
Appendix

Appendix 1

Note that X1 is a random variable from the binomial distribution with parameters n1

and p1, and so we have

Bias

ˆ

X1 ` c1
n1 ` 2c1

˙

“ E

ˆ

X1 ` c1
n1 ` 2c1

˙

´ p1

“
n1p1 ` c1
n1 ` 2c1

´
n1p1 ` 2c1p1
n1 ` 2c1

,

“
c1 ´ 2c1p1
n1 ` 2c1

;

Bias

ˆ

X1 ` c1
n1 ` c1

˙

“ E

ˆ

X1 ` c1
n1 ` c1

˙

´ p1

“
n1p1 ` c1
n1 ` c1

´
n1p1 ` c1p1
n1 ` c1

,

“
c1 ´ c1p1
n1 ` c1

.

Then we propose to solve

ˆ

c1 ´ 2c1p1
n1 ` 2c1

˙2

ă

ˆ

c1 ´ c1p1
n1 ` c1

˙2

.

For p1 ď 0.5, it is evident that this inequality always holds. For p1 ą 0.5, we have

2c1p1 ´ c1
n1 ` 2c1

ă
c1 ´ c1p1
n1 ` c1

2c1p1n1 ` 2c21p1 ´ c1n1 ´ c
2
1 ă c1n1 ´ c1n1p1 ` 2c21 ´ 2c21p1

3c1p1n1 ` 4c21p1 ă 2c1n1 ` 3c21

p1 ă
2n1 ` 3c1
3n1 ` 4c1

.

Since p2n1 ` 3c1q{p3n1 ` 4c1q ą 0.5, the squared bias of pX1 ` c1q{pn1 ` 2c1q is lower

than that of pX1` c1q{pn1` c1q over a half of settings. We also note that the variance of

pX1 ` c1q{pn1 ` 2c1q is always smaller than the variance of pX1 ` c1q{pn1 ` c1q. Hence,
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the MSE of pX1 ` c1q{pn1 ` 2c1q is smaller than the MSE of pX1 ` c1q{pn1 ` c1q in most

settings.

Appendix 2: Comparison of the p1 estimates

In this simulation study, we propose to explore the effect of c1 on the family of estimators

p̃1pc1q “ pX1 ` c1q{pn1 ` 2c1q in terms of coverage probability and expected length. To

generate the simulation data, we let p1 range from 0.01 to 0.99 and c1 “ 0.25, 0.5,

0.75 or 1. We also consider n1 “ 10 and 50 as the different numbers of samples. With

N “ 100, 000 repetitions for each setting, we generate random numbers from the binomial

distribution with parameters p1 and n1 to yield the estimates of p1 and the CIs. By the

delta method, the variance of lnrp̃1pc1qs can be approximately given as varrlnpp̃1pc1qqs «

1{pX1 ` c1q ´ 1{pn1 ` 2c1q. Hence, the 95% confidence interval of p1 is given by

exp

"

ln

ˆ

X1 ` c1
n1 ` 2c1

˙

˘ 1.96

c

1

X1 ` c1
´

1

n1 ` 2c1

*

. (1)

Then we compute the frequencies of the true RR falling in the CIs as the coverage

probability estimates. The expected lengths of the CIs on the log scale are computed by

N´1
řN

s“1rlnpULsq ´ lnpLLsqs, where ULs and LLs are the upper and lower limits for the

sth CI.

From Additional Fig. 1, it is evident that the CIs with small c1, e.g. c1 “ 0.25,

yield low coverage probabilities when p1 is close to 1. On the other side, the CIs with

large c1, e.g. c1 “ 1, have low coverage probabilities when p1 is close to 0. In addition,

the CIs with larger c1 will yield shorter expected lengths, but large c1 may harm the

coverage probabilities for small p1. As a compromise, we recommend the intermediate

value c1 “ 0.5, and our subsequent results show that c1 “ 0.5 is indeed a reliable option

for estimating RR.
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Additional Fig. 1: Comparison of the CIs of p1 with c1 “ 0.25, 0.5, 0.75 or 1, and
n1 “ 10 or 50. The dot-dashed lines represent the simulation results for c1 “ 0.25, the
solid lines represent the simulation results for c1 “ 0.5, the dashed lines represent the
simulation results for c1 “ 0.75, and the dotted lines represent the simulation results for
c1 “ 1. CI: Confidence interval
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Appendix 3: Simulation study for the estimators within family

(13)

By the results from Appendix 2, we let c1 “ 0.5 and consider c2 “ 0.5 or 1 for estimator

(6) and (13). To generate the simulation data, we let p2 “ 0.05, 0.15, 0.85 or 0.95, and

p1 “ p2 ˆ RR with RR ranging from 0.2 to mint5, 1{p2u. We also consider the numbers

of samples as n1 “ n2 “ 10 or 50. With N “ 100, 000 repetitions for each setting, we

generate random numbers from the binomial distributions with parameters pp1, n1q and

pp2, n2q. We then compute the frequencies of the true RR falling in the CIs as the coverage

probability estimates. The expected lengths of the CIs on the log scale are computed by

N´1
řN

s“1rlnpULsq ´ lnpLLsqs, where ULs and LLs are the upper and lower limits of the

sth CI.

From the top four panels of Additional Fig. 2 and 3 with small p2, the CIs associated

with ĂRRp0.5, 1q and xRRp0.5, 1q yield shorter expected lengths than the other two CIs,

but they have low coverage probabilities when ln(RR) is large. By contrast, the CIs

associated with ĂRRp0.5, 0.5q and xRRp0.5, 0.5q are able to provide a better performance

for large ln(RR). From the bottom four panels of Additional Fig. 2 and 3 with large p2,

we note that the CIs associated with xRRp0.5, 0.5q and xRRp0.5, 1q perform better in terms

of coverage probability in most settings. Noting also that the expected lengths of the

four CIs are almost the same, we thus conclude that the CI associated with xRRp0.5, 0.5q

is the best among the four CIs.

Appendix 4: Simulation study for unbalanced n1 and n2

In this simulation study, we compare the performance of the four existing intervals and

the hybrid interval for unbalanced n1 and n2. Specifically, we consider n1 “ 20 with

n2 “ 40, 80 or 160, and consider n2 “ 20 with n1 “ 40, 80 or 160. The other settings are

kept the same as those in the main text.

From the top four panels of Additional Fig. 4 to 9 with small p2, the Haldane and

TACC intervals are more stable than the other CIs in terms of coverage probability. We
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Additional Fig. 2: Comparison of the four CIs of RR with p2 “ 0.05, 0.15, 0.85 or
0.95, and n1 “ n2 “ 10. The dot-dashed lines represent the simulation results of the
CI associated with ĂRRp0.5, 0.5q, the dashed lines represent the simulation results of the

CI associated with ĂRRp0.5, 1q, the solid lines represent the simulation results of the CI

associated with xRRp0.5, 0.5q, and the dotted lines represent the simulation results of the

CI associated with xRRp0.5, 1q. CI: Confidence interval, RR: Relative risk
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Additional Fig. 3: Comparison of the four CIs of RR with p2 “ 0.05, 0.15, 0.85 or
0.95, and n1 “ n2 “ 50. The dot-dashed lines represent the simulation results of the
CI associated with ĂRRp0.5, 0.5q, the dashed lines represent the simulation results of the

CI associated with ĂRRