Supplementary Information

Genotoxic stress in constitutive trisomies induces autophagy and the innate immune response via the cGAS-STING pathway

Maria Krivega¹, Clara M. Stiefel¹, Sahar Karbassi¹, Line L. Andersen³, Narendra K. Chunduri¹, Neysan Donnelly², Andreas Pichlmair^{3,4}, Zuzana Storchova^{1,*}

1 Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich Strasse 24, 67663 Kaiserslautern, Germany

Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
Institute of Virology, TU Munich, Schneckenburgerstrasse 8, 81675 München, Germany

4 German Center for Infection Research (DZIF), Munich partner site, Germany

Corresponding author: Zuzana Storchova, <u>storchova@bio.uni-kl.de</u>, ORCID: 0000-0003-2376-7047

Supplementary figure 1: Characterisation of autophagy in trisomic cells.

Supplementary figure 2: Regulation of autophagy in trisomic cells.

Supplementary figure 3: dsDNA presence in the cytoplasm of trisomic cells.

Supplementary figure 4: dsDNA accumulation in cytoplasm upon autophagy inhibition in trisomic cells.

Supplementary figure 5: Activation of the innate immune pathway in trisomic cells.

Supplementary figure 6: Transcriptional activation of the innate immune pathway in trisomic cells

Supplementary figure 7: Activation of the innate immune response, but not autophagy, depends on TBK1 in constitutive trisomic cells.

Supplementary figure 8: Innate immune response in trisomic human primary fibroblast. Supplementary figure 9: Autophagy activity in primary human fibroblasts with trisomy.

Supplementary table 1: Cell lines used in the study

Supplementary table 2: List of used antibodies

Supplementary table 3: Primers used for qRT-PCR

Supplementary table 4 Summary of the statistical evaluation for each figure.

Supplementary Data 1: Expression of TFEB-dependent factors in aneuploid cells Supplementary Data 2: Expression of IRF3 and NFkB-dependent factors in aneuploid cells

Supplementary Data 3: Expression of NFkB targets evaluated by quantitative rtPCR

Supplementary Data 5. Expression of NFRB targets evaluated by quantitative fire

Supplementary Data 4: Expression of inflammation markers in aneuploid cells

Supplementary Data 5: Source data for all main figures

Supplementary Data 6: Source data for all supplementary figures

	HCT116-derived cell lines					
	Name	Chr.	H2B-GFP	Type of aneuploidy	Comments	
	HCT116	-	-		AATC	
	HCT116 H2B-GFP	-	+		Kuffer et al, 2013	
1	Htr3_11	3	+	Trisomy	Passerini et al., 2016	
2	Hte5_1	5	-	Tetrasomy	From Minoru Koi (Stingele et al, 2012)	
3	Htr5_6	5	+	Trisomy	Stingele et al, 2012	
4	Hte5_4	5	+	Tetrasomy	Stingele et al, 2012	
5	Htr8_5	8	+	Trisomy	Donnelly et al, 2014	
6	Htr13_2	13	-	Trisomy	Domingues et al, 2017	
7	Htr18_1	18	-	Trisomy	Domingues et al, 2017	
8	Htr21_3	21	-	Trisomy	Domingues et al, 2017	
	RPE1-derived cell lines					
	Name	Chr.	H2B-GFP	Type of aneuploidy	Comments	
	RPE1	-	-		Kind gift from Steven Taylor	
	RPE1 H2B-GFP	-	+		Kind gift from Steven Taylor	
1	Rtr3_1	3	-	Trisomy	Stingele et al, 2012	
2	Rtr5,12_3	5, 12	+	Trisomy	Stiengele et al, 2012	
3	Rtr7_1	7	+	Trisomy	Duerrbaum et al, 2018	
4	Rtr8_1	8	-	Trisomy	Kneissig et al, 2019	
5	Rtr21_2	21	+	Trisomy	Stingele et al, 2012	
	Hu	man pri	mary embry	onic fibroblast	ts	
	Name	Chr.	Type of a	aneuploidy	Reference number	
	Diploid ctrl_A				AG04392	
	Diploid ctrl_B				AG21708	
1	Tr.8	8	Trisomy		GM00496	
2	Tr.15	15	Trisomy		GM07189	
3	Tr.18_A	18	Trisomy		GM03538	
4	Tr.18_B	18	Trisomy		GM00734	
5	Tr.21_A	21	Trisomy		GM02058	
6	Tr.21_B	21	Trisomy		GM04616	

Supplementary table 1. Cell lines used in the study.

Supplementary table 2 List of used antibodies

Antibody	Conditi	ons used	Reference	Company
	WB	IF		
АКТ	1:1000	NA	9272	Santa Cruz Biotechnology
p-Akt (Ser473)	1:1000	NA	4060	Cell Signaling Technology
ΑΜΡΚα (D5A2)	1:1000	NA	5831	Cell Signaling Technology
p-AMPKα-Thr172	1:1000	NA	2531	Cell Signaling Technology
α -actinin (H-2)	1:1000	NA	17829	Santa Cruz Biotechnology
β -actin-HRP	1:2500	NA	sc-47778	Santa Cruz Biotechnology
cGAS (D1D3G)	1:1000	1:100	15102	Cell Signaling Technology
dsDNA	NA	1:50	58749	Santa Cruz Biotechnology
GAPDH	1:1000	NA	14C10	Cell Signaling Technology
Histone H3	NA	1:100	9715	Cell Signaling Technology
HRP Mouse	1:5000	NA	HAF007	R&D Systems
HRP Rabbit	1:5000	NA	HAF008	R&D Systems
H3	1:500	NA	ab12079	Abcam
ΙκΒα (L35A5)	1:1000	NA	48144S	Cell Signaling Technology
IRF3 (D83B9)	NA	1:50	4302	Cell Signaling Technology
LAMP2	NA	2 μg/mL	ab13534	Abcam
LC3B (EPR18709)	1:3000	2 μg/mL	192890	Abcam
mTOR (EPR390(N))	1:500	NA	ab134903	Abcam
NRF2 (D1Z9C) XP	1:1000	1:100	12721	Cell Signaling Technology
P70S6K	1:1000	NA	2708	Cell Signaling Technology
p-P70S6 (Thr389)	1:500	NA	9205	Cell Signaling Technology
STAT1	NA	1:100	N9172	Cell Signaling Technology
STING (D2P2F)	1:1000	1:50	136475	Cell Signaling Technology
p-STING (S366) (D7C3S)	1:1000	NA	197815	Cell Signaling Technology
TBK1 (108A429)	1 μg/mL	NA	Ab12116	Abcam
p-TBK1 (Ser172)(D52C2)	1:500	NA	54834	Cell Signaling Technology
TFAM	NA	2 μg/mL	ab176558	Abcam
TFE3	NA	2 μg/mL	HPA023881	Sigma (Atlas antibodies)
TFEB	NA	5 μg/mL	MAB9170	R&D systems
p-ULK1 (Ser757) (D7O6U)	1:1000	NA	14202	Cell Signaling

Supplementary table 3. Primers used for qRT-PCR

Target gene	Primer sequence $(5' \rightarrow 3')$	Reference
hIFIT1 F	TACCTGGACAAGGTGGAGAA	Rubina Baglio et al, 2016
hIFIT1 R	GTGAGGACATGTTGGCTAGA	Rubina Baglio et al, 2016
hIFIT3 F	CTTACGGCAAGCTGAAGAGT	Rubina Baglio et al, 2016
hIFIT3 R	AATTGCCAGTCCAGAGGAGA	Rubina Baglio et al, 2016
hOAS3 F	CCCTGGTCTGAGACTCACGTTT	Ma et al, 2008
hOAS3 R	GACTTGTGGCTTGGGTTTGAC	Ma et al, 2008
hRPL27 F	ATCGCCAAGAGATCAAAGATAA	Donnelly et al, 2014
hRPL27 R	TCTGAAGACATCCTTATTGACG	Donnelly et al, 2014
SPIKE	Proprietary to TATAA Biocenter AB	
LC3 F	GAGAAGCAGCTTCCTGTTCTGG	Jiang et al., 2011
LC3 R	GTGTCCGTTCACCAACAGGAAG	Jiang et al., 2011
SQSTM1 F	ATTGAGTCCCTCTCCCAGAT	Park et al., 2019
SQSTM1 R	CGCTCCGATGTCAT AGTTCTT	Park et al., 2019

Figure 1					
ANOVA, p values		t test, p value			
Fig. 1f IF nuclear TFE	В				
HCT116 vs Hte5_1,	<0.0001	HCT116	Hte5_1	<0.0001	
Htr13_2, Htr18_1,		VS	H13_2	0.0004	
Htr21_3			Htr18_3	0.0003	
			Htr21_1	0.0001	
RPE1 vs Rtr3_1,	<0.0001	RPE1 vs	Rtr3_1	<0.0001	
Rtr5_3, Rtr8_1,			Rtr5_3	<0.0001	
Rtr7_1, Rtr21_2			Rtr8_1	<0.0001	
			Rtr7_1	0.0101	
			Rtr21_2	<0.0001	
Fig. 1h IF LC3+puncta					
HCT116 vs Hte5_1,	<0.0001	HCT116	Hte5_1	<0.0001	
Htr18_1, Htr21_3		VS	Htr18_3	<0.0001	
			Htr21_1	<0.0001	
RPE1 vs Rtr3_1,	<0.0001	RPE1 vs	Rtr3_1	<0.0001	
Rtr8_1			Rtr8_1	<0.0001	
Fig. 1i IF LAMP2+ puncta					
HCT116 vs Hte5_1,	<0.0001	HCT116	Hte5_1	<0.0001	
Htr18_1, Htr21_3		VS	Htr18_3	<0.0001	
			Htr21_1	<0.0001	
RPE1 vs Rtr3_1,	<0.0001	RPE1 vs	Rtr3_1	0.0088	
Rtr8_1			Rtr8_1	<0.0001	

Supplementary table 4 Summary of the statistical evaluation for each figure.

Figure 2					
ANOVA,	p values		t test, p value		
Fig. 2d IF dsDNA and	H3 + puncta, %				
HCT116 vs Hte5_1,	<0.0001	HCT116	Hte5_1	<0.0001	
Htr18_1, Htr21_3		VS	Htr18_3	<0.0001	
			Htr21_1	<0.0001	
RPE1 vs Rtr3_1,	<0.0001	RPE1 vs	Rtr3_1	<0.0001	
Rtr8_1			Rtr8_1	<0.0001	
Fig. 2 IF dsDNA and TI	-AM + puncta, %				
HCT116 vs Hte5_1,	<0.0001	HCT116	Hte5_1	<0.0001	
Htr18_1, Htr21_3		VS	Htr18_3	0.0034	
			Htr21_1	0.0006	
RPE1 vs Rtr3_1,	0.0004	RPE1 vs	Rtr3_1	<0.0001	
Rtr8_1			Rtr8_1	0.0002	

Figure 3					
ANOVA,	p values	t test, p v	t test, p value		
Fig. 3b WB TBK1					
HCT116 vs Hte5_1,	0.0252	HCT116	Hte5_1	0.0066	
Htr18_1, Htr21_3		vs	Htr18_3	0.0190	
			Htr21_1	0.0329	
RPE1 vs Rtr3_1,	0.0102	RPE1 vs	Rtr3_1	0.0295	
Rtr8_1			Rtr8 1	NS	
Fig. 3c WB p-TBK1		1	. —		
HCT116 vs Hte5 1,	0.0011	HCT116	Hte5 1	0.0005	
Htr18_1, Htr21_3		vs	Htr18 3	0.0027	
			Htr21 1	0.0004	
RPE1 vs Rtr3 1,	NS	RPE1 vs	Rtr3 1	0.0283	
Rtr8 1			 Rtr8 1	0.0409	
Fig. 3d WB STING	1		. –		
HCT116 vs Hte5 1,	<0.0001	HCT116	Hte5 1	0.0004	
Htr18_1, Htr21_3		vs	Htr18 3	0.0026	
			 Htr21 1	0.0024	
RPE1 vs Rtr3 1,	NS	RPE1 vs	Rtr3 1	NS	
Rtr8_1			Rtr8 1	0.0303	
Fig. 3e WB p-STING		1			
HCT116 vs Hte5 1,	0.0022	HCT116	Hte5 1	0.0286	
Htr18_1, Htr21_3		vs	Htr18 3	0.0286	
			Htr21 1	NS	
RPE1 vs Rtr3 1,	0.0254	RPE1 vs	Rtr3 1	0.0286	
Rtr8_1			 Rtr8 1	0.0286	
Fig. 3g IF cyt. STING		1			
HCT116 vs Hte5 1,	<0.0001	HCT116	Hte5 1	<0.0001	
Htr18_1, Htr21_3		vs	Htr18 3	0.0128	
			Htr21 1	0.0097	
RPE1 vs Rtr3 1,	0.0018	RPE1 vs	Rtr3 1	0.0039	
Rtr8 1			 Rtr8 1	0.0344	
Fig. 3j IF IRF3 nucl.					
HCT116 vs	<0.0001	HCT116	HCT116+AraC	<0.0001	
HCT116+Arac,		vs	Hte5 1	<0.0001	
Hte5 1, Htr18 1,			Htr18 3	<0.0001	
Htr21_3			Htr21 1	<0.0001	
 RPE1 vs RPE1+AraC.	<0.0001	RPE1 vs	 RPE1+AraC	<0.0001	
Rtr3 1, Rtr8 1			Rtr3 1	<0.0001	
			Rtr8 1	0.0305	

Figure 4				
	Welch's test,	t test, p value		
	p values			
Fig. 4g, qRT-PCR IFITs	, ctrl siRNA vs cGAS siR	NA		
HCT116	NS	NS		
HCT116+AraC	0.0040	0.0200		
Hte5_1	0.0311	0.0345		
Htr18_1	NS	0.0366		
Htr21_3	NS	0.0498		
RPE1	NS	NS		
RPE1+AraC	0.0171	0.0195		
Rtr3_1	NS	0.0500		
Rtr8_1	0.1226	0.0281		

Figure 5				
	Welch's test, p	t test, p value		
	values			
Fig. 5a IF TFEB nucl., c	trl siRNA vs cGAS siRN	A		
HCT116	0.0057	0.0086		
HCT116+AraC	0.0322	0.0286		
Hte5_1	0.0125	0.0080		
Htr18_1	0.0012	0.0028		
Htr21_3	0.0003	0.0003		
RPE1	NS	NS		
RPE1+AraC	NS	0.0286		
Rtr3_1	0.0257	0.0286		
Rtr8_1	0.0390	0.0286		
Fig. 5d – cGAS-CRISPR	-KO vs CTRL-CRISPR –	TFEB nucl. IF		
Diploid	NS	NS		
Trisomic	0.0044	0.0004		
Fig. 5f – STING-CRISP	R-KO vs CTRL-CRISPR –	TFEB nucl IF		
Diploid	NS	NS		
Trisomic	0.0318	0.0305		
Fig. 5h – cGAS-CRISPR-KO vs CTRL-CRISPR – IRF3 nucl. IF				
Diploid	NS	NS		
Trisomic	0.0013	0.0009		

Figure 6					
ANOVA,	p values	t test, p value			
Fig. 6d IF TFEB nucl.					
HCT116 CTRL vs	NS	HCT116	KD1	NS	
KD1, KD2		CTRL vs	KD2	NS	
Htr5-6 CTRL vs KD1,	<0.0001	Htr5_6	KD1	<0.0001	
KD2		VS	KD2	<0.0001	
Fig. 6f IF IRF3 nucl.	·		·	·	
HCT116 CTRL vs	NS	HCT116	KD1	NS	
KD1, KD2		CTRL vs	KD2	NS	
Htr5-6 CTRL vs KD1,	0.0016	Htr5_6	KD1	0.0121	
KD2		vs	KD2	0.0044	
Fig. 6h IF LC3+puncta	·				
HCT116 CTRL vs	0.0168	HCT116	KD1	NS	
KD1, KD2		CTRL vs	KD2	NS	
Htr5-6 CTRL vs KD1,	<0.0001	Htr5_6	KD1	<0.0001	
KD2		VS	KD2	<0.0001	
Fig. 6i IF LAMP2+puncta					
HCT116 CTRL vs	NS	HCT116	KD1	NS	
KD1, KD2		CTRL vs	KD2	NS	
Htr5-6 CTRL vs KD1,	<0.0001	Htr5_6	KD1	<0.0001	
KD2		VS	KD2	<0.0001	

Figure 7					
ANOVA, p	values		t test, p value	2	
Fig. 7b IF cyt. dsDNA					
Diploid vs Tr.8, Tr.15,	0.0005	Diploid vs	Tr.8	<0.0001	
Tr.18_A, Tr.18_B,			Tr.15	0.0004	
Tr.21_A, Tr.21_B			Tr.18 A	0.0026	
			Tr.18 B	0.0014	
			 Tr.21_A	0.0013	
			Tr.21 B	<0.0001	
Fig. 7d IF cyt. STING					
Diploid vs Tr.8,	<0.0001	Diploid vs	Tr.8	0.0126	
Tr.18_A, Tr.18_B,			Tr.18_A	0.0008	
Tr.21_A			Tr.18_B	0.0007	
			Tr.21_A	0.0003	
Fig. 7f WB TBK1					
Diploid vs Tr.8,	NS	Diploid vs	Tr.8	NS	
Tr.18_A, Tr.18_B,			Tr.18_A	NS	
Tr.21_A			Tr.18_B	NS	
			Tr.21_A	NS	
Fig. 7g WB p-TBK1		·			
Diploid vs Tr.8,	NS	Diploid vs	Tr.8	0.0286	
Tr.18_A, Tr.18_B,			Tr.18_A	NS	
Tr.21_A			Tr.18_B	0.0286	
Fig. 7h WB STING					
Diploid vs Tr.8,	<0.0001	Diploid vs	Tr.8	<0.0001	
Tr.18_A, Tr.18_B,			Tr.18_A	<0.0001	
Tr.21_A			Tr.18_B	0.0003	
			Tr.21_A	<0.0001	
Fig. 7i WB p-STING					
Diploid vs Tr.8,	NS	Diploid	Tr.8	0.0022	
Tr.18_A, Tr.18_B,		vs	Tr.18_A	0.0043	
Tr.21_A			Tr.18_B	0.0043	
			Tr.21_A	0.0238	
Fig. 7k IF IRF3 nucl.					
Diploid vs Tr.8, Tr.15,	<0.0001	Diploid	Tr.8	<0.0001	
Tr.18_A, Tr.18_B,		VS	Tr.15	0.0149	
Tr.21_A, Tr.21_B			Tr.18_A	0.0009	
			Tr.18_B	<0.0001	
			 Tr.21_A	0.0206	
			 Tr.21_B	0.0006	

Figure 8				
ANOVA, p	values		t test, p value	
Fig. 8b IF LC3+puncta				
Diploid vs Tr.8, Tr.15,	<0.0001	Diploid vs	Tr.8	<0.0001
Tr.18_A, Tr.18_B,			Tr.15	<0.0001
Tr.21_A, Tr.21_B			Tr.18_A	<0.0001
			Tr.18_B	<0.0001
			Tr.21_A	<0.0001
			Tr.21_B	<0.0001
Fig. 8d Lysotracker+ p	uncta			
Diploid vs Tr.8,	<0.0001	Diploid vs	Tr.8	<0.0001
Tr.18_A, Tr.18_B,			Tr.18_A	<0.0001
Tr.21_A			Tr.18_B	<0.0001
			Tr.21_A	<0.0001
Fig. 8f IF TFEB nucl.		•		
Diploid vs Tr.8, Tr.15,	<0.0001	Diploid vs	Tr.8	NS
Tr.18_A, Tr.18_B,			Tr.15	<0.0001
Tr.21_A, Tr.21_B			Tr.18_A	0.0023
			Tr.18_B	<0.0001
			Tr.21_A	<0.0001
			Tr.21_B	<0.0001

Figure 8				
	Welch's test, p	t test, p value		
	values			
Fig. 8h – cGAS-CRISPR-KO vs CTRL-CRISPR – TFEB nucl. IF				
Diploid	NS	NS		
Trisomic	0.0006	0.0002		
Fig. 8j – STING-CRISPR-KO vs CTRL-CRISPR – TFEB nucl. IF				
Diploid	NS	NS		
Trisomic	0.0023	0.0136		

