1.

Table S1. Summary of redox	potentials and excited state redox	potentials for Cu-PC-1
----------------------------	------------------------------------	------------------------

E _{1/2} ^{oxi} (Cu ^{II} /Cu ^I)	$E_{1/2}^{red}(Cu^I/Cu^0)$	E00	$E_{1/2}^{\text{oxi}}(Cu^{II}/Cu^{I*})$	$E_{1/2}^{red}(Cu^{I*}/Cu^0)$
Vs SCE	Vs SCE	eV	Vs SCE	Vs SCE
+1.02	-1.56	2.77 (448 nm)	-1.75	+1.21

Cu-PC-1 is very weakly emissive and its measured emission spectra were found to contain Raman scattering in addition to Cu-PC-1 emission. To try and reduce the Raman scattering contribution, which increases proportional to $\frac{1}{\lambda^4}$, the excitation wavelength was tested at 360, 400 and 420 nm. When an excitation wavelength of 360 nm was used, the Raman peaks are much more intense then at 400 or 420 nm, such that the peak associated to Cu-PC-1 emission at 530 nm was no longer visible (Figure S4 to S6). An excitation wavelength of 420 nm was chosen due to the weaker Raman signal and the relatively stronger peak at 530 nm.

All spectra were collected using a slit width of 1.5 mm (6 nm resolution) with an absorption below 0.14 at 400 nm.

Figure 4. Solvent corrected emission spectra of Cu-PC-1 (purple) using an excitation wavelength of 360 nm.

Figure 5. Solvent corrected emission spectra of Cu-PC-1 (purple) using an excitation wavelength of 400 nm.

Figure 6. Solvent corrected emission spectra of Cu-PC-1 (purple) using an excitation wavelength of 420 nm.

Cu-PC-2: [Cu(N-xantphos)(dmp)]PF₆

[Cu(N-xantphos)(dmp)]PF₆. To a solution of tetrakisacetonitrile copper(I) hexafluorophosphate (74.5 mg, 0.2 mmol) in dry dichloromethane (16 mL) was added 4,6-Bis(diphenylphosphino)-10H-phenoxazine (N-xantphos, 115 mg, 0.2 mmol). The reaction mixture was stirred at room temperature for two hours under argon atmosphere. A solution of 2,9-Dimethyl-1,10-phenanthroline (dmp, 45 mg, 0.2 mmol) in dry dichloromethane (4 mL) was then added dropwise and the resulting reaction mixture was stirred for another one hour. The reaction mixture was then concentrated under reduced pressure to one tenth of the original volume and the resulting solution was added dropwise with a syringe pump (1 drop/sec) to 100 mL of diethylether under stirring. The yellow precipitate was collected by filtration and dried under vacuum to give the desired copper complex [Cu(N-xantphos)(dmp)]PF₆ (178.17 mg, 0.184 mmol, 92%) as a yellow solid, mp: 238-240 °C; ¹H NMR (300 MHz, (CD₃)₂CO): δ 8.75 (d, *J* = 9 Hz, 1H), 8.53 (d, *J* = 9 Hz, 2H), 8.27-8.18 (m, 2H), 8.01-7.94 (m, 3H), 7.75 (d, *J* = 9 Hz, 2H), 7.41-7.27 (m, 5H), 7.23-7.01 (m, 15H), 6.61-6.52 (m, 2H), 2.62 (s, 3H), 2.52 (s, 3H). ¹³C NMR (75 MHz, d₆-DMSO): 158.3, 157.7, 145.7, 145.6, 145.5, 142.3, 142.1, 138.0, 137.5, 135.3, 135.2, 135.1, 132.6, 132.5, 132.4, 131.0, 130.8, 130.5, 130.0, 128.7, 128.6, 128.5, 127.3, 127.2, 126.0, 125.8, 125.4, 122.8, 121.3, 121.1, 121.0, 116.2, 26.8, 25.2; IR (ATR): v_{max} 3081, 1556, 1481, 1461, 1390, 1300, 1247, 1215, 1100, 1026, 962, 835, 744, 694, 556 cm⁻¹. HRMS (ESI) m/z calcd for C₅₀H₃₉N₃OP₂Cu⁺ [M-PF₆]⁺: 822.1859, found: 822.1843.

Cyclic voltammetry, absorption and emission spectra of Cu-PC-2

A solution of $(Et)_4N^+$ BF₄⁻ as supporting electrolyte (488 mg, 0.09 M) was prepared in HPLC-grade acetonitrile (25 mL) and degassed with N₂. A cyclic voltammogram of this solution was measured, then the [[Cu(N-xantphos)(dmp)]PF₆ (1 mM) powder was added and the solution was degassed again with N₂ for over 10 minutes. The cyclic voltammograms were measured using an Ag/AgCl wire reference electrode, a platinum working electrode and a platinum counter electrode using a scanning rate of 200 mV/s.

Figure S7. Cyclic voltammogram of Cu-PC-2 (1 mM) in deoxygenated acetonitrile.

The excited state redox potentials were calculated using the Rehm and Weller equation [Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Israel Journal of Chemistry. 1970;8(2):259-71.]:

$$E^*_{1/2} \stackrel{\text{red}}{=} E_{1/2} \stackrel{\text{red}}{=} E_{00}$$

 $E^*_{1/2} \stackrel{\text{oxi}}{=} E_{1/2} \stackrel{\text{oxi}}{=} E_{00}$

Where $E_{1/2}^*$ is the excited state reduction (red) or oxidation (oxi) potentials. $E_{1/2}$ is the oxidation or reduction potentials of the ground state, measured with cyclic voltammetry (figure S7). E_{00} is the energy gap between the zeroth vibrational level of the ground and excited state, which can be calculated by finding the overlap in the normalized UV-visible spectrum and the emission spectrum (figure S8), then converting that value into eV. The very weak emission spectrum was obtained by subtracting the signal due to the solvent as Raman scattering contributed significantly to the overall emission signal.

Figure S8. Normalized UV-Visible spectrum (orange) and emission spectrum ($\lambda_{ex} = 365$ nm, purple).

Table S2. Summary	of redox	potentials and	excited state re-	edox potentia	als for	Cu-PC-2
-------------------	----------	----------------	-------------------	---------------	---------	---------

$E_{1/2}^{oxi}(Cu^{II}/Cu^{I})$	$E_{1/2}^{red}(Cu^{I}/Cu^{0})$	E00	$E_{1/2}^{\text{oxi}}(Cu^{II}/Cu^{I*})$	$E_{1/2}$ ^{red} (Cu^{I*}/Cu^{0})
Vs SCE	Vs SCE	eV	Vs SCE	Vs SCE
+0.83	-1.81	3.15 (414 nm)	-2.37	+1.34

Stability of the catalyst within the reaction conditions:

Here are the ³¹P NMR of the catalyst (green) and the ³¹P NMR measurement after irradiation of the reaction mixture (red). No decomposition of the catalyst structure has been witnessed by ³¹P NMR. Hence, the catalyst **Cu-PC-1** is stable within the reaction conditions. Note, that the catalyst structure cannot be witnessed by ¹H NMR due to its low concentration in the reaction mixture.

General procedures for copper-photocatalyzed hydroboration of alkynes and alkenes

General procedure 1: copper photocatalyzed hydroboration of terminal alkynes under batch conditions.

To a 10 mL vial equipped with a stir bar the alkyne (0.2 mmol), and B_2Pin_2 (120 mg, 0.4 mmol, 2.0 equiv) was added followed by [Cu(XantphosTEPD)(phen)]PF₆ (5 mg, 0.005 mmol, 2.5 mol%) and K₂CO₃ (65 mg, 0.4 mmol, 2.0 equiv). The vial was sealed with a rubber septum, then evacuated under vacuum and back filled with argon three times. A degassed solution of acetonitrile/H₂O (9:1, 2 mL) was added to the 10 mL vial and the reaction mixture was irradiated with 405 nm LEDs for 7 hours at room temperature. Additional water was added into the reaction mixture. The water was then extracted with EtOAc 3 times, the organic layer was dried with Na₂SO₄, and the solvents were removed under vacuum. The crude residue was purified via flash chromatography (pentane/EtOAc) over silica gel to produce the hydroborated product.

General procedure 2: copper photocatalyzed hydroboration of internal alkynes under batch conditions.

To a 10 mL vial equipped with a stir bar the alkyne (0.2 mmol), and B_2Pin_2 (120 mg, 0.4 mmol, 2.0 equiv) was added followed by [Cu(N-Xantphos)(dmp)]PF₆ (5 mg, 0.005 mmol, 2.5 mol%) and t-BuOK (45 mg, 0.4 mmol, 2.0 equiv). The vial was sealed with a rubber septum, then evacuated under vacuum and back filled with argon three times. A degassed solution of acetonitrile/H₂O (9:1, 2 mL) was added to the 10 mL vial and the reaction mixture was irradiated with 405 nm LEDs for 7 hours at room temperature. Additional water was then added into the reaction mixture. The water was then extracted with EtOAc 3 times, the organic layer was dried with Na₂SO₄, and the solvents were removed under vacuum. The crude residue was purified via flash chromatography (pentane/EtOAc) over silica gel to produce the hydroborated product.

General procedure 3: copper photocatalyzed hydroboration of alkenes under batch conditions:

To a 10 mL vial equipped with a stir bar the alkyne (0.2 mmol), and B₂Pin₂ (120 mg, 0.4 mmol, 2.0 equiv) was added followed by [Cu(XantphosTEPD)(phen)]PF₆ (5 mg, 0.005 mmol, 2.5 mol%) and t-BuOK (20 mg, 0.4 mmol, 2.0 equiv). The vial was sealed with a rubber septum, then evacuated under vacuum and back filled with argon three times. A degassed solution of acetonitrile/H₂O (9:1, 2 mL) was added to the 10 mL vial and the reaction mixture was irradiated with 405 nm LEDs for 6 hours at room temperature. Additional water was then added into the reaction mixture. The water was then extracted with EtOAc 3 times, the organic layer was dried with Na₂SO₄, and the solvents were removed under vacuum. The crude residue was purified via flash chromatography (pentane/EtOAc) over silica gel to produce the hydroborated product.

- 3. Condition Optimization of copper-photocatalyzed hydroboration of terminal alkynes, non-terminal alkynes and terminal alkenes
 - a) Screening of the copper-photocatalyzed hydroboration with phenylacetylene

Catalyst screening

Ph +
$$B_2Pin_2$$
 (Cu] (2.5 mol%)
t-BuOK (2.0 equiv), 405 nm, Ar
2.0 equiv MeCN:H₂O = 9:1, 2 mL, r.t., overnight

Table S3. Photocatalyst screening for copper-photocatalyzed hydroboration. Standard conditions: phenylacetylene (0.2 mmol), [Cu] (2.5 mol%), t-BuOK (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, overnight, room temperature. ^{*a*} NMR yield. ^{*b*} *E/Z* ratio determined by ¹H NMR.

Entry	[Cu]	$\operatorname{Yield}(\%)^a$	E/Z^b
1	[Cu(XantphosTEPD)(phen)]PF ₆	70	99:1
2	[Cu(N-Xantphos)(dmp)]PF ₆	91	1:1

Base screening

Table S4. Base screening for copper-photocatalyzed hydroboration. Standard conditions: phenylacetylene (0.2 mmol), [Cu(XantphosTEPD)(phen)]PF₆ (2.5 mol%), base (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, overnight, room temperature. ^{*a*} isolated yield. ^{*b*} *E*/*Z* ratio determined by ¹H NMR.

Entry	Base	Yield $(\%)^a$	E/Z^b
1	^t BuOK	70	99:1
2	Li ₂ CO ₃	62	99:1
3	Na ₂ CO ₃	82	99:1
4	K_2CO_3	90	99 :1
5	Cs_2CO_3	79	39:1
6	NaOH	40	39:1
7	KOH	61	7:1
8	KF	75	24:1
9	NaOMe	38	99:1
10	NaPF ₆	n.r.	

Solvent screening

Table S5. Solvent screening for copper-photocatalyzed hydroboration of phenylacetylene. Standard conditions: phenylacetylene (0.2 mmol), [Cu(XantphosTEPD)(phen)]PF₆ (2.5 mol%), K₂CO₃ (2.0 equiv), B₂Pin₂ (2.0 equiv), solvent (2.0 mL), 405 nm blue LEDs, overnight, room temperature. ^{*a*} NMR yield. ^{*b*} *E/Z* ratio determined by ¹H NMR.

Entry	Solvent	Yield $(\%)^a$	E/Z^b
1	MeOH	trace	99:1
2	MeOH+H ₂ O	12	99:1
3	DMSO	16	17:1
4	DMSO+H ₂ O	37	20:1
5	MeCN	70	22:1
6	MeCN+H ₂ O	90	99:1
7	THF	56	2:1
8	THF+H ₂ O	45	2:1
9	DMF	30	10:1
10	DMF+H ₂ O	39	5:1
11	H_2O	53	4:1

Reaction time screening

$$Ph \xrightarrow{H} B_2Pin_2$$

$$2.0 equiv$$

$$\frac{[Cu(XantphosTEPD)(phen)]PF_6 (2.5 mol\%)}{K_2CO_3 (2.0 equiv), 405 nm, Ar} \xrightarrow{BPin} Ph \xrightarrow{BPin} Ph$$

Table S6. Reaction time screening for copper-photocatalyzed hydroboration of phenylacetylene. Standard conditions: phenylacetylene (0.2 mmol), [Cu(XantphosTEPD)(phen)]PF₆ (2.5 mol%), K₂CO₃ (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, t, room temperature. ^{*a*} NMR yield. ^{*b*} *E/Z* ratio determined by ¹H NMR.

