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1. Derivation of Eqs. 4 and 5 in the main text 

  The rate equations for the process represented by Scheme 2 in the main text are as 

follows: 

d
dt
[PDa ]= !k f 1[PDa ][Db ]+ kd1[DbPDa ]       [S1] 

d
dt
[PDb ]= !k f 2[PDb ][Da ]+ kd2[DbPDa ]       [S2] 

d
dt
[Da ]= !k f 2[PDb ][Da ]+ kd2[DbPDa ]       [S3] 

d
dt
[Db ]= !k f 1[PDa ][Db ]+ kd1[DbPDa ]       [S4] 

d
dt
[DbPDa ]= !(kd1 + kd2 )[DbPDa ]+ k f 1[PDa ][Db ]+ k f 2[PDb ][Da ]    [S5] 

If the DNA-bridging intermediate DbPDa is a transient and low-population state, the differential 

of [DbPDa] is far smaller than the differentials of other species, and thereby is negligible, which 

yields d[DbPDa]/dt ≈ 0 (i.e., a steady-state approximation1). Thus, under this condition, [DbPDa] 

can be approximated by: 

 [DbPDa ]= k f 1(kd1 + kd2 )
!1[PDa ][Db ]+ k f 2 (kd1 + kd2 )

!1[PDb ][Da ]    [S6] 

By plugging this into Eqs. S1-S4, the following equations are obtained: 

d
dt
[PDa ]= !k f 1kd2 (kd1 + kd2 )

!1[PDa ][Db ]+ k f 2kd1(kd1 + kd2 )
!1[PDb ][Da ]   [S7] 
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 d
dt
[PDb ]= !k f 2kd1(kd1 + kd2 )

!1[PDb ][Da ]+ k f 1kd2 (kd1 + kd2 )
!1[PDa ][Db ]   [S8] 

d
dt
[Da ]= !k f 2kd1(kd1 + kd2 )

!1[PDb ][Da ]+ k f 1kd2 (kd1 + kd2 )
!1[PDa ][Db ]   [S9] 

d
dt
[Db ]= !k f 1kd2 (kd1 + kd2 )

!1[PDa ][Db ]+ k f 2kd1(kd1 + kd2 )
!1[PDb ][Da ]   [S10] 

On the other hand, the rate equations for the process represented by Scheme 3 in the main text 

are as follows: 

 d
dt
[PDa ]= !kIT ,ab[PDa ][Db ]+ kIT ,ba[PDb ][Da ]      [S11] 

 d
dt
[PDb ]= !kIT ,ba[PDb ][Da ]+ kIT ,ab[PDa ][Db ]      [S12] 

 d
dt
[Da ]= !kIT ,ba[PDb ][Da ]+ kIT ,ab[PDa ][Db ]       [S13] 

 d
dt
[Db ]= !kIT ,ab[PDa ][Db ]+ kIT ,ba[PDb ][Da ]       [S14] 

Eqs. 4 and 5 in the main text are obtained by comparison of Eqs. S11-S14 with Eqs. S7-S10. 

 

2. A complete set of rate equations for the kinetic model shown in Figure 1 

Here we provide a complete set of rate equations for the kinetic model illustrated in 

Figure 1. The rate equations for the probe DNA are as follows: 

 

d
dt
[D(1)P]= !

d
dt
[D(1) ]

= kon,(1)[P][D(1) ]! koff ,(1)[D(1)P]+ ksl,(2)[D(2)P]! ksl,1[D(1)P]
+"in,(1)[D(1) ]!"out,(1)[D(1)P]

   [S15], 
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d
dt
[D(h)P]= !

d
dt
[D(h) ]

= kon,(h)[P][D(h) ]! koff ,(h)[D(h)P]+ ksl,(h!1)[D(h!1)P]+ ksl,(h+1)[D(h+1)P]! 2ksl,(h)[D(h)P]
+"in,(h)[D(h) ]!"out,(h)[D(h)P]

  

            [S16], 

d
dt
[D(L )P]= !

d
dt
[D(L ) ]

= kon,(L )[P][D(L ) ]! koff ,(L )[D(L )P]+ ksl,(L!1)[D(L!1)P]! ksl,(L )[D(L )P]
+"in,(L )[D(L ) ]!"out,(L )[D(L )P]

  [S17]. 