Supplementary figure 5					
ANOVA, p values		t test, p value			
Suppl. Fig. 5a qRT-PCR OAS					
HCT116 vs HCT116+Arac,	<0.0001	HCT116	HCT116+AraC	0.0040	
Hte5_1, Htr18_1,		VS	Hte5_1	0.0159	
Htr21_3			Htr18_1	0.0028	
			Htr21_3	0.0033	
RPE1 vs RPE1+AraC,	0.0157	RPE1 vs	RPE1+AraC	0.0179	
Rtr3_1, Rtr8_1			Rtr3_1	0.0436	
			Rtr8_1	NS	
Suppl.Fig.5b qRT-PCR IFITs					
IFIT1 - HCT116 vs	NS	HCT116	HCT116+AraC	0.0286	
HCT116+Arac, Hte5_1,		VS	Hte5_1	0.0286	
Htr18_1, Htr21_3			Htr18_1	0.0159	
			Htr21_3	0.0095	
IFIT3 - RPE1 vs	NS	RPE1 vs	RPE1+AraC	0.0131	
RPE1+AraC, Rtr3_1,			Rtr3_1	0.0179	
Rtr8_1			Rtr8_1	0.0179	

Supplementary figure 5				
	Welch's test, p	t test, p value		
	values			
Suppl. Fig. 5f IF IRF3 nucl., transfected vs. nontransfected				
HCT116	<0.0001	<0.0001		
RPE1	< 0.0001	<0.0001		

Supplementary figure 6					
ANOVA, p values		t test, p value			
Suppl. Fig. 6c qRT-PCR OAS3					
HCT116 vs HCT116+Arac,	0.0001	HCT116	HCT116+Arac	0.0040	
Hte5_14, Hte5_1		VS	Hte5_14	0.0319	
			Hte5_1	0.0319	
RPE1 vs RPE1+AraC,	NS	RPE1 vs	RPE1+AraC	0.0179	
Rtr21_2			Rtr21_2	0.0151	
Suppl.Fig.6d qRT-PCR <i>IFIT1</i>					
HCT116 vs HCT116+Arac,	0.0289	HCT116	HCT116+Arac	0.0286	
Hte5_14, Hte5_1		VS	Hte5_14	0.0571	
			Hte5_1	0.0571	
RPE1 vs RPE1+AraC,	0.0048	RPE1 vs	RPE1+AraC	0.0057	
Rtr21_2			Rtr21_2	0.0057	
Suppl. Fig. 6e qRT-PCR IFIT3					
HCT116 vs HCT116+Arac,	0.0030	HCT116	HCT116+Arac	0.0319	
Hte5_14, Hte5_1		VS	Hte5_14	0.0319	
			Hte5_1	0.0319	
RPE1 vs RPE1+AraC,	<0.0001	RPE1 vs	RPE1+AraC	0.0131	
Rtr21_2			Rtr21_2	0.0265	

Supplementary figure 8						
ANOVA, p values		t test, p value				
Fig. 8e IF dsDNA and H3 + puncta, %						
Diploid vs Tr.8,	<0.0001	Diploid vs	Tr.8	<0.0001		
Tr.18_A, Tr.18_B,			Tr.18_A	<0.0001		
Tr.21_A			Tr.18_B	<0.0001		
			Tr.21_A	<0.0001		
Fig. 8g IF dsDNA and TFAM + puncta, %						
Diploid vs Tr.8,	<0.0001	Diploid vs	Tr.8	<0.0001		
Tr.18_A, Tr.18_B,			Tr.18_A	<0.0001		
Tr.21_A			Tr.18_B	<0.0001		
			Tr.21_A	<0.0001		

Characterisation of autophagy in trisomic cells. Immunoblotting of Cathepsin D protein (a) and its quantification relative to the loading control α -actinin (b), n=4-9. c) Activity of Cathepsin D, n=2-4. Mann-Whitney test was applied for the statistical analysis of the data on plots b) and c). d) Immunoblotting of P70S6K and its phosphorylated form, and of LC3. α -actinin serves as a loading control. SE - short exposure time, LE – long exposure time. e) Quantification of the LC3-II/LC3-I ratio, n=7-11. Imaging and quantification of nuclear TFE3 (f, g). The immunofluorescence data were analysed as in Fig. 1e to quantify the delta MFI. In average at least 1000 cells for HCT116- and 500 cells for RPE1-derived cell lines were analyzed, means of individual experiments are shown, n=4-12. Lysosomes were visualized by lysotracker (h) and positive puncta were manually quantified from at least 15 cells in each cell line (i), n=13-15. Imaging (j) and quantification (k) of yellow GFP+/mRFP+ autophagosomes (white arrows) in cells transfected with LC3-GFP-mRFP construct. At least 20 cells per each condition were analyzed for puncta quantification, number of measurements for statistics n=10-22. Unpaired t test was applied for statistical analysis, unless other is specified. Individual measurements, mean values and standard deviation are shown. Scale bar in all images 10 μ m