Entry	Time (h)	Yield (%)a	E/Z^b
1	2	18	99:1
2	4	54	99:1
3	7	87	99:1
4	overnight	90	99:1

Catalyst loading screening

$$\begin{array}{c} \begin{array}{c} H \\ Ph \end{array} + \begin{array}{c} B_2 Pin_2 \\ 2.0 \ equiv \end{array} \xrightarrow{ \left[Cu(XantphosTEPD)(phen)\right] PF_6 (x \ mol\%) \\ \hline K_2 CO_3 (2.0 \ equiv), \ 405 \ nm, \ Ar \\ MeCN: H_2 O = 9:1, 2 \ mL, \ r.t., 7 \ h \end{array} \xrightarrow{ Ph } \begin{array}{c} Ph \end{array} \xrightarrow{ BPin } + \begin{array}{c} Ph \\ BPin \end{array}$$

Table S7. Catalyst loading screening for copper-photocatalyzed hydroboration of phenylacetylene. Standard conditions: phenylacetylene (0.2 mmol), [Cu(XantphosTEPD)(phen)]PF₆ (x mol%), K₂CO₃ (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, 7 h, room temperature. ^{*a*} NMR yield. ^{*b*} *E/Z* ratio determined by ¹H NMR.

Entry	Х	Yield $(\%)^a$	E/Z^b
1	1 mol%	66	99:1
2	2 mol%	72	99:1
3	2.5 mol%	90	99:1

b) Optimization of the copper-photocatalyzed hydroboration of diphenylacetylene

Catalyst screening

Table S8. Catalyst screening for copper-photocatalyzed hydroboration of diphenylacetylene. Standard conditions: diphenylacetylene (0.2 mmol), [Cu] (2.5 mol%), t-BuOK (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, 7 h, room temperature. ^{*a*} Isolated yield. ^{*b*} *E/Z* ratio determined by ¹H NMR.

Table S9. Base screening for copper-photocatalyzed hydroboration of diphenylacetylene. Standard conditions: diphenylacetylene (0.2 mmol), [Cu(N-Xantphos)(dmp)]PF₆ (2.5 mol%), base (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, 7 h, room temperature. ^{*a*} Isolated yield. ^{*b*} *E*/*Z* ratio determined by ¹H NMR.

Entry	Base	Yield $(\%)^a$	E/Z^b
1	^t BuOK	85(E/Z=1:14)	1:14
2	Cs_2CO_3	83(E/Z=1:3)	1:3
3	Li ₂ CO ₃	21(E/Z=1:2)	1:2
4	Na ₂ CO ₃	97(E/Z=1:3)	1:3
5	K ₂ CO ₃	85(E/Z=1:1)	1:1
6	Ag ₂ CO ₃	n.r.	
7	NaOAc	trace	
8	KOAc	trace	

c) Screening of the copper-photocatalyzed hydroboration of styrene

Ph +
$$B_2Pin_2$$
 [Cu] (2.5 mol%)
2.0 equiv base(2.0 equiv), 405 nm blue LEDs, Ar
MeCN+H₂O = 9:1, 2 mL, r.t., 6 h

Table S10. Screening of the copper-photocatalyzed hydroboration of styrene. Standard conditions: styrene (0.2 mmol), [Cu] (2.5 mol%), base (2.0 equiv), B₂Pin₂ (2.0 equiv), acetonitrile/H₂O (9:1, 2.0 mL), 405 nm LEDs, 6 h, room temperature. ^{*a*} Isolated yield.

Entry	[Cu]	Base	Yield $(\%)^a$
1	[Cu(XantphosTEPD)(phen)]PF ₆	K ₂ CO ₃	25
2	[Cu(N-Xantphos)(dmp)]PF ₆	t-BuOK	50
3	[Cu(XantphosTEPD)(phen)]PF ₆	t-BuOK	97
4	[Cu(XantphosTEPD)(phen)]PF ₆	KOH	42

4. Development of the reactions under continuous flow conditions

Screening of the copper-photocatalyzed hydroboration of phenylacetylene under continuous flow:

Ph
$$H$$
 + B_2Pin_2
2.0 equiv K_2CO_3 (2.0 equiv), blue LEDs, Ar
MeCN:H₂O = 9:1, 1 M, 30 °C, t

Table S11. Screening of the copper-photocatalyzed hydroboration of phenylacetylene. Standard conditions: phenylacetylene (1.0 equiv), B₂Pin₂ (2.0 equiv), [Cu(XantphosTEPD)(phen)]PF₆ (2.5 mol%), K₂CO₃ (2.0 equiv), acetonitrile/H₂O (9:1, 0.1M), blue LEDs (405 nm for batch, 450 nm for flow), 0.333 mL/min, reactor size (10 mL), room temperature. ^{*a*} NMR yield. ^{*b*} Z/E ratio determined by ¹H NMR.

Entry	Variation of standard conditions	Yield $(\%)^a$	E/Z^b
1	In batch for 7 h	87	99:1
2	In flow for 30 min	91	99:1
3	In flow and 20 mmol, 0.333 mL/ min	78 (1.6 g)	99:1

General Procedure for the copper photocatalyzed hydroboration of alkenes and alkynes under flow conditions:

Scheme S4. Copper photocatalyzed hydroboration of alkenes and alkynes under flow conditions

To a 10 mL vial equipped with a stir bar the alkene or alkyne (0. 2 mmol), and B₂Pin₂ (120 mg, 0.4 mmol, 2.0 equiv) was added followed by the Cu(I) photocatalyst (5 mg, 0.005 mmol, 2.5 mol%) and base (0.4 mmol, 2.0 equiv). The vial was sealed with a rubber septum, then evacuated under vacuum and back filled with argon three times. A degassed solution of acetonitrile/H₂O (9:1, 0.1 M) was then added to the 10 mL vial and the reaction mixture was pumped into the UV-150 photochemical flow reactor (10 mL) irradiated at 450 nm for 30 minutes (flow rate of 0.333 mL/min). Additional water was then added into the reaction mixture. The water was then extracted with EtOAc 3 times, the organic layer was dried with Na₂SO₄, and the solvents were removed under vacuum. The crude residue was purified via flash chromatography (pentane/EtOAc) over silica gel to produce the hydroborated product. This procedure could be scale up to 20 mmol.

Using these optimized conditions in the flow reactor, alkenes and alkynes were tested as follow (Scheme S1):

Scheme S1. Gram-scale scope under continuous flow

5. Mechanistic studies

6.1 HBPin vs B₂Pin₂

Scheme S2. HBPin replace B₂Pin₂ in the reaction

6.2 Deuterium labelling

Scheme S3. Deuterium experiments

6.3 Control experiments

Table S12. Control experiments. Standard conditions: phenylacetylene (1.0 eq), B₂Pin₂ (2.0 eq.), [Cu]/ligand (2.5 mol%), K₂CO₃ (2.0 equiv), acetonitrile/H₂O (9:1, 2 mL), blue LEDs 405 nm, 7 h, room temperature. ^{*a*} NMR yield. ^{*b*} *E*/*Z* ratio determined by ¹H NMR; ^{*c*} the reaction performed in the dark.

Entry	[Cu]	Ligand	Yield $(\%)^a$	E/Z^b
1	[Cu(XantphosTEPD)(phen)]PF ₆		89(E/Z=99:1)	99:1
2	Cu(MeCN) ₄ PF ₆		trace	
3	Cu(MeCN) ₄ PF ₆	dmp	7	
4	Cu(MeCN) ₄ PF ₆	XantphosTEPD	9	
5 ^c	[Cu(XantphosTEPD)(phen)]PF ₆		trace	
6 ^c	Cu(MeCN) ₄ PF ₆		trace	
7 ^c	Cu(MeCN) ₄ PF ₆	dmp	trace	
8^c	Cu(MeCN) ₄ PF ₆	XantphosTEPD	trace	

6.4 Effect of the radical scavengers

Scheme S4. Effect of the TEMPO (Found TEMPO-BPin, MW: 283)

6.5 Quantum yield measurements

a) Determination of the light intensity of a single blue LED at 405 nm:

Following the literature procedures from Yoon¹ and Glorius,² the photon flux of the LED (λ max = 405 nm) was determined by standard ferrioxalate actinometry. A solution of ferrioxalate (0.006 M) was prepared by dissolving potassium ferrioxalate hydrate (29.5 mg) in aq. H₂SO₄ (0.05 M, 10 mL). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (20.0 mg) and sodium acetate (4.50 g) in aq. H₂SO₄ (0.5 M, 20 mL). Both solutions were stored in the dark. To determine the photon flux of the LED, 1 mL of the ferrioxalate solution was placed in a 10 mL Schlenk tube and irradiated for 90 s at λ max = 405 nm. After irradiation, 175 µL of the phenanthroline solution was added and the mixture stirred in the dark for 1 h to allow

the ferrous ions to completely coordinate to the phenanthroline. The solution was transferred to a quartz cuvette and the absorption was measured at 510 nm. A non-irradiated sample was prepared as a control and the absorption at 510 nm was measured. The actinometry experiment was done 3 times for each sample to ensure accuracy. The average of the absorption of the irradiated and non-irradiated samples was determined and used to calculate the conversion of Fe^{2+} from eq. 1.

$$(Fe^{2+}) = \frac{V \cdot \Delta A(510 \text{ nm})}{1 \cdot \varepsilon}$$
(1)

Where V is the total volume (0.001175 L) of the solution, ΔA is the difference in absorption at 510 nm between the irradiated and non-irradiated solutions ($\Delta A = 1.214$), 1 is the path length (1.0 cm), and ε is the molar absorption coefficient of the ferrioxalate actinometer at 510 nm (11 100 L mol⁻¹ cm⁻¹). The photon flux (Φq) was calculated using eq. 2,

$$\phi_{q} = \frac{n(Fe2+)}{\Phi F \cdot t \cdot f}$$
(2)

Where Φ_F is the photoreaction quantum yield for the ferrioxalate actinometer (1.13 at $\lambda_{ex} = 405$ nm), t is the irradiation time (90 s), and f is the fraction of light absorbed at $\lambda_{ex} = 405$ nm by the ferrioxalate actinometer. This value is calculated using eq. 3. Where A is the absorption of the ferrioxalate solution at 405 nm. An absorption spectrum gave an A (405 nm) value of 1.2065, indicating that the fraction of absorbed light (f) is > 0.938.

$$f = 1 - 10^{-A} \tag{3}$$

The photon flux was thus calculated from an average of three experiments to be 1.37×10^{-9} Einstein's * s⁻¹.

b) Determination of the reaction quantum yield:

Ph +
$$B_2Pin_2$$

 $(Cu(XantphosTEPD)(phen)]PF_6 (2.5 mol%)$
 $K_2CO_3 (2.0 equiv), blue LEDs (405 nm), Ar$
 $MeCN:H_2O = 9:1, 0.01 M, r.t.$

To a dried 10 mL Schlenk tube a stir bar, phenylacetylene (0.02 mmol), [Cu(XantphosTEPD)(phen)PF₆] (2.5 mol%), B₂Pin₂ (2 equiv), and K₂CO₃ (2 equiv) in acetonitrile/H₂O (9:1, v/v, 0.01 M) was mixed together. The reaction mixture was degassed via freeze-pump-thaw 3 times. After the mixture was thoroughly degassed and filled with argon, the Schlenk tube was tightly sealed and stirred under irradiation with a single LED ($\lambda_{max} = 405$ nm) for 30 min. After irradiation, the yield was determined by proton NMR using DMF as an internal standard. The yield was determined to be 3.17% (obtained from three parallel experiments) (6.34×10⁻⁸ mol). The quantum yield (Φ) of the reaction was determined using eq. 4 where the photon flux (Φ_q) is 1.32×10^{-9} Einstein's * s⁻¹ (determined by actinometry as described above), t is the reaction time (1800 s) and f_R is the fraction of incident light absorbed by the reaction mixture. An absorption spectrum of the reaction mixture gave a value of > 3 at 405 nm, indicating that essentially all the incident light ($f_R > 0.999$) is absorbed by the photocatalyst.

$$\Phi = \frac{n(\text{product})}{\phi q \cdot t \cdot f R} \tag{4}$$

The quantum yield of the reaction (Φ_R) was determined to be $\Phi_R = 0.31$.

Ph +
$$B_2Pin_2$$
 [Cu(N-Xantphos)(dmp)]PF₆ (2.5 mol%)
t-BuOK (2.0 equiv), blue LEDs (405 nm)
2.0 equiv Ar, MeCN:H₂O = 9:1, 0.01 M, r.t. Ph BPin + Ph BPin

To a dried 10 mL Schlenk tube a stir bar, diphenylacetylene (0.02 mmol), [Cu(N-Xantphos)(dmp)PF₆] (2.5 mol%), B₂Pin₂ (2 equiv), and t-BuOK (2 equiv) in acetonitrile/H₂O (9:1, v/v, 0.01 M) was mixed together. The reaction mixture was degassed via freeze-pump-thaw 3 times. After the mixture was thoroughly degassed and filled with argon, the Schlenk tube was tightly sealed and stirred under irradiation with a single LED ($\lambda_{max} = 405$ nm) for 30 min. After irradiation, the yield was determined by proton NMR using DMF as an internal standard. The yield was determined to be 2.10% (obtained from three parallel experiments) (4.22×10⁻⁸ mol). The quantum yield (Φ) of the reaction was determined using eq. 4 where the photon flux (Φ_q) is 1.32×10^{-9} Einstein's * s⁻¹ (determined by actinometry as described above), t is the reaction time (1800 s) and f_R is the fraction of incident light absorbed by the reaction mixture, determined using eq 3. An absorption spectrum of the reaction mixture gave an absorbance value of > 3 at 405 nm, indicating that essentially all the incident light ($f_R > 0.999$) is absorbed by the photocatalyst.

The reaction quantum yield (Φ_R) was thus determined to be $\Phi_R = 0.18$.

To a dried 10 mL Schlenk tube a stir bar, styrene (0.02 mmol), [Cu(XantphosTEPD)(phen)PF₆] (2.5 mol%), B₂Pin₂ (2 equiv), and K₂CO₃ (2 equiv) in MeCN:H₂O (9:1, v/v, 0.01 M) were mixed together. The reaction mixture was degassed via freeze-pump-thaw 3 times. After the mixture was thoroughly degassed and filled with argon, the Schlenk tube was tightly sealed and stirred under irradiation with a single LED ($\lambda_{max} = 405$ nm) for 30 min. After irradiation, the yield was determined by proton NMR using DMF as an internal standard. The yield was determined to be 5.75 % (obtained from three parallel experiments) (1.15×10^{-7} mol). The quantum yield (Φ) of the reaction was determined using eq. 4 where the photon flux (Φ_q) is 1.32×10^{-9} Einstein's * s⁻¹ (determined by actinometry as described above), t is the reaction time (1800 s) and f_R is the fraction of incident light absorbed by the reaction mixture, determined using eq 3. An absorption spectrum of the reaction mixture gave an absorbance value of > 3 at 405 nm, indicating that essentially all the incident light ($f_R > 0.999$) is absorbed by the photocatalyst.

The reaction quantum yield (Φ_R) was thus determined to be $\Phi_R = 0.48$.

6.6 KIE determination and effect of HOBPin

a) Reaction in H₂O

Figure 9. Yield of product 32 over time using H₂O.

Figure 10. Yield of product 32 over reaction time using D₂O.

$$y = a'x + b'$$

KIE = $\frac{a}{a'} = 5.5$

c) Reaction in H₂O with (green) and without HOBPin (blue)

Figure 11. Reaction yield in function of reaction time using H₂O with HOBPin (green) and without HOBPin (blue).

6.7 CV measurements of B₂Pin₂ (green) and B₂Pin₂+KOH (red)

Figure 12. Cyclic voltammetry for B₂Pin₂ (green) and B₂Pin₂+KOH (red).

6.8 DFT Calculations

Density Functional Theory (DFT) calculations were performed using the Gaussian 16 software³ at the B3LYP level of theory which uses Becke's 3-parameter exchange⁴ and Lee, Yang and Parr's correlation function⁵. All geometry optimization and frequency calculations used the conductor-like polarizable continuum model (CPCM) to simulate the acetonitrile solvent.

Resulting outputs were verified for imaginary frequencies to ensure the optimized structures were local minima for ground states (no imaginary frequency) or saddle points for transition states (one imaginary frequency). Reaction free energies (ΔG) were calculated using the zero-point energy corrected Gibbs free energy at 298.15 K (Sum of Thermal and Free Energies in Gaussian Output), and free enthalpies (ΔH) were calculated using the zero-point energy corrected Gibbs free energy at 298.15 K (Sum of Energies in Gaussian Output), and free enthalpies (ΔH) were calculated using the zero-point energy corrected Enthalpy at 298.15K (Sum of electronic and thermal Enthalpies in Gaussian Output).

Both geometry and frequency calculations were conducted at the B3LYP/6-311+G(2d,2p) level of theory in "acetonitrile solvent", i.e., CPCM(ACN).

[#] Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[##] Becke, A. D., Density-functional thermochemistry. I. The effect of the exchange-only gradientcorrection. *J. Chem. Phys.* **1992**, *96*, 2155-2160; Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98*, 5648-5652.

[###] Lee, C.; Yang, W.; Parr. R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B.* **1998**, 785-789.

1. Forming PinB• from B2Pin2 oxidation in basic media:

Thermochemical data obtained from DFT calculations for the addition of hydroxide on the B₂Pin₂ to form borate (**A**).

ΔG°_{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-6.67	-17.57

Redox potential obtained from DFT calculations for the oxidation of the B₂Pin₂-OH anion according to Nicewicz (Synlett 2016; 27(05): 714-723).

Thermochemical data obtained from DFT calculations for the dissociation of the B₂Pin₂-OH radical into BPin-OH and BPin radical (C)

ΔG° _{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-50.1	-38.5

Thermochemical data obtained from DFT calculations for the dissociation of the BPin-O-BPin radical anion with H₂O for regenerate the BPin radical.

ΔG°_{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-0.5	-1.0

2. Addition reactions of PinB• onto alkenes and alkynes:

Thermochemical data obtained from DFT calculations for the anti-Markovnikov additon of the BPin radical on styrene.

ΔG [‡] (kcal/mol)	ΔG°_{RX} (kcal/mol)
11.6	-34.2
ΔH [‡] (kcal/mol)	ΔH° _{RX} (kcal/mol)
1.3	-45.6

Thermochemical data obtained from DFT calculations for the Markovnikov addition of the BPin radical on the styrene.

ΔG [‡] (kcal/mol)	ΔG° _{RX} (kcal/mol)
15.5	-17.8

ΔH [‡] (kcal/mol)	ΔH° _{RX} (kcal/mol)
4.7	-29.3

Thermochemical data obtained from DFT calculations for the addition of the BPin radical on acetylene.

ΔG^{\ddagger} (kcal/mol)	ΔG° _{RX} (kcal/mol)
11.8	-32.0

ΔH [‡] (kcal/mol)	ΔH° _{RX} (kcal/mol)
3.7	-42.2

Thermochemical data obtained from DFT calculations for the addition of the BPin radical on the phenylacetylene.

∆G‡(kcal/mol)	ΔG° _{RX} (kcal/mol)
11.4	-38.3

ΔH [‡] (kcal/mol)	ΔH° _{RX} (kcal/mol)
2.2	-49.6

Thermochemical data obtained from DFT calculations for the addition of the BPin radical on the diphenylacetylene.

ΔG^{\ddagger} (kcal/mol)	ΔG°_{RX} (kcal/mol)
16.4	-30.5
ΔH [‡] (kcal/mol)	ΔH° _{RX} (kcal/mol)
3.5	-42.7

3. Formation of final product by H-atom transfer to carbon-centered radicals.

Thermochemical data obtained from DFT calculations for the HAT between the B₂Pin₂-OH anion and the BPin-CH₂-CH-Ph radical.

ΔG° _{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-23.7	-24.8

Thermochemical data obtained from DFT calculations for the HAT between the B₂Pin₂-OH anion and the BPin-CH=C-Ph radical (*E* product).

ΔG°_{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-39.6	-41.0

Thermochemical data obtained from DFT calculations for the HAT between the B₂Pin₂-OH anion and the BPin-CH=CH radical.

ΔG° _{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-48.5	-49.5

Thermochemical data obtained from DFT calculations for the HAT between the B₂Pin₂-OH anion and the BPin-CH=C-Ph radical (*Z* product).

ΔG° _{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-34.5	-35.9

Thermochemical data obtained from DFT calculations for the HAT between the B₂Pin₂-OH anion and the BPin-CPH=C-Ph radical (*E* product).

ΔG°_{RX} (kcal/mol)	ΔH° _{RX} (kcal/mol)
-35.9	-37.9

Thermodynamic data exploring the possible Lewis base interactions with boryl radical C.

H C H H H

CITICITICITICITICIT

H O H

DFT energies and coordinates as obtained from 6-311++G(2d,2p)//CPCM(acetonitrile).

B ₂ Pin ₂ -OH Anion			
Zero-point correction (Hart Thermal correction to Ene Thermal correction to Enth Thermal correction to Gibb Sum of electronic and zerr Sum of electronic and ther Sum of electronic and ther Sum of electronic and ther	tree)= rgy= nalpy= os Free E o-point E rmal Ene rmal Entf rmal Free	Energy= nergies= rgies= nalpies= e Energies=	0.373224 0.394909 0.395853 0.324346 -898.436504 -898.414819 -898.413875 -898.485381
C 22 C 22 C 22 B B -0 O -1 O O -1 O O -1 O O -1 O O -1 O O -1 C -3 H H -3 H H -3 H H -3 H H -3 H H -3 H H -3	2.73907 3.04552 2.92523 2.56017 8.7453 0.79267 1.56174 1.68018 1.85953 1.29941 3.97188 4.92554 3.55894 3.55894 3.65994 3.659945 3.659945 3.659945 3.659945 3.659945555555555555555555555555555	-0.80912 0.48667 -0.14418 -0.37942 0.94751 0.4328 0.58698 0.21044 1.27395 -0.84599 1.0216 1.25875 0.77404 1.9072 -1.37794 -1.74679 -1.1169	-0.42547 0.40606 -0.66557 0.85035 -0.219 -0.17074 1.08723 -1.2292 0.18432 -0.41433 -0.84992 -1.91373 -0.49997 -0.33046 -1.39768 -0.94381 -2.43609

-2.72	798	-2.1801	-1	.40046	
-3.71	681	-0.1538	4 [.]	1.83196	
-4.55	417	-0.8301	3 .	1.63547	
-3.36	723	-0.3358	7 2	2.85054	
-4.07	336	0.8725	7	1.78065	
-1.97	119	-1.7858	1 '	1.09041	
-1.54	968	-1.8117	72	2.09702	
-2.72	263	-2.5766	5	1.0123	
-1.16	895	-1.9867	7 ().38247	
3.17	7608	-0.7038	5 -	1.8931	
4.26	6183	-0.7400	8 -2	2.00258	
2.74	1402	-1.5394	5 -2	2.44313	
2.80)639	0.2164	- 14	2.34243	
3.26	5921	-2.1089	2	0.17464	
2.97	787	-2.9454	3 -0).4612	
4.35	5969	-2.0979	3	0.24256	5
2.85	5829	-2.2854	4	1.16563	
3.14	1022	0.2276	61	1.9158	l
4.04	197	-0.3136	4	2.18382	
3.14	1413	1.1872	23	2.43246	6
2.27	7699	-0.3351	2	2.26705	, ,
4.26	6155	1.2868	- 36	0.05447	•
4.36	643	2.1754	16	0.56882	2
5.17	7898	0.7002	21	0.03474	1
4.15	5468	1.6134	19 -	1.08609)
-0.96	683	2.4049	94 -(0.46007	
-0.19	041	2.8347	1 -(0.08656	

С	-2.77638	-0.62901	-0.51857
C	-2.74955	0.77954	0.19353
C	2.82405	-0.57344	-0.46704
С	2.53224	0.89103	0.03849
В	0.92295	-0.5504	0.86401
В	-0.71085	-0.22585	0.34232
0	1.61255	0.65861	1.13919
0	1.58937	-1.27544	-0.15239
0	-1.47114	0.72674	0.93863
0	-1.33539	-0.96048	-0.60827
С	3.93391	-1.27013	0.32745
Н	3.95497	-2.32416	0.05346
н	4.91044	-0.84102	0.10464
н	3.76045	-1.19891	1.40021
С	3.09344	-0.6958	-1.9613
Н	3.98021	-0.1268	-2.24174
Н	3.27131	-1.74037	-2.21584
Н	2.25262	-0.3406	-2.55192
С	3.74602	1.63353	0.58666
н	4.50552	1.75096	-0.1866
н	3.44641	2.62778	0.91697
н	4.18803	1.11245	1.43192
С	1.82321	1.76187	-1.00312
Н	1.46945	2.6724	-0.52135
Н	2.49998	2.04372	-1.80868
Н	0.96643	1.25229	-1.44173
С	-3.41926	-1.73018	0.3214
Н	-4.49623	-1.58681	0.39625
Н	-3.23645	-2.69162	-0.15618
Н	-3.00303	-1.76402	1.32691
С	-3.34728	-0.62944	-1.92746
Н	-3.29461	-1.63569	-2.3411
Н	-4.39438	-0.32648	-1.91334
Н	-2.80119	0.04062	-2.58607
С	-2.63992	1.95607	-0.77329
Н	-3.56776	2.09626	-1.32604
Н	-2.44191	2.86375	-0.20519
Н	-1.8298	1.81677	-1.48712
С	-3.86724	1.0161	1.19718
Н	-3.74686	1.99875	1.65135
Н	-4.83676	0.99268	0.69935
Н	-3.86549	0.2707	1.98798
0	0.38453	-1.32274	1.95987
Н	0.08943	-0.75573	2.6824

BPin-OH				
Zero-point correction (Hartree)=			0.195514	
Thermal correction to Energy=			0.206197	
Thermal correction to Enthalpy=			0.207141	
Thermal correction to Gibbs Free Energy=			0.160926	
Sum of electronic and zero-point Energies=			-487.133146	
Sum of electronic and thermal Enthalpies=			-487.122463	
Sum of electronic and thermal Enthalpies=			-487.121519	
Sum of electronic and thermal Free Energies=			-487.167735	
C	-0.5592	-0.55451	-0.48488	
C	0.5592	0.55451	-0.48488	
B	0.	0.	1.72189	
O	1.03364	0.51116	0.87271	

-1.03364	-0.51116	0.87271
0.	-1.96078	-0.73939
-0.78382	-2.69215	-0.54171
0.32994	-2.08827	-1.77051
0.83939	-2.17628	-0.07886
-1.72529	-0.29142	-1.43363
-1.38484	-0.23832	-2.46875
-2.44768	-1.10529	-1.36128
-2.23722	0.63691	-1.19043
1.72529	0.29142	-1.43363
1.38484	0.23832	-2.46875
2.44768	1.10529	-1.36128
2.23722	-0.63691	-1.19043
0.	1.96078	-0.73939
0.78382	2.69215	-0.54171
-0.32994	2.08827	-1.77051
-0.83939	2.17628	-0.07886
0.	0.	3.01814
0.9051	0.	3.33814

0 С Н Н Н С н н н С н Н н С н н н 0 н

н	-3.86729	2.50334	-0.69303	
н	-3.53885	1.19422	-1.83002	
С	-3.77654	1.04921	1.61765	
н	-3.85166	2.13184	1.72454	
н	-4.78126	0.63394	1.70991	
н	-3.16907	0.67007	2.43617	
С	-2.68765	-1.63919	1.2509	
Н	-3.55901	-1.70972	1.90189	
Н	-2.39628	-2.64959	0.9634	
Н	-1.86611	-1.19676	1.81231	
С	-4.14495	-1.48342	-0.77157	
н	-3.93123	-2.54154	-0.9256	
н	-5.07237	-1.40933	-0.20177	
н	-4.29895	-1.0241	-1.74514	
0	-0.00001	0.70247	-1.40092	

Styrene			
Zero-point correction Thermal correction of Thermal correction of Thermal correction of Sum of electronic an Sum of electronic an Sum of electronic an Sum of electronic an	n (Hartree)= to Energy= to Enthalpy= to Gibbs Free En nd zero-point En nd thermal Energind thermal Enthand thermal Free	nergy= lergies= gies= alpies= Energies=	0.133067 0.139815 0.140760 0.101767 -309.613881 -309.607133 -309.606188 -309.645181
С	0.5674	-0.32982	-0.60507
	2 60172	-0.23452	-0.02940
C	1 84015	1 89728	0.52444
C	0.44221	1.80198	0.54884
C	-0.19417	0.68843	-0.01592
Н	0.08151	-1.18004	-1.03628
Н	2.54681	-1.01198	-1.07929
Н	2.32604	2.7475	0.95565
Н	-0.13927	2.57944	0.99867
Н	-1.26153	0.61567	0.0027
C	4.13792	0.98375	-0.09151
	4.62381	1.83397	0.3397
	4.01430	-0.00094	-0.00123
н	5 94174	0.07183	-0.67986
	0.01114	5.07 100	2.07000

Diphenylacetylene			
Zero-point correction (Hai Thermal correction to Ent Thermal correction to Ent Thermal correction to Gib Sum of electronic and zer Sum of electronic and the Sum of electronic and the Sum of electronic and the	rtree)= ergy= halpy= bs Free Er ro-point En rmal Entha rmal Entha	nergy= lergies= gies= alpies= Energies=	0.191069 0.202130 0.203075 0.151308 -539.431542 -539.420480 -539.419536 -539.471303
СССССНТТТТСССССССССССС	4.13459 2.74644 2.03214 2.74674 4.13488 4.83386 4.67163 2.20263 2.20263 2.20263 2.20315 4.67218 5.91511 0.60374 -0.60376 -2.03214 -2.74647 -2.74647 -2.7467 -4.13486 -2.20267 -4.13486 -2.20267 -4.13486 -2.2021 -4.83386 -4.67169 -4.67212 -5.91511	0.85286 0.85573 -0.00007 -0.85579 -0.85278 0.00008 1.51783 -1.51742 -1.51771 0.0001 -0.00015 0.00021 -0.85565 0.85578 -0.85287 -1.51725 0.85271 1.51775 -1.51775 -1.5177 -0.00026	0.84952 0.85223 -0.00019 -0.85244 -0.84932 0.0002 1.51202 1.51157 -1.51165 0.00034 -0.00027 0.00001 -0.00003 0.8524 -0.85237 0.8495 1.51138 -0.8494 -1.51136 0.00007 1.51184 -1.51171 0.00012

Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=			-308.377292 -308.376348 -308.414168
С	2.38048	-1.00375	0.00068
С	3.77564	-1.00375	0.00068
С	4.47318	0.204	0.00068
С	3.77552	1.41251	-0.00052
С	2.3807	1.41243	-0.001
С	1.6831	0.20423	0.
Н	1.83072	-1.95607	0.00113
Н	4.32515	-1.95626	0.002
Н	4.32572	2.36465	-0.00058
Н	1.83058	2.36471	-0.00195
Н	0.58349	0.20441	-0.00018
С	6.01318	0.20411	0.00157
С	7.21438	0.2042	0.00226
Н	8.28438	0.20428	0.00288

Г

С	2.60695 2.02226 -0.17765
Н	2.49664 2.6936 0.67192
Н	3.40969 2.39449 -0.81549
Н	1.67402 2.03951 -0.74241
С	4.20795 0.5924 1.15055
Н	5.09115 0.76988 0.53117
Н	4.17551 1.37008 1.91374
Н	4.32321 -0.37254 1.63828

BPin-CHPh-CH ₂ Radical
Zero-point correction (Hartree)=0.312554Thermal correction to Energy=0.330109Thermal correction to Enthalpy=0.331053Thermal correction to Gibbs Free Energy=0.266226Sum of electronic and zero-point Energies=-720.810847Sum of electronic and thermal Energies=-720.793292Sum of electronic and thermal Enthalpies=-720.792347Sum of electronic and thermal Free Energies=-720.857174
C -4.41853 -1.06248 -0.38898 C -3.99471 -0.17896 -1.377 C -2.8472 0.63329 -1.15981 C -2.1749 0.58251 0.04366 C -2.61116 -0.31084 1.02727 C -3.72067 -1.12367 0.8146 H -5.28157 -1.69315 -0.55275 H -4.52866 -0.11682 -2.31584 H -2.66787 1.32012 -1.93456 H -2.0804 -0.38112 1.96671 H -2.0804 -0.38112 1.96671 H -2.0804 -0.38112 1.96671 H -2.0804 0.38112 1.96671 H -2.0814 -0.64266 0.216 C -0.95811 1.46846 0.23605 G -0.85761 2.14613 1.67271 C 2.54962 0.216 -0.64226 C 2.64962 0.216 -0.614256 C 2.08285 -0.85328 0.41871

BPin-CH ₂ -CPh Radical				
Zero-point correction (Hartree)= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free E Sum of electronic and zero-point E Sum of electronic and thermal Ener Sum of electronic and thermal Enth Sum of electronic and thermal Free	inergy= nergies= rgies= nalpies= e Energies=	0.314146 0.331165 0.332109 0.267053 -720.836265 -720.819246 -720.818302 -720.883358		
C -5.53407 C -4.89121 C -3.56714 C -2.81782 C -3.49277 C -4.82265 H -6.57273 H -5.43086 H -3.08053 H -2.96771 H -5.31562 C -1.47755 H -1.11297 C -0.54038 H -0.8806 H -0.51417 C 2.91612 C 2.83168 B 0.92647 O 1.41405 O 1.80706 C 3.63919 H 3.37469 H 4.71147 H 3.41206 C 3.13663 H 4.15641 H 3.03152 H 2.4481	-0.1001 1.13099 1.28231 0.19759 -1.04525 -1.17994 -0.21395 1.97209 2.24086 -1.89263 -2.13163 0.38099 1.40201 -0.68148 -1.66377 -0.72507 0.6336 -0.5168 -0.43112 -0.9019 0.28003 -1.72204 -2.55346 -1.52947 -2.00191 -0.10041 0.27501 -0.97095 0.66368	-0.47793 -0.64328 -0.28201 0.24754 0.40566 0.05361 -0.75511 -1.05716 -0.41195 0.82194 0.19885 0.60027 0.59458 1.05342 0.72251 2.15705 0.34963 -0.71135 0.5567 -0.60474 1.24916 -0.29925 -0.94981 -0.38486 0.72976 -2.14555 -2.26509 -2.7934 -2.48528		
	3			
---	--	---------------------	---------------------	--------------
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
<b>1</b>		<b>کر</b> ا		
		وه مز		
	•		2	
	5			
BPin-CPh=CPh Radical				
Zero-point correction (Ha Thermal correction to En	artree)= ierav=		0.371	434 93095
Thermal correction to En	ithalpy=		0.39	4039
Thermal correction to Gi	bbs Free E	nergy=	0.31	7564
Sum of electronic and th	ermal Ener	gies=	-950.628	8064
Sum of electronic and th	ermal Enth	alpies=	-950.627	120
Sum of electronic and th	ermal Free	Energies=	-950.703	3595
С	-0.90571	4.31431	-0.5958	
С	-0.85997	2.92386	-0.5702	
C	0.24379	2.25476	-0.03087 0.49304	
C	1.24375	4.40944	0.47139	
С	0.1431	5.06392	-0.07612	
н	-1.6868	2.35576	-1.02247	
Н	2.1482	2.52125	0.92384	
Н	2.06371	4.9807	0.88578	
С	0.32595	0.75861	-0.09231	
C	1.4831	0.14027	-0.02064	
C	2.58668	-0.66523	-0.02062	
C	3.19357	-1.09353	-1.245	
C	4.31679	-1.89316	1.18662	
H	2.75286	-0.78396	2.13952	
Н	2.75125	-0.78047	-2.18041	
С	4.89169	-2.30071	-0.02217	
Н	4.75651	-2.20842	2.12352	
Н	5.77306	-2.92599	-0.02284	
В	-0.94343	-0.16849	-0.00973	
0	-2.23926	0.27653	-0.02895	
C	-3.09853	-0.87663	0.28776	
С	-2.192	-2.07586	-0.18347	
Н	-3.83227	-0.87928	2.06627	
Н	-4.07115	-1.67706	2.06649	
H	-2.46599	-0.99803	2.36854	
Н	-4.39476	-0.69426	-0.49043	
Н	-4.93124	0.17237	-0.10608	
H	-4.21017	-0.53469	-1.54958	
Н	-3.30115	-2.86971	-1.88588	
Н	-2.23953	-1.51296	-2.2881	
H C	-1.55126	-3.10066 -3.3450	-1.95534 0.6481	
H	-2.06468	-3.16918	1.69094	
н	-3.32601	-3.74942	0.59386	
Н	-1.62934	-4.09957	0.26132	



BPin-CHa-CHa-Ph		
Zero-point correction (Hartree)= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Sum of electronic and zero-point Sum of electronic and thermal Er Sum of electronic and thermal Fr	Energy= Energies= ergies= thalpies= ee Energies=	0.327597 0.344647 0.345591 0.281318 -721.467606 -721.450557 -721.449613 -721.513886
C 3.4424   C 3.3933   C 2.8097   C 2.2533   C 2.3022   C 2.3032   C 2.3032   C 2.3032   C 2.866   H 3.9037   H 3.8183   H 2.7727   H 1.8780   H 2.9236   C 1.5899   H 1.1760   C 0.4686   H 0.0073   C -2.2271   C -1.9651   B -0.6596   O -0.6127   O -1.8926   C -2.9163   H -2.6930   H -2.6930   H -2.7887   C -2.1657   H -3.1812   H -1.513   C -1.6131   C -3.6851   H -3.8219   H -3.8219   H -3.8219	-0.97469     8   0.396     1.25153     4   0.76553     7   -0.60516     5   -1.46069     2   -1.65018     2   -2.9808     4   -0.97623     2   -2.50724     9   1.73772     8   2.56662     5   1.00709     6   0.17819     13   1.68258     1   0.48562     4   -0.92626     8   1.27378     2   -1.31465     6   -2.30017     7   -1.28034     2   -0.61354     3   0.83385     1   1.97804     3   -1.94048     2   -2.95977     -1.7413   0.83385     5   0.19978     7   0.6878     7   0.6878     7   0.46619     9   2.09195	$\begin{array}{c} 1.31769\\ 1.60542\\ 0.73177\\ -0.45939\\ -0.74712\\ 0.12653\\ 2.00748\\ 2.51489\\ 0.95145\\ -1.65659\\ -0.09315\\ -1.45217\\ -0.91691\\ -2.214\\ -2.74926\\ -2.90379\\ 0.45359\\ -0.00423\\ -1.14115\\ -0.46427\\ -0.69026\\ -1.16064\\ -1.5125\\ -0.8141\\ -1.9588\\ 1.12897\\ 1.46455\\ 0.76665\\ 1.94305\\ 1.63301\\ 1.91309\\ 2.46444\\ 1.34098\\ 0.89755\\ 1.73411\\ 1.17762\\ 0.0894\\ -2.1479\end{array}$



BPin-CH=CPH-h (Z)		
Zero-point correction (Hai Thermal correction to Ene Thermal correction to Ent Thermal correction to Gib Sum of electronic and zer Sum of electronic and the Sum of electronic and the Sum of electronic and the	tree)= trgy= halpy= bs Free Energy= o-point Energies= rmal Energies= rmal Enthalpies= rmal Free Energies=	0.304502 0.321238 0.322182 0.259462 -720.269696 -720.252959 -720.252015 -720.314736
いいいいです「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	2.35703   0.94334     3.5993   0.33724     4.70056   0.68867     4.56351   1.64795     3.3224   2.25504     2.21995   1.89844     1.51425   0.6737     3.7049   -0.38978     5.40364   1.91719     3.21799   2.98693     1.27382   2.36065     6.0736   0.03132     6.905   0.30977     6.23695   -0.90619     5.40346   -2.19493     7.71811   -1.58695     8.19855   -2.89546     8.79637   -1.04113     10.20754   -1.69947     10.13099   -2.05475     11.23277   -1.55568     9.6845   -0.7163     10.36438   -4.06144     11.39189   -3.90665     10.28149   -3.24123     9.03863   -2.83946     9.66171   -4.12001     8.05811   -3.49163     11.0619   -1.84853     11.66108	-0.67219 -0.8987 -0.09637 0.92039 1.14312 0.34904 -1.28057 -1.68298 1.52793 1.91712 0.52388 -0.3219 0.28561 -1.29167 -1.90057 -1.10048 -2.53667 -1.5204 -0.83811 2.49149 -0.14151 0.86545 -0.39118 -0.23614 -0.93493 -1.17305 0.08023 -1.59743 -3.5029 -4.49401 -3.48369 -3.20309 -2.99474 -2.98265 -3.9833 -2.33342





Zero-point correction (Hartree)=		0.021259	
Thermal correction to Energy=		0.024094	
Thermal correction to Enthalpy=		0.025038	
Thermal correction to Gibbs Free Energy=		0.003614	
Sum of electronic and zero-point Energies=		-76.447648	
Sum of electronic and thermal Energies=		-76.444812	
Sum of electronic and thermal Enthalpies=		-76.443868	
Sum of electronic and thermal Free Energies=		-76.4465293	
О	-1.5912	0.07945	1.16018
Н	-0.6312	0.07945	1.16018
Н	-1.91166	0.98438	1.16018



Sum of electronic and thermal Energies=			-77.333096
Sum of electronic and thermal Enthalpies=			-77.332152
Sum of electronic and thermal Free Energies=			-77.354837
С	0.	0.	0.59804
Н	0.	0.	1.65895
С	0.	0.	-0.59804
Н	0.	0.	-1.65895

BPin RadicalAcetylene(TS)	
Zero-point correction (Hartree)= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Ener Sum of electronic and zero-point Ener Sum of electronic and thermal Energie Sum of electronic and thermal Enthalp Sum of electronic and thermal Free En	0.205808 0.218831 0.219775 gy= 0.165773 gies= -488.479772 ss= -488.466749 ies= -488.465805 nergies= -488.519807
C -0.81763 0   C -0.90491 -0   B 1.03941 -0   O 0.47039 -0   O 0.30903 -0   C -1.81314 -1   H -1.66433 -2   H -2.86445 -1   H -2.86445 -1   H -2.23196 -1   H -2.23196 -1   H -0.51627 -1   H -0.18791 -1   H -1.2124 -1   H -2.91792 -1   H -2.26107 -1	0.79817 0.11085   0.77352 0.01563   0.03794 -0.91226   1.14199 -0.36351   1.10119 -0.7937   .27216 -1.10843   2.34395 -1.23061   1.09602 -0.88065   0.78985 -2.0554   .48313 1.31937   .19322 1.67319   .56015 1.15655   .26158 2.09801   1.3086 1.49259   2.37218 1.42346   1.17306 2.21896   0.80086 1.85685   1.54782 -0.39143   1.30534 0.21296   2.62049 -0.31629   1.31423 -1.42978   0.30258 -0.4486   0.38946 0.51093   1.0053 -1.24181   1.064 1.32812

BPin-CH=CH Radical	
Zero-point correction(Hartree)= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=	0.209487 0.221686 0.222631 0.171898 -488.545319 -488.533120 -488.532176 -488.582908
C -0.76376 0.70882   C -0.8133 -0.77248   B 1.22854 0.05534   O 0.53614 -1.21393   O 0.25544 1.25264   C -1.24897 -0.90478   C -1.24897 -0.90478   H -1.22937 -0.90478   H -2.24159 -0.52182   H -0.57872 -0.3489   C -1.79041 -1.58186   H -2.78167 -1.19896   H -2.78167 -1.19896   H -2.78167 -1.19896   H -1.76513 -2.60988   H -1.76535 -1.4991   C -0.36207 0.83964   H -0.27573 1.87497   H -1.10909 0.38151   H 0.57769 0.35335   C -2.11581 1.41753   H -2.01963 2.4508   H -2.01963 2.4508   H -2.41163 1.33439   C 2.	0.39515 0.00013 -0.38227 0.15994 -0.44564 1.47102 1.75751 1.58486 2.09285 0.87293 0.7476 0.57723 1.90037 1.87607 2.13209 2.49006 2.03503 0.19199 0.81498 0.45276 -0.83294 -0.83778 0.06836 -1.84861 0.7838



BPin RadicalCH ₂ =CH-Ph (TS) Imaginary frequency = -96.91 Zero-point correction (Hartree)= Thermal correction to Entergy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Ene Sum of electronic and zero-point Ene Sum of electronic and thermal Enthal Sum of electronic and thermal Enthal Sum of electronic and thermal Free E	0.312262 0.329749 0.330693 ergy= 0.263825 rgies= -720.76209 es= -720.744522 pies= -720.743578 nergies= -720.810446
$\begin{array}{ccccc} & -2.6701 \\ C & -2.23253 \\ B & -1.33483 \\ O & -1.15418 \\ O & -2.26821 \\ C & -3.31335 \\ H & -2.87491 \\ H & -4.1244 \\ H & -3.72964 \\ C & -1.6446 \\ H & -2.38717 \\ H & -1.34704 \\ H & -0.77249 \\ C & -1.687 \\ H & -0.77249 \\ C & -1.887 \\ H & -2.1215 \\ H & -2.15928 \\ H & -0.81264 \\ C & -4.16356 \\ H & -4.51436 \\ H & -$	0.23964 0.59298   0.95736 -0.33566   0.99845 -1.09642   0.34297 -1.1551   1.42482 -0.21228   1.40464 -1.31726   2.09735 -2.03417   1.91797 -0.80203   0.56272 -1.86794   2.15656 0.39088   2.60237 1.05337   2.91211 -0.3352   1.88643 0.98015   0.32425 1.90061   1.26663 2.3936   0.48779 2.57379   0.28739 1.72918   0.33887 0.85899   0.54209 1.39731   1.21197 1.47826   0.43281 -0.06097   2.42481 -0.99535   1.87727 0.06496   2.10717 -2.01045   3.28711 -0.87311   2.28784 1.04571   0.74253 1.33482   0.83226 2.19353   0.99519 -1.05225   0.36712 -2.06168   1.40638 0.1675



BPin RadicalCl	HECPh (TS)		
Imaginary frequen Zero-point correct Thermal correction Thermal correction Thermal correction Sum of electronic Sum of electronic Sum of electronic Sum of electronic	cy = -355.60 ion (Hartree)= n to Energy= n to Enthalpy= n to Gibbs Free En and zero-point En and thermal Ener and thermal Entha and thermal Free	nergy= iergies= gies= alpies= Energies=	0.287495 0.304850 0.305794 0.238461 -719.530713 -719.513558 -719.512413 -719.579747
いいエいいいでエンエンコーのののののコードのエコーで	$\begin{array}{c} 1.97878\\ 0.96349\\ 0.44597\\ 3.01673\\ 3.60977\\ 3.48529\\ 4.63005\\ 3.26102\\ 4.50582\\ 3.04055\\ 5.08374\\ 5.07389\\ 4.85285\\ 5.87971\\ -2.38564\\ -3.2618\\ -1.01154\\ -2.41215\\ -4.60254\\ -5.23867\\ -5.11066\\ -4.48965\\ -3.43431\\ -3.88323\\ -4.09165\\ -2.47987\\ -2.65301\\ -1.89148\\ -3.62666\\ -2.61686\\ -2.61686\\ -2.39868\\ -3.40209\\ -1.73595\\ -2.06708\\ \end{array}$	1.65939 2.32913 3.24633 0.7205 0.05909 0.43132 -0.85823 0.27415 -0.48857 0.93394 -1.13733 -1.35833 -0.70103 -1.85261 -0.9642 0.28389 0.9459 -0.39048 1.42181 0.38768 -0.4583 1.29854 0.41419 0.46053 1.43363 -0.30445 0.41551 -1.48 -2.21403 -1.9645 -0.67729 -2.1102 -2.5277 -2.90182 -1.79428	-0.31066 -0.46851 -0.63512 -0.11106 -1.206 1.18701 -1.00314 -2.20603 1.37632 2.03408 0.28558 -1.85302 2.37824 0.43828 -0.15396 0.24676 -0.31462 -0.1745 -0.20871 -0.46152 -0.19891 -0.14746 -1.54202 1.94627 2.16465 2.27495 -1.56533 -1.82444 -1.62729 -2.29996 0.84441 0.93198 0.49718 1.82986



CH3CN-BPin Rad	dical + CH=CPh (T	S)	
Imaginary freque Zero-point correct Thermal correction Thermal correction Thermal correction Sum of electronic Sum of electronic Sum of electronic Sum of electronic	ncy = -601.7020 tion (Hartree)= in to Energy= in to Enthalpy= in to Gibbs Free Er and zero-point En and thermal Energ and thermal Entha and thermal Free	nergy= ergies= gies= alpies= Energies=	0.334648 0.355970 0.356915 0.282834 -852.318071 -852.296749 -852.295805 -852.369885
СССССТСТСТТТВООZСССССТТТТТТТТТТТТТТТТ	$\begin{array}{c} 1.26003\\ 0.09099\\ 2.50792\\ 3.0946\\ 3.20845\\ 4.33092\\ 2.56595\\ 4.44417\\ 2.7718\\ 5.00999\\ 4.76919\\ 4.97104\\ 5.97474\\ -0.44165\\ -1.35571\\ -0.80781\\ -2.04759\\ -2.08159\\ -1.38025\\ -1.76824\\ -2.22987\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -0.33827\\ -3.8031\\ -0.4193\\ -0.41933\\ -0.8931\\ -0.41933\\ -0.8931\\ -0.41933\\ -0.8936\\ 0.29627\\ -3.85119\\ -2.48418\\ -3.57864\\ \end{array}$	1.16507 1.4608 0.71439 1.28147 -0.29975 0.84179 2.05857 -0.72947 -0.73344 -0.1632 1.28067 -1.5066 -0.5023 2.15226 0.58407 -0.13336 -0.28434 1.86791 -1.46666 -1.64804 3.01993 -2.45131 -1.4616 -2.48458 -2.18178 4.17842 -2.23831 -3.47566 -2.38106 -2.45092 -1.15075 -0.76297 -2.54001 -3.50189 -2.0539 -3.23231 -2.09266 -1.6163 3.92474 5.00513 4.51053	$\begin{array}{c} -0.88061\\ -1.16411\\ -0.41964\\ 0.73386\\ -1.10996\\ 1.17715\\ 1.26671\\ -0.65531\\ -1.99792\\ 0.48741\\ 2.0626\\ -1.19119\\ 0.83769\\ -1.80089\\ -0.14446\\ 0.93597\\ -1.01201\\ 0.15693\\ 0.9157\\ -0.60136\\ -0.11622\\ 1.43338\\ 1.84871\\ -0.84762\\ -1.46099\\ 0.18242\\ 2.48063\\ 1.36896\\ 0.87531\\ 1.931\\ 2.84236\\ 1.505\\ -1.9184\\ -0.47913\\ -0.3644\\ -1.25044\\ -2.51162\\ -1.30036\\ 0.92732\\ 0.54593\\ -0.73383\\ \end{array}$

HOBPin Radical Anion		
Zero-point correction (Hartree) = Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free End Sum of electronic and zero-point Energi Sum of electronic and thermal Energi Sum of electronic and thermal Enthal Sum of electronic and thermal Free E	ergy= ergies= ies= pies= Energies=	0.192475 0.203179 0.204124 0.157238 -487.173510 -487.162805 -487.161861 -487.208747
C   0.51062     C   0.55523     B   -1.60428     O   -0.87926     O   -0.81063     O   -2.95923     H   -3.3755     C   0.76364     H   0.51678     H   0.13411     C   1.40074     H   2.45292     H   1.29112     H   1.3691     C   0.82696     H   0.65238     H   0.15898     C   1.50125     H   2.53257     H   1.46367     H   1.23183	-0.79652 0.77923 0.05334 -1.04302 1.10687 0.13298 0.69974 -1.48382 -2.54085 -1.40123 -1.06095 1.40389 -1.1741 -2.48823 -1.04566 1.44899 2.52032 1.29752 1.06479 1.33046 1.03048 2.41986 0.98668	-0.04838 0.04641 0.01545 -0.39599 0.41984 0.03037 -0.24076 1.29569 1.20197 1.60114 2.08 -1.12441 -0.9365 -1.11878 -2.1181 -1.30309 -1.20683 -1.62771 -2.07542 1.10488 0.90253 1.09789 2.10293



## 6. Special data of the LEDs used

7. Experimental data for hydroboration products



(*E*)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc from 150:1 to 120:1. Yield: 87% (40.0 mg), E/Z = 99:1. Pale yellow oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.76 (d, *J* = 18 Hz, 1H), 7.34-7.31 (m, 2H), 7.03-7.01 (m, 3H), 6.46 (d, *J* = 18 Hz, 1H), 1.12 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.3, 138.1, 129.0, 128.9, 127.4, 83.2, 25.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆):  $\delta$  30.4. IR (ATR): v_{max} = 2978, 1622, 1450, 1370, 1349, 1320, 1209, 1141, 969, 850, 747, 692 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₂₀BO₂ [M+H]⁺: 231.1560, found 231.1556.



(*Z*)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 80:1. Yield: 85% (40.0 mg), E/Z = 1:14. Pale yellow solid, mp: 68-70 °C (Pentane/EtOAc).^{3 1}H NMR (300 MHz, C₆D₆):  $\delta$  7.87 (s, 1H), 7.44-7.41 (m, 2H), 7.21-7.16 (m, 3H), 7.12 (s, 1H), 7.05-7.00 (m, 1H), 6.93-6.83 (m, 3H), 1.08 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  144.0, 143.5(minor), 141.1, 141.1(minor), 139.6(minor), 137.4, 130.3, 129.2, 128.7, 128.6(minor), 127.4, 127.0, 126.5, 83.6, 24.7, 24.4(minor). The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.4. iiIR (ATR): v = 2980, 1622, 1450, 1371, 1349, 1209, 1141, 969, 850, 755, 690 cm⁻¹. HRMS (ESI): m/z Calculated for C₂₀H₂₃BO₂ [M]⁺: 306.1791, found 306.1803.



4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1). Yield: 97% (45.0 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.21-7.05 (m, 5H), 2.67 (t, *J* = 8.2 Hz, 2H), 1.14-1.04 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  144.4, 128.2, 128.0, 125.5, 83.1, 29.9, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 33.7. IR (ATR): v_{max} = 2978,

2931, 1370, 1316, 1143, 743, 698 cm⁻¹. HRMS (ESI): m/z Calculated for  $C_{14}H_{21}BO_2$  [M]⁺: 232.1635, found 232.1630. These spectroscopic data match those previously reported.⁴



(*E*)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 100:1. Yield: 90% (43.9 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.78 (d, *J* = 18 Hz, 1H), 7.28 (d, *J* = 9 Hz, 2H), 6.86 (d, *J* = 9 Hz, 2H), 6.44 (d, *J* = 18 Hz, 1H), 2.02 (s, 3H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.3, 138.8, 135.4, 129.6, 127.4, 83.1, 24.9, 21.2. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 2978, 1625, 1511, 1347, 1319, 1141, 995, 969, 854, 798 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₁₈BBrO₂ [M]⁺: 244.1639, found 244.1634.



(*E*)-4,4,5,5-tetramethyl-2-(3-methylstyryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 92% (44.9 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.79 (d, *J* = 18 Hz, 1H), 7.23-7.18 (m, 2H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.50 (d, *J* = 18 Hz, 1H), 2.01 (s, 3H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.2, 137.8, 129.5, 128.4, 127.9, 127.5, 124.3, 82.8, 24.6, 20.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.4. IR (ATR): v_{max} = 2978, 2927, 1449, 1369, 1319, 1143, 967, 850, 804 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₂ [M]⁺: 244.1638, found 244.1634.



(*E*)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 89% (43.5 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  8.04 (d, *J* = 18 Hz, 1H), 7.56 (m, 1H), 6.98 (m, 2H), 6.88 (m, 1H), 6.43 (t, *J* = 18 Hz, 1H), 2.11 (s, 3H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  147.7, 137.0, 136.4, 130.7, 128.8, 126.5, 126.0, 83.2, 24.9, 19.5. The carbon signal attached to B was not observed

due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.4. IR (ATR):  $v_{max} = 2978$ , 2927, 1449, 1369, 1319, 1143, 967, 850, 804 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₂ [M]⁺: 244.1635, found 244.1634.



(*E*)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 89% (43.5 mg), E/Z = 99:1. Off-white solid; mp: 64-66 °C (Pentane/EtOAc).⁵ NMR (300 MHz, C₆D₆):  $\delta$  7.73 (d, *J* = 18 Hz, 1H), 7.28 (d, *J* = 8.7 Hz, 2H), 6.61 (d, *J* = 8.7 Hz, 2H), 6.32 (d, *J* = 18 Hz, 1H), 3.24 (s, 3H), 1.14 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  160.7, 149.9, 130.8, 128.8, 114.3, 83.1, 54.7, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.1. IR (ATR): v_{max} = 2977, 1624, 1603, 1510, 1352, 1250, 1140, 813 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₂BO₃ [M+H]⁺: 261.1666, found 261.1672.



(*E*)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120/1. Yield: 89% (43.5 mg), E/Z = 99/1. Off-white solid; mp: 68-70 °C (Pentane/EtOAc). NMR (300 MHz, C₆D₆):  $\delta$  7.76 (d, *J* = 18 Hz, 1H), 7.02-6.96 (m, 3H), 6.72-6.69 (m, 1H), 6.47 (d, *J* = 18 Hz, 1H), 3.25 (s, 3H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  160.3, 150.2, 139.4, 129.7, 119.9, 115.4, 112.0, 83.1, 54.5, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.1. IR (ATR): v_{max} = 2978, 2930, 1624, 1603, 1371, 1352, 1250, 1045, 807 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₂ [M+H]⁺: 261.1662, found 260.1667.



(*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 78% (38.2 mg), E/Z = 99:1. Orange oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.80 (d, *J* = 18 Hz, 1H), 7.26 (d, *J* = 9 Hz, 2H), 6.34 (d, *J* = 18 Hz, 1H), 6.16 (d, *J* = 9 Hz, 2H), 2.87 (br, 2H), 1.14 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$ 

150.7, 148.0, 128.9, 128.3, 114.8, 82.9, 25.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR):  $v_{max} = 3369$ , 2977, 1622, 1590, 1320, 1140, 969, 848, 776, 650 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₄H₂₂BNO₂ [M+H]⁺: 246.1666, found 246.1665.



(*E*)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline: Purification by silica gel column chromatography, eluent: Pentane/EtOAc from 100:1 to 60:1. Yield: 75% (36.8 mg), E/Z = 99:1. Yellow oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.78 (d, *J* = 18 Hz, 1H), 6.96-6.86 (m, 2H), 6.54-6.46 (m, 2H), 6.23-6.20 (m, 1H), 2.72 (br, 2H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.9, 147.4, 139.0, 129.6, 117.8, 115.8, 113.3, 83.1, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 3369, 2977, 1622, 1590, 1320, 1140, 969, 848, 776, 650 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₄H₂₁BNO₂ [M+H]⁺: 246.1666, found 246.1665.



(*E*)-4,4,5,5-tetramethyl-2-(2-(naphthalen-2-yl)vinyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 91% (50.9 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.58 (d, *J* = 18 Hz, 1H), 7.54-7.48 (m, 5H), 7.19-7.16 (m, 2H), 6.55 (d, *J* = 18 Hz, 1H), 1.14 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.3, 135.5, 134.2, 134.0, 128.7, 128.6, 128.5, 127.9, 126.5, 126.4, 123.7, 83.2, 25.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 3055, 2965, 1620, 1610, 1365, 1320, 1141 cm⁻¹. HRMS (EI): m/z Calculated for C₁₈H₂₁BO₂ [M]⁺: 280.1635, found 280.1650.



(*E*)-(4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)methanol: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 70:1. Yield: 92% (47.9 mg), E/Z = 99:1. Off-white solid; mp: 102-104 °C (Pentane/EtOAc). ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.76 (d, *J* =

18 Hz, 1H), 7.30 (d, J = 9 Hz, 2H), 7.05 (d, J = 9 Hz, 2H), 6.43 (d, J = 18 Hz, 1H), 4.29 (s, 2H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  150.0, 142.6, 136.9, 127.3, 127.1, 83.1, 64.5, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR):  $v_{max} = 3286$ , 2873, 1505, 1411, 1207, 1013, 817 cm⁻¹. HRMS (APCI): m/z Calculated for C₁₅H₂₂BO₃ [M+H]⁺: 261.1783, found 261.1782.



(*E*)-4,4,5,5-tetramethyl-2-(4-(methylthio)styryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 77% (42.5 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.72 (d, *J* = 18 Hz, 1H), 7.17 (d, *J* = 9 Hz, 2H), 6.91 (d, *J* = 9 Hz, 2H), 6.41 (d, *J* = 18 Hz, 1H), 1.89 (s, 3H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  149.7, 140.3, 134.6, 127.8, 126.4, 83.2, 24.9, 14.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2977, 2924, 1618, 1493, 1352, 1313, 1213, 1144, 1090, 970, 850, 798 cm⁻¹. HRMS (APCI): m/z Calculated for C₁₅H₂₂BO₂S [M]⁺: 277.1432, found 277.1428.



(*E*)-2-(4-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. yield: 69% (34.2 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.62 (d, *J* = 18 Hz, 1H), 7.07-7.03 (m, 2H), 6.66-6.61 (m, 2H), 6.28 (d, *J* = 18 Hz, 1H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  163.3 (d, *J* = 248 Hz), 148.7, 134.1, 129.0 (d, *J* = 8.3 Hz), 115.5 (d, *J* = 8.3 Hz), 83.1, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆):  $\delta$  30.1. ¹⁹F NMR (282.5 MHz, C₆D₆):  $\delta$  -112.5. IR (ATR): v_{max} = 2970, 2921, 1621, 1530, 1439, 1366, 1315, 1259, 1217, 1055, 966, 841, 737 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₁₉BFO₂ [M+H]⁺: 249.1460, found 249.1457.



(*E*)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 77% (41.2 mg), E/Z = 99:1. Colorless oil.

¹H NMR (300 MHz, C₆D₆):  $\delta$  7.67 (d, *J* = 18 Hz, 1H), 6.95 (m, 4H), 6.30 (d, *J* = 18 Hz, 1H), 1.12 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  148.6, 136.2, 134.6, 128.9, 128.5, 83.2, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.1. IR (ATR):  $v_{max}$  = 2976, 1631, 1623, 1492, 1489, 1411, 1352, 1270, 1210, 1142, 1087, 993, 803, 640, 491; cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₁₈BClO₂ [M]⁺: 264.1088, found 264.1088.



(*E*)-2-(4-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 83% (51.1 mg), E/Z = 99:1. Pale yellow solid; mp: 76-78 °C (Pentane/EtOAc).⁶ ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.53 (d, *J* = 18 Hz, 1H), 7.10 (d, *J* = 9 Hz, 2H), 6.88 (d, *J* = 9 Hz, 2H), 6.30 (d, *J* = 18 Hz, 1H), 1.12 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  148.7, 136.7, 132.0, 128.8, 123.1, 83.3, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 2973, 1625, 1487, 1402, 1318, 1140, 1067, 1006, 969, 734, 490 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₁₈BBrO₂ [M]⁺: 308.0583, found 308.0585.



(*E*)-2-(3-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 71% (35.2 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.55 (d, *J* = 18 Hz, 1H), 7.01 (d, *J* = 9.9 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.81-6.74 (m, 1H), 6.69-6.63 (m, 1H), 6.30 (d, *J* = 18 Hz, 1H), 1.11 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  163.4 (d, *J* = 246 Hz), 148.5 (d, *J* = 2.5 Hz), 140.3 (d, *J* = 6.5 Hz), 130.1 (d, *J* = 8.2 Hz), 123.1 (d, *J* = 2.7 Hz), 115.6 (d, *J* = 21.3 Hz), 113.5 (d, *J* = 21.4 Hz), 83.2, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. ¹⁹F NMR (282.5 MHz, C₆D₆): -113.2. IR (ATR): v_{max} = 2981, 2926, 2854, 1583, 1745, 1367, 1346, 1231, 1140, 1064, 953, 841, 782, 687 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₂ [M]⁺: 248.1384, found 248.1388.



(*E*)-2-(3-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1). Yield: 83% (43.8 mg), E/Z = 99:1. Pale yellow oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.52 (d, *J* = 18 Hz, 1H), 7.31 (s, 1H), 7.00-6.91 (m, 2H), 6.71 (t, *J* = 9 Hz, 1H), 6.30 (d, *J* = 18 Hz, 1H), 1.13 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  148.3, 139.7, 134.8, 129.9, 128.7, 127.2, 125.2, 83.2, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 2978, 2931, 1491, 1370, 1316, 1142, 1091, 967, 839, 802, 487 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₁₈BClO₂ [M]⁺: 264.1088, found 264.1088.



(*E*)-4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)styryl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 80% (47.7 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.54 (d, *J* = 18 Hz, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.34 (d, *J* = 18 Hz, 1H), 1.11 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  148.0, 140.8, 129.5 (q, *J* = 32 Hz), 127.2, 125.4 (q, *J* = 7.5 Hz), 124.6 (q, *J* = 272 Hz), 83.2, 24.6. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. ¹⁹F NMR (282.5 MHz, C₆D₆): -62.4. IR (ATR): v_{max} = 2980, 2926, 2225, 1371, 1328, 1138, 967, 850, 546 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₁₈BF₃O₂ [M]⁺: 298.1341, found 298.1352.



Methyl (*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 50:1. Yield: 77% (44.4 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.95 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 18 Hz, 1H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.40 (d, *J* = 18 Hz, 1H), 3.47 (s, 3H), 1.12 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  166.4, 148.9, 142.0, 130.8, 130.3, 127.3, 83.4, 51.6, 25.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2976, 2929, 1713, 1567, 1441, 1350, 1275, 1148, 1112, 973, 845, 759, 652 cm⁻¹. HRMS (APCI): m/z Calculated for C₁₆H₂₂BO₄ [M+H]⁺: 289.1604, found 289.1605.



(*E*)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)pyridine: Purification by silica gel column chromatography, eluent: DCM/MeOH = 80:1. Yield: 72% (33.3 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  8.67 (br, 1H), 8.38 (br, 1H), 7.54 (d, *J* = 18 Hz, 1H), 7.24 (d, *J* = 9 Hz, 1H), 6.59-6.55 (m, 1H), 6.34 (d, *J* = 18 Hz, 1H), 1.11 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  149.8, 149.4, 146.2, 132.7, 132.3, 123.1, 83.0, 24.6. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2980, 1590, 1470, 1325, 1311, 1247, 1141, 836, 531 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₃H₁₉BNO₂ [M+H]⁺: 232.1514, found 232.1509.



(*E*)-4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 80:1). Yield: 88% (41.6 mg), E/Z = 7:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.77 (d, *J* = 18 Hz, 1H), 6.74-6.79 (m, 2H), 6.58-6.57 (m, 1H), 6.28 (d, *J* = 18 Hz, 1H), 1.10 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  144.4, 142.5, 140.5 (minor), 130.1 (minor), 127.8, 127.3 (minor), 127.2, 126.4, 83.4 (minor), 83.2, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2978, 1615, 1371, 1323, 1236, 1140, 969, 847, 698 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₂H₁₇BO₂SNa [M+Na]⁺: 259.0933, found 259.0935.



(*E*)-2-(3-cyclohexylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 79% (39.5 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  6.65-6.54 (m, 1H), 5.239 (d, *J* = 18 Hz, 1H), 2.06-2.01 (m, 2H), 1.68-1.64 (m, 6H), 1.26-1.15 (m, 15H), 0.93-0.86 (m, 2H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  153.4, 82.9, 44.0, 37.1, 33.1, 26.4, 26.2, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2979, 2921, 2852, 1638, 1359, 1316, 1143, 997, 971, 850, 647 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₇BO₂ [M⁺]: 250.2104, found 250.2110.



(*E*)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 65% (30.4 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆): δ 6.46 (dd, *J* = 18 Hz, *J* = 6.2 Hz, 1H), 5.25 (dd, *J* = 18 Hz, *J* = 1.4 Hz, 1H), 1.93-1.88 (m, 1H), 1.64-1.51 (m, 6H), 1.21-1.03 (m, 16H). ¹³C NMR (75.5 MHz, C₆D₆): δ 159.8, 82.9, 43.2, 31.9, 26.1, 25.9, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR):  $v_{max}$  = 2980, 2920, 2855, 1650, 1389, 1300, 997, 971, 850, 597 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₄H₂₅BO₂ [M]⁺: 236.1948, found 236.1955.



(*E*)-2-(hept-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 91% (40.8 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.03-6.93 (m, 1H), 5.80 (d, *J* = 18 Hz, 1H), 2.08-2.01(m, 2H), 1.15-1.07 (m, 18H), 0.79 (m, 3H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  154.9, 82.7, 36.0, 31.5, 28.3, 24.8, 22.7, 14.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. These spectroscopic data match those previously reported. IR (ATR): v_{max} = 3658, 2974, 2927, 1638, 1462, 847 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₃H₂₅BO₂ [M]⁺: 224.1948, found 224.1946.



(*E*)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-ol: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 75% (29.7 mg), E/Z = 99:1. Pale yellow oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  6.92-6.82 (m, 1H), 5.76 (d, *J* = 18 Hz, 1H), 3.42 (t, *J* = 6.4 Hz, 2H), 2.24-2.17 (m, 2H), 1.90 (s, 1H) 1.08 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  151.2, 82.9, 61.2, 39.5, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.3. IR (ATR): v_{max} = 3388, 2978, 1639, 1440, 1367, 1317, 1259, 1140 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₀H₂₀BO₃ [M+H]⁺: 199.1789, found 199.1800.



(E)-9-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-9H-fluoren-9-ol: Purification by

silica gel column chromatography, eluent: Pentane/EtOAc = 80:1. Yield: 75% (48.1 mg), E/Z = 99:1. Yellow oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.35 (m, 4H), 7.12-7.08 (m, 2H), 7.02-6.96 (m, 3H), 6.49 (d, *J* = 18 Hz, 1H), 1.88 (s, 1H), 0.98 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  153.8, 148.6, 139.9, 129.0, 128.2, 125.1, 120.0, 83.4, 83.0, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.0. IR (ATR): v_{max} = 3388, 2978, 1639, 1440, 1367, 1317, 1259, 1140, 975, 869, 583 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₀H₂₀BO₃ [M+H]⁺: 199.1789, found 199.1800.



(*E*)-2-(3-(4-iodophenoxy)prop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 50:1. Yield: 92% (71.0 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.29 (d, *J* = 9 Hz, 2H), 6.87-6.80 (m, 1H), 6.28 (d, *J* = 9 Hz, 2H), 6.00 (d, *J* = 18 Hz, 1H), 4.00 (m, 2H), 1.06 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  158.7, 147.4, 138.4, 117.3, 83.3, 83.1, 69.1, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.8. IR (ATR): v_{max} = 2980, 1625, 1487, 1140, 1067, 1006, 734, 490 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₀BINO₃ [M]⁺: 386.0550, found 386.0559.



(*E*)-2-(3-(2-iodophenoxy)prop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 50:1. Yield: 90% (69.5 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.64 (d, *J* = 9 Hz, 1H), 6.90-6.82 (m, 2H), 6.36-6.18 (m, 3H), 4.08-4.03 (m, 2H), 1.07 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  157.4, 147.0, 139.8, 129.3, 122.6, 112.4, 86.9, 83.2, 69.9, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2980, 1625, 1487, 1140, 1067, 1006, 734, 490 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₀BINO₃ [M]⁺: 386.0550, found 386.0553.



(*E*)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 200:1. Yield: 80% (37.5 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.43 (d, *J* = 9 Hz, 1H), 5.79-5.73 (m, 2H), 2.06 (m, 2H), 1.87-1.86 (m, 2H), 1.43-1.26 (m, 6H), 1.11 (s, 12H), 0.89-0.82 (m, 2H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  153.8, 137.5, 133.8, 82.6, 26.4, 24.8, 24.6, 24.4, 24.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 29.9. IR (ATR): v_{max} = 2977, 2927, 2858, 2831, 1628, 1598, 1434, 1370, 1298, 1141, 1107, 1004, 966, 918, 845, 775 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₂₃BO₂ [M+H]⁺: 235.1866, found 235.1871.



(*E*)-2-styryl-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine: Purification by silica gel column chromatography, eluent: DCM/MeOH 100:1. Yield: 91% (49.1 mg), E/Z = 99:1. Orange oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.53 (m, 2H), 7.42-7.33 (m, 3H), 7.18-7.04 (m, 5H), 6.39-6.29 (m, 3H), 5.86 (s, 2H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  143.7, 141.2, 137.6, 136.4, 128.7 (2), 127.6, 126.8, 119.9, 117.6, 105.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆):  $\delta$  27.5. IR (ATR): v_{max} = 3410, 1556, 1436, 1142, 981, 825, 750 cm⁻¹. HRMS (EI): m/z Calculated for C₁₈H₁₅BN₂ [M]⁺: 270.1322, found 270.1330.



(*Z*)-4,4,5,5-tetramethyl-2-(1-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 81% (40.0 mg), E/Z = 99:1. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.77 (s, 1H), 7.38 (d, *J* = 7.4 Hz, 2H), 7.20-7.13 (m, 2H), 7.08-7.03 (m, 1H), 2.22 (d, *J* = 1.5 Hz, 3H), 1.15 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  143.1, 138.1, 129.4, 128.1, 127.1, 83.1, 24.6, 15.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.8. IR (ATR): v_{max} = 2977, 1616, 1384, 1369, 1310, 1145, 1035, 865, 752, 699, 668 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₂ [M]⁺: 244.1635, found 244.1641.



(Z)-4,4,5,5-tetramethyl-2-(1-phenylpent-1-en-2-yl)-1,3,2-

dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 89% (48.4 mg), E/Z = 1:99. Colorless oil. ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.82 (s, 1H), 7.40 (d, *J* = 7.5 Hz, 2H), 7.21-7.16 (m, 2H), 7.10-7.05 (m, 1H), 2.71 (t, *J* = 7.8 Hz, 2H), 1.88-1.75 (m, 2H), 1.17 (s, 12H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  142.8, 138.2, 129.0, 128.2, 127.0, 83.0, 31.7, 24.6, 23.5, 14.2. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 31.1. IR (ATR): v_{max} = 2977, 2871, 1615, 1493, 1405, 1374, 1351, 1310, 1270, 1231, 1146 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₇H₂₅BO₂ [M]⁺: 272.1948, found 272.1950.



(Z)-4-(2-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)vinyl)benzonitrile: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 88% (58.3 mg), E/Z = 1:99. White solid, mp: 102-104 °C (Pentane/EtOAc). ¹H NMR (300 MHz, C₆D₆):  $\delta$  7.54 (s, 1H), 7.25-7.22 (m, 2H), 7.12-7.08 (m, 2H), 7.03-7.00 (m, 1H), 6.74-6.65 (m, 4H), 1.06 (s, 12H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  141.7, 141.1, 139.9, 131.6, 130.2, 128.9, 128.7, 127.0, 118.6, 111.4, 84.0, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 30.4. These spectroscopic data match those previously reported. IR (ATR): v_{max} = 2978, 2956, 2250, 1601, 1302, 1140, 982, 849, 708 cm⁻¹. HRMS (ESI): m/z Calculated for C₂₁H₂₂BNO₂ [M]⁺: 331.1744, found 331.1744.



(*Z*)-2-(1,2-diphenylvinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine: Purification by silica gel column chromatography, eluent: DCM/MeOH = 100:1. Yield: 78% (53.9 mg), E/Z = 1:99. Orange oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.95-7.89 (m, 4H), 7.60-7.35 (m, 6H), 7.09-6.92 (m, 6H), 6.21 (d, *J* = 7.1 Hz, 1H), 5.61 (s, 1H), 4.20 (s, 1H). ¹³C NMR (75.5 MHz, C₆D₆):  $\delta$  194.6, 141.1, 137.4, 134.9, 133.0, 129.9, 129.5, 129.1, 128.6, 128.1, 127.6, 126.9, 126.8, 117.7, 105.9, 100.0. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆):  $\delta$  28.1. IR (ATR): v_{max} = 3412, 1556, 1429, 1142, 920, 825, 751 cm⁻¹. HRMS (EI): m/z Calculated for C₂₄H₁₉BN₂ [M]⁺: 346.1641, found 346.1635.