In these rate equations, an index in parentheses () represents the location of a site on DNA (1 < h 

< L for Eq. S16); P, protein in the free state; D(j) (j ≠ m), a protein-free nonspecific site on the 

probe DNA; D(j)P, a protein-bound nonspecific site on the probe DNA; D(m), the target site in the 

free state; and D(m)P, the specific complex with the target. The parameters Γin,(i) and Γout,(i) are 

given by: 

!in,(i) = kIT ,( j )(i)[D( j )P]
j

L

" + kIT ,(n)(i)[C(n)P]
n

M

"       [S18] 

!out,(i) = kIT ,(i)( j )[D( j ) ]
j

L

" + kIT ,(i)(n)[C(n) ]
n

M

" ,      [S19] 

where C represents a nonspecific site on the competitor DNA; CP, a protein-bound nonspecific 

site on competitor DNA; kit,(j)(i), the second-order rate constant for intersegment transfer from a 

nonspecific site j to another site i; and kIT,(m)(i), the second-order rate constant for intersegment 

transfer from the target site. For simplicity’s sake, the same rate constants are assumed for all 

nonspecific sites (i.e., j ≠ m): kon,(j) = kon,N, koff(j) = koff,N, ksl,(j) = ksl,N. and kit,(j)(i) = kit,N. For 

translocation from the target site, kon,(m) = kon,N, koff(m) = koff,S, ksl,(m) = ksl,S, and kIT,(m)(i) = kIT,S. As 

described in the main text, Eqs. S18 and S19 deal with only intermolecular intersegment transfer 

between two DNA duplexes, and do not deal with intra-molecular intersegment transfer because 
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the probe DNA duplexes used in this study are shorter than the persistence length. The rate 

equations for the competitor DNA are given by: 

d
dt
[C(1)P]= !

d
dt
[C(1) ]

= kon,N [P][C(1) ]! koff ,N [C(1)P]+ ksl,N [C(2)P]! ksl,N [C(1)P]
+"in,(1)[C(1) ]!"out,(1)[C(1)P]

   [S20] 

d
dt
[C(h)P]= !

d
dt
[C(h) ]

= kon,N [P][C(h) ]! koff ,N [C(h)P]+ ksl,N [C(h!1)P]+ ksl,N [C(h+1)P]! 2ksl,N [C(h)P]
+"in,(h)[C(h) ]!"out,(h)[C(h)P]

  

            [S21] 

d
dt
[C(M )P]= !

d
dt
[C(M ) ]= kon,N [P][C(M ) ]! koff ,N [C(M )P]+ ksl,N [C(M!1)P]! ksl,N [C(M )P]

+"in,(M )[C(M ) ]!"out,(M )[C(M )P]
  

            [S22] 

The index h in Eq. S21 is for a non-edge site on competitor DNA (i.e., 1 < h < M). The rate 

equation for the protein in the free state is given by: 

d
dt
[P]= ! d

dti

L

" [D(i)P]!
d
dt
[C(i)P]

i

M

"

= koff ,(i)[D(i)P]! kon,(i)[D(i) ][P]( )
i

L

" + koff ,N [C(i)P]! kon,N [C(i) ][P]( )
i

M

"
  [S23] 

Intersegment transfer does not affect the populations of the protein in the free state.  

 

3. ODE-based numerical simulations of target association kinetics 

The time courses of the concentrations of individual species in the target association 

process for the systems involving protein, probe DNA, and competitor DNA were obtained via 

numerical integration of the rate equations (Eqs S15–S23) by using MATLAB software 
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(MathWorks, Inc). A standard ODE solver (‘ode15s’) in MATLAB was used to numerically 

solve the rate equations via intergration. Due to the principle of detailed balance (or microscopic 

reversibility),2 the kinetic rate constants kIT,S and ksl,S were set to: 

kIT ,S = kIT ,NKd,SKd,N
!1          [S24] 

ksl,S = ksl,N [D( j ) ]eqKd,N
!1 [D(m) ]eq

!1Kd,S ,        [S25] 

respectively (m is the index for the target). From the experimental settings, the initial conditions 

for the rate equations are set to [P](0) = Ptot; [D(i)](0) = Dtot; [C(i)](0) = Ctot; and [D(i)P](0) = 

[C(i)P](0) = 0, where Ptot, Dtot, and Ctot are the total concentrations of the protein, probe DNA, 

and competitor DNA, respectively. The apparent pseudo-first-order rate constant kapp for target 

association was calculated by mono-exponential fitting to the time course of [D(m)P](t) / Dtot 

from the ODE-based simulation. Independently of the ODE calculations, the equilibrium 

concentrations of individual species were calculated by solving the following simultaneous 

equations:  

Kd,S = [D(m) ]eq[P]eq / [D(m)P]eq         [S26] 

Kd,N = [D( j ) ]eq[P]eq / [D( j )P]eq  (j ≠ m)       [S27] 

Kd,N = [C(i) ]eq[P]eq / [C(i)P]eq         [S28] 

Ptot = [P]eq +[D(m)P]eq + (L !1)[D( j )P]eq +M[C(i)P]eq      [S29] 

Dtot = [D(i) ]eq +[D(i)P]eq         [S30] 

Ctot = [C(i) ]eq +[C(i)P]eq         [S31] 

for [D(m)]eq, [D(j)]eq, [C(i)]eq, [D(m)P]eq, [D(j)P]eq, and [C(i)P]eq. For validation, the final 

concentrations from the ODE-based kinetic simulations were confirmed to agree with the 
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equilibrium populations calculated from the total concentrations and equilibrium constants by 

using Eqs. S26-S31.  