Regulation of autophagy in trisomic cells. a) Immunoblotting of mTOR downstream phosphorylation targets p-P70S6K-T389, p-AKT-S473, p-ULK1-S575, and LC3 upon treatment with Torin 1 (2 μ M, overnight incubation). α -actinin serves as a loading control. Quantification of the relative phosphorylated p-Akt1-S473 (b, n=4-8) and p-P70S6K-T389 (e, n=4-6). For graphs b) and e) unpaired t test was used for statistical analysis. c) Immunoblotting and d) quantification of the relative phospho-AMPK-Thr172 levels. f) Flow cytometry evaluation of the CellROX signal. g) Immunoblotting and h) quantification of nuclear NRF2 levels in fractionated cell lysates, n=3. i) Electrophoresis of the XBP1 cleavage, HCT116 treated with Tunicamycin was used as a control for unfolded protein response. Quantification of the phosphorylation of p-P70S6K-T389 (j, n=4) and p-ULK1-S757 (k, n=4), inhibited upon treatment with Torin 1. Data were normalized to the corresponding DMSO control for every cell line. I) Quantification of mTORC1 with Torin 1 (2 μ M, overnight incubation), n=4. m) Quantification of nuclear TFEB localization upon inhibition of mTORC1 with Torin 1 (2 μ M, overnight incubation), n=3-5. The immunofluorescence data were analysed as in Fig. 1c in order to quantify the delta MFI relative to control. The sample analysis was performed relative to corresponding DMSO control. Mann-Whitney test was applied for all graphs, unless other wisespecified. Individual measurements, mean values and standard deviation are shown. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementary Data 6, respectively.

dsDNA presence in the cytoplasm of trisomic cells. Microscopy images of cytoplasmic dsDNA (white arrows) in trisomic and control cells treated with AraC, as a positive control, (a) and DNase I as a negative control (b). c) Images of cytoplasmic dsDNA and mitotracker. White points on colocalization of dsDNA and mitotracker in cytoplasm of the cell. Imaging of cytoplasmic dsDNA colocalized with genomic H3 (d) and mitochondrial TFAM (e). White arrows indicate dsDNA puncta that colocalize with H3 (d) or TFAM (e) and yellow arrows that didn't. Scale bar in all images $10 \,\mu$ m.

dsDNA accumulation in cytoplasm upon autophagy inhibition in trisomic cells. a). Immunofluorescence images of cytoplasmic dsDNA colocolizing with LC3-positive puncta in the presence of Bafilomycin A1 (4 hours). White arrows point on colocalization of dsDNA and LC3. b) Quantification of the numbers of dsDNA with LC3 copositive puncta per cell. At least n=20 cellsfor HCT116 and n=10 cells for RPE1 cell lines were analyzed per each condition. Unpaired t test was applied for statistical analysis. Individual measurements, mean values and standard deviations are shown on the plot. Scale bar in all images 10 µm. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementary Data 6, respectively.

b

а

Activation of the innate immune pathway in trisomic cells. a), b) Quantification of the relative expression of *OAS3*, *IFIT1* and *IFIT3* evaluated by qRT-PCR. Treatment with AraC was used as a positive control, n=2-9. Immunoblot (c) and relative quantification (d) of IkB α protein, n=4-5. Mann-Whitney test was applied for statistical analysis. Individual measurements, mean values and standard deviations are shown. e) IRF3 localization in cells transfected with a GFP-encoding plasmid. The GFP positive cells show IRF3-positive nuclei (yellow arrows). f) Quantification of nuclear IRF3 intensity in cells from figure (e). At least n=30 cells were analyzed for each condition. Data were normalized to the signal of the control untransfected cells, with IRF3-negative nuclei (white arrows). Unpaired t test was used to analyzed data on the graph f). g) Quantification of *IFN* β relative expression after ISD DNA oligo transfection, n=3. Two tailed unpaired t test was performed for statistical analysis. Scale bar in all images 10 µm. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementary Data 6.

ч^т183 44223

0

HCIIG

Htes

Ŧ

REP

REF

PHIO?

Transcriptional activation of the innate immune pathway in trisomic cellsa) Representative images of STAT1 nuclear localization in diploid vs. trisomic cells. b) Quantification of the nuclear STAT1 levels. In average 2000 cells for HCT116 and 1000 cells for RPE1 were analyzed for each cell line. The number of measurements n=3-21 fpr each cell lines. Unpaired t test was used for statistical analysis. c-e) Quantification of the relative expression of OAS3, IFIT1 and IFIT3 evaluated by qRT-PCR. AraC treatment was used as a positive control. The number of measurements n=3-8 for statistical analysis with Mann-Whitney. h) The levels of cGAMP measured by ELISA. Individual measurements, mean values and standard deviations are shown. Scale bar in all images 10 µm. Statistical evaluation is summarized in Supplementary table 4, source data in Supplementary Data 6.

Activation of the innate immune response, but not autophagy, depends on TBK1 in constitutive trisomic cells. a-c) Quantification of relative qRT-PCR of selected IRF3 targets and ISGs after Amlexanox treatment. The data were normalized to the corresponding DMSO controls for each cell line, n=3-7. d) Immunoblotting of LC3-I and LC3-II in diploid and aneuploid cells upon TBK1 inhibition with Amlexanox (Amlx). α-actinin was used as loading control. SE-short exposure, LE - long exposure. e) Quantification of the normalized LC3-II/LC3-I ratio upon TBK1 inhibition with Amlexanox, n=3-4. All samples were normalized to the corresponding DMSO control of every cell line. f) Examples of immunofluorescent images of TFEB localization in cells treated with Amlexanox. White arrows indicate nuclei that are more abundant with TFEB protein with Amlexanox in trisomic cells. g) Quantification of nuclear TFEB signal. In average 1400 cells for HCT116 and 300 cells for RPE1 were analyzed per each cell lines. The number of measurements n=5-9 were performed for statistical analysis with Mann-Whitney test for the graphs b and e. For graphs a, c and g unpaired t test was used to analyze data. Individual measurements, mean and p-values and standard deviations are shown in the plots. Scale bar 10 µm. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementar Data 6, respectively.

Innate immune response in trisomic primary human fibroblasts. a) Heat map based on our transcriptome data shows the expression levels of the inflammatory gene set known to be activated in Down syndrome patients (from Sullivan et al, 2016) in model trisomic cells. b) Representative immunofluorescence images of dsDNA in cytoplasm (white arrows) in primary human fibroblast. c) Representative immunofluorescence images of mitochondria and dsDNA in primary human fibroblasts. White arrows point to colocalization fo dsDNA and mitotracker. Immunofluorescent images of dsDNA and H3 (d) or TFAM (f). White arrows point to dsDNA colocalized with H3 (d) or TFAM (f), yellow arrows indicate absence of colocalization of dsDNA with these markers. Quantification of percentages of dsDNA colocalized with H3 (e) and TFAM (g). In average n=30 cells were analyzed per each cell line. Unpaired t test was applied for data analysis. h) Examples of IF IRF3 images. i) cGAMP levels measured by mass spectrometry. Individual measurements, mean values and standard deviation are shown on the graphs. Scale bar 10 µm. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementary Data 6.

Autophagy activity in trisomic primary human fibroblasts a) Localization of TFEB in primary embryonic fibroblasts. White arrows point to the nuclei. Scale bar 10 μm. b) Immunoblotting of mTORC1 downstream phosphorylation targets p-P70S6K-T389, p-ULK1-S757 and LC3 in primary fibroblasts. α-actinin was used as loading control. Quantification of the LC3-II/LC3-I ratio (c, n=5-6) and relative protein levels of p-P70S6K-T389 (f, n=4), p-ULK1-S757 (g, n=3) in primary fibroblast. Data were normalized to diploid control samples. d) Immunoblotting of LC3 upon Bafilomycin 1A treatment (100 nM, 4 hours incubation) in primary fibroblasts. α-actinin was used as loading control. e) Quantification of the LC3II/LC3-I ratio in primary fibroblasts treated with Bafilomycin 1A to estimate the autophagic flux, n=3-5. The LC3-II/LC3-I ratio was calculated similar as in c and normalized to control. Mann-Whitney test was applied for statistical analysis of all graphs, only graph c was analyzed using unpaired t-test. Individual measurements, mean values and standard deviations are shown on the graphs. Statistical evaluation and source data are summarized in Supplementary table 4 and Supplementary Data 6, respectively.