4,4,5,5-tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 95% (46.8 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.13 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 3.77 (s, 3H), 2.70 (t, *J* = 8.1 Hz, 2H), 1.22 (s, 12H), 1.12 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  141.3, 134.7, 128.8, 127.8, 83.0, 29.4, 24.8, 20.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.9. IR (ATR): v_{max} = 2978, 2926, 1369, 1319, 1143, 967, 804 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₂H₂₃BO₂ [M]⁺: 246.1791, found 246.1792. These spectroscopic data match those previously reported.⁷



2-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 90% (47.2 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.13 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H), 2.69 (t, *J* = 8.1 Hz, 2H), 1.22 (s, 12H), 1.11 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  157.6, 136.6, 128.9, 113.6, 83.1, 55.2, 29.1, 24.8. ¹¹B NMR (96.3 MHz, CDCl₃): 33.9. IR (ATR): v_{max} = 2980, 2934, 2360, 1640, 1515, 1455, 1378, 1230, 1146, 968, 839, 680, 546 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₃BNaO₃ [M+Na]⁺: 286.1632, found 286.1635. These spectroscopic data match those previously reported.⁷



2-(2-([1,1'-biphenyl]-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 80:1. Yield: 97% (59.8 mg). Colorless solid, mp: 54-56 °C (Pentane/EtOAc). ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.62 (d, *J* = 9 Hz, 2H), 7.54 (d, *J* = 9 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.37-7.32 (m, 3H), 2.83 (t, *J* = 7.5 Hz, 2H), 1.21-1.20 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  143.6, 141.3, 138.5, 128.7, 128.5, 127.0, 127.0, 127.0, 83.2, 29.7, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.6. IR (ATR):  $\nu_{max} = 2981$ , 2923, 1371, 1314, 1140, 830, 762, 698 cm⁻¹. HRMS (EI): m/z

Calculated for  $C_{20}H_{25}BO_2$  [M]⁺: 308.1948, found 308.1950. These spectroscopic data match those previously reported.⁸



2-(4-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120/1). Yield: 90% (45.0 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.18-7.13 (m, 2H), 6.93 (m, 2H), 2.74 (t, *J* = 8.0 Hz, 2H), 1.21 (s, 12H), 1.11 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  161.4 (d, *J* = 241 Hz), 139.9 (d, *J* = 3.0 Hz), 129.3 (d, *J* = 7.7 Hz), 114.8 (d, *J* = 20.9 Hz), 83.1, 29.2, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, C₆D₆): 33.6. ¹⁹F NMR (282.5 MHz, CDCl₃): -118.4. IR (ATR): v_{max} = 2978, 2927, 1370, 1319, 1143, 967, 804 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₂₀BFO₂ [M]⁺: 250.1540, found 250.1544. These spectroscopic data match those previously reported.⁶



2-(4-chlorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 91% (48.3 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.22 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.5 Hz, 2H), 2.71 (t, *J* = 8.1 Hz, 2H), 1.21 (s, 12H), 1.11 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  142.8, 131.1, 129.4, 128.2, 83.2, 29.3, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃):  $\delta$  3.7. IR (ATR):  $v_{max} = 2979$ , 2931, 1492, 1370, 1316, 1143, 967, 802, 487 cm⁻¹. HRMS (EI): m/z Calculated for C₁₄H₂₀BClO₂ [M]⁺: 266.1245, found 266.1245. These spectroscopic data match those previously reported.⁶



2-(4-bromophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 95% (58.9 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.36 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 2.69 (t, *J* = 8.1 Hz, 2H), 1.21 (s, 12H), 1.11 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  143.3, 131.2, 129.8, 119.2,

83.2, 29.4, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.8. IR (ATR):  $v_{max} = 2978$ , 2927, 1488, 1369, 1320, 1140, 1010, 848, 797, 485 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₄H₂₀BBrO₂ [M]⁺: 310.0740, found 310.0741. These spectroscopic data match those previously reported.⁹



4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)benzonitrile: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 80:1. Yield: 99% (50.9 mg). Pale yellow solid; mp: 68-70 °C (Pentane/EtOAc). ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.52 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 2.78 (t, *J* = 8.0 Hz, 2H), 1.19-1.09 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  150.0, 132.0, 128.8, 119.2, 109.3, 83.3, 30.1, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.4. IR (ATR): v_{max} = 2974, 2934, 2361, 2338, 1364, 1276, 1217, 965, 767 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₀BNNaO₂ [M+Na]⁺: 280.1479, found 280.1482. These spectroscopic data match those previously reported.⁶



4,4,5,5-tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 120:1. Yield: 71% (35.0 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.32-7.27 (m, 2H), 7.23-7.16 (m, 3H), 2.64 (t, *J* = 7.5 Hz, 2H), 1.81-1.71 (m, 2H), 1.27 (s, 12H), 0.86 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  142.7, 128.6, 128.2, 125.6, 82.9, 38.6, 26.1, 24.9. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 34.3. IR (ATR):  $v_{max}$  = 2980, 1362, 1306, 1142, 968, 841 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₃BO₂ [M]⁺: 246.1791, found 246.1801. These spectroscopic data match those previously reported.⁹



4,4,5,5-tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 71% (35.0 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.29-7.24 (m, 5H), 2.60 (t, *J* = 7.6 Hz, 2H), 1.66-1.15 (m, 4H), 1.24 (s, 12H),

0.81 (t, J = 7.6 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  142.9, 128.4, 128.2, 125.5, 82.9, 35.8, 34.2, 24.8, 23.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.6. IR (ATR):  $v_{max} = 3032$ , 2956, 1646, 1368, 1247, 1108, 747 cm⁻¹. HRMS (EI): m/z Calculated for C₁₆H₂₅BO₂ [M]⁺: 260.1942, found 260.1948. These spectroscopic data match those previously reported.⁹



2-cyclohexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 43% (18.1 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  1.86-1.58 (m, 6H), 1.30-1.23 (m, 16H), 1.01-0.97 (m, 1H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  82.7, 28.0, 27.1, 26.8, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.6. IR (ATR): v_{max} = 2979, 2928, 2851, 2353, 1415, 1382, 1310, 1258, 1146, 968, 854, 750 cm⁻¹. HRMS (EI): m/z Calculated for C₁₂H₂₃BO₂ [M]⁺: 210.1791, found 210.1792. These spectroscopic data match those previously reported.¹⁰



2-(2,3-dihydro-1H-inden-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 60% (29.3 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.15-7.11 (m, 2H), 7.06-7.01 (m, 2H), 3.03-2.85 (m, 4H), 1.87-1.73 (m, 1H), 1.18 (s, 12H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  144.4, 125.8, 124.1, 83.2, 35.1, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.6. IR (ATR): v_{max} = 2976, 2932, 2845, 1414, 1371, 1314, 1261, 1140, 1108, 970, 856, 740 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₁BO₂ [M+H]⁺: 245.1713, found 245.1715. These spectroscopic data match those previously reported.¹¹



4,4,5,5-tetramethyl-2-(1,2,3,4-tetrahydronaphthalen-2-yl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 100:1. Yield: 85% (43.9 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.19 (m, 4H), 3.05-2.84 (m, 4H), 2.20-2.17 (m, 1H), 1.84-1.75 (m, 1H), 1.53-1.38 (m, 13H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  137.1, 136.6, 128.9, 128.7, 125.1,

82.8, 30.5, 29.5, 24.6, 24.6, 24.5. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.5. IR (ATR):  $v_{max} = 2977, 2920, 1382, 1315, 1142, 969, 853, 740 \text{ cm}^{-1}$ . HRMS (ESI): m/z Calculated for C₁₆H₂₃BO₂ [M]⁺: 258.1791, found 258.1774. These spectroscopic data match those previously reported.¹¹



2-((1S,4S)-bicyclo[2.2.1]heptan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 39% (17.3 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  2.24 (m, 2H), 1.58-1.42 (m, 3H), 1.37-1.11 (m, 17H), 0.89-0.84 (m, 1H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  82.7, 38.7, 38.1, 36.6, 32.2, 32.2, 29.2, 24.7. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.6. IR (ATR): v_{max} = 2946, 2868, 1370, 1308, 1224, 1144, 980, 859 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₃H₂₃BO₂ [M]⁺: 222.1791, found 222.1791. These spectroscopic data match those previously reported.¹⁰



(S)-2-(3,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 200/1). Yield: 79% (39.8 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  5.11-5.06 (m, 1H), 1.98-1.88 (m, 2H), 1.67 (s, 3H), 1.59 (s, 3H), 1.44-1.39 (m, 1H), 1.24-1.08 (m, 14H), 0.91-0.71 (m, 5H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  130.9, 125.1, 82.8, 36.7, 34.6, 30.9, 25.7, 25.6, 24.8, 24.8, 19.1, 17.6. ¹¹B NMR (96.3 MHz, CDCl₃): 34.7. IR (ATR):  $v_{max}$  = 2922, 2868, 1370, 1308, 1220, 980, 862 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₅H₂₉BO₂ [M]⁺: 252.2261, found 252.2262.



6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-1-ol: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 60:1. Yield: 84% (38.3 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 3.59 (t, J = 6.6 Hz, 2H), 1.55 (s, 1H), 1.42-1.22 (m, 18H), 0.75 (t, J = 7.5 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ 82.9, 62.9, 32.6, 32.1, 25.4, 24.8, 23.9. The carbon signal attached

to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.9. IR (ATR):  $v_{max} =$  3447, 2928, 2858, 1628, 1459, 1385, 1371, 1325, 1297, 1145 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₂H₂₅BO₃ [M]⁺: 228.1897, found 228.1895. These spectroscopic data match those previously reported.¹⁰



4,4,5,5-tetramethyl-2-(2-(phenylsulfonyl)ethyl)-1,3,2-dioxaborolane: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 80:1. Yield: 95% (56.3 mg). Colorless solid, mp: 62-64 °C (Pentane/EtOAc). ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.91-7.88 (m, 2H), 7.66-7.51 (m, 3H), 3.19-3.08 (m, 2H), 1.29-1.15 (m, 14H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  138.7, 133.5, 129.2, 128.3, 83.9, 52.0, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃):  $\delta$  2.7. IR (ATR): v = 2938, 1448, 1366, 1305, 1142, 1084, 733, 534 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₄H₂₁BO₄S [M]⁺: 296.1254, found 296.1258. These spectroscopic data match those previously reported.¹²



Benzyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 100:1. Yield: 83% (48.2 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.34 (m, 5H), 5.11 (s, 2H), 2.50 (t, *J* = 7.5 Hz, 2H), 1.22 (s, 12H), 1.05 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  174.5, 136.2, 128.5, 128.1, 128.1, 83.3, 66.1, 28.4, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.5. IR (ATR): v_{max} = 2978, 1738, 1381, 1319, 1142, 970, 698 cm⁻¹. HRMS (ESI): m/z Calculated for C₁₆H₂₄BO₄ [M+H]⁺: 291.1755, found 291.1756. These spectroscopic data match those previously reported. ¹³



1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-one: Purification by silica gel column chromatography, eluent: Pentane/EtOAc = 150:1. Yield: 88% (45.8 mg). Colorless oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.97 (d, *J* = 7.3 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 3.15 (t, *J* = 6.9 Hz, 2H), 1.25 (s, 12H), 1.07 (t, *J* = 6.9 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):

δ 200.6, 137.0, 132.8, 128.5, 128.0, 83.1, 33.7, 24.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 33.7. IR (ATR): v_{max} = 2980, 1684, 1381, 1320, 1421 cm⁻¹. HRMS (EI): m/z Calculated for C₁₅H₂₁BO₃ [M]⁺: 260.1584, found 260.1591. These spectroscopic data match those previously reported.¹⁴



2-phenethyl-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine: Purification by silica gel column chromatography, eluent: DCM/MeOH = 100:1. Yield: 95% (54.3 mg). Orange oil. ¹H NMR (300 MHz, CDCl₃):  $\delta$  7.25-7.10 (m, 5H), 7.03-6.98 (m, 3H), 6.93-6.90 (m, 2H), 6.16 (d, *J* = 7.2 Hz, 2H), 5.47 (s, 2H), 2.70 (t, *J* = 8.1 Hz, 2H), 1.15 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃):  $\delta$  143.9, 141.1, 136.3, 128.5, 128.0, 127.6, 125.9, 119.6, 117.5, 105.5, 30.8. The carbon signal attached to B was not observed due to low intensity. ¹¹B NMR (96.3 MHz, CDCl₃): 31.5. IR (ATR): v_{max} = 3402, 2924, 1627, 1600, 1504, 1413, 1374, 1139, 1035 cm⁻¹. HRMS (EI): m/z Calculated for C₁₈H₁₇BN₂ [M]⁺: 272.1485, found 272.1479. These spectroscopic data match those previously reported.¹⁵

## 8. References

- 1. M. A. Cismesiaa, T. P. Yoon, Chem. Sci. 2015, 6, 5426-5434;
- J. Ma, F. Schäfers, C. Daniliuc, K. Bergander, C. A. Strassert, F. Glorius, Angew. Chem. Int. Ed. 2020, 24, 9639-9645;
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida , T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- Becke, A. D., Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155-2160; Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
- 5. Lee, C.; Yang, W.; Parr. R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B.* **1998**, 785-789.
- 6.
- 7. A. Jayaraman, S. Lee, Org. Lett. 2019, 21, 3485–3489;
- 8. K. Endo, T. Ohkubo, T. Ishioka, T. Shibata, J. Org. Chem. 2012, 77, 4826-4831;
- W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson, J. Am. Chem. Soc. 2016, 138, 5539– 5542;
- 10. C.Feng, H. Wang, L. Xu, P. Li, Org. Biomol. Chem., 2015, 13, 7136-7139;
- 11. Y. Wang, R. Guan, P. Sivaguru, X. Cong, X. Bi, Org. Lett. 2019, 21, 4035-4038;
- 12. E. V. Maialen, C. R. Woof, R. L. Webster, Chem. Eur. J. 2016, 22, 11605-11608;
- 13. J. R. Carney, B. R. Dillon, L. Campbell, S. P. Thomas, *Angew. Chem. Int. Ed.* **2018**, *57*, 10620-10624;
- 14. P. K. Verma, K. S. Prasad, D. Varghese, K. Geetharani, Org. Lett. 2020, 22, 1431-1436;
- 15. Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 3160-3161;
- 16. G. Stavber, Z. Časar, Applied Organometallic Chemistry, 2013, 27, 159-165;
- 17. M. Gao, S. B. Thorpe, C. Kleeberg, C. Slebodnick, T. B. Marder, W. L. Santos, *J. Org. Chem.* **2011**, *76*, 3997-4007;
- C. Medina, K. P. Carter, M. Miller, T. B. Clark, G. W. O'Nei, J. Org. Chem. 2013, 78, 9093-9101;
- 19. H. Yoshida, Y. Takemoto, S. Kamio, I. Osakaa, K Takakia, Org. Chem. Front. 2017, 4, 1215-1219.

## 9. NMR spectra



















































































