 

4. Derivation of Eq. 12 in the main text 

For a two-state pseudo-first-order process represented by Sa
kab! "!
kba
# !! Sb , the time courses 

starting from the initial conditions [Sa](0) = Stot and [Sb](0) = 0 are as follows:3 

 [Sa ](t) = Stot
K + exp{!(1+K )kabt}

1+K
       [S32] 

 [Sb ](t) = Stot
1! exp{!(1+K )kabt}

1+K
,       [S33] 

where K is the equilibrium constant given by kba / kab (= [Sa]eq / [Sb]eq). Thus, the time course of 

fluorescence intensity for the ensemble of the states Sa and Sb is given by: 

 F(t) = 1
1+K

(Fa !Fb )exp{!(1+K )kabt}+
KFa +Fb
1+K

     [S34] 

where Fa and Fb correspond to fluorescence from the states Sa and Sb, respectively. Therefore, 

the apparent rate constant kapp from mono-exponential fitting to the fluorescence time-course data 

is: 

kapp = (1+K )kab          [S35] 

for this pseudo-first-order process. 

For systems with the protein, competitor DNA and probe DNA at concentrations 

satisfying Dtot « Ptot « Ctot, the target site D(m) undergoes a pseudo-first-order process involving 

the free and protein-bound states (corresponding to Sb and Sa, respectively). Based on Eq. S35, 

the apparent pseudo-first-order rate constant kapp for the target association is given by:  
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kapp = 1+
[D(m) ]eq
[D(m)P]eq

!

"
##

$

%
&&k1 = 1+ Kd,S

fpPtot

!

"
##

$

%
&&k1       [S36] 

Due to the inequalities, Dtot « Ptot « Ctot, the association of proteins with the competitor DNA 

reaches quasi-equilibrium far more rapidly than the association with the target. Therefore, well 

before the population of protein-bound target significantly increases, the fraction of the protein in 

the free state instantly become fP as given by Eq. 13 in the main text. Using the mean search time 

TP of the VK model (Eq. 7 in the main text), the initial molar flow rate for the free proteins to 

reach the target is given by TP
!1 fPPtot . This should be equal to the initial molar flow rate for the 

target to bind to the protein, which is given by k1Dtot. Thus, the pseudo-first-order rate constant k1 

in Eq. S36 is:  

k1 = TP
!1 fPPtotDtot

!1          [S37] 

for systems without the intersegment transfer mechanism. Eq. 12 in the main text is obtained 

from Eqs. S36 and S37.  

 

5. Consideration on two-orientation systems with φ  = 2  

For proteins that bind to DNA as a monomer (e.g. Egr-1), two opposite orientations are 

possible (i.e., φ = 2) at each site due to the structural pseudo-C2 symmetry of double helical DNA. 

Because the presence of two possible orientations is equivalent to doubling the number of 

nonspecific sites, the parameter M is multiplied by φ in Eqs. 13, 17, and 20 in the main text. 

However, unless the target sequence is palindromic, the parameter L in Eqs. 7, 8, 10, and 19 in 

the main text should not be multiplied by φ because sliding with only one of the two possible 

orientations on the probe DNA can lead to the formation of the specific complex with the target. 
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The kapp constants from Eq. 18 with φ = 2 show excellent agreement with those from ODE-based 

numerical simulations for two-orientation systems (Figure 3B in the main text). 

 

6. Ptot-dependent kapp data 

 We analyzed the protein-concentration dependence of the apparent pseudo-first-order rate 

constant kapp for target association in the presence of competitor DNA at three different 

concentrations (Ctot = 1, 2, and 4 µM). The results are shown in Figure S1. As indicated by the 

analytical forms (i.e., Eqs. 12, 16, and 18 in the main text), the measured kapp constant was 

proportional to the total protein concentration Ptot.  

 

 

Figure S1. The protein-concentration dependent kapp data recorded for the 113-bp probe DNA in the 
presence of competitor DNA. The experimental conditions were the same as those used for Figure 6. The 
apparent second-order rate constants ka for target association measured at Ctot = 1, 2, and 4 µM were  
6.6 × 107, 4.5 × 107, and 4.2 × 107 M-1 s-1, respectively.  
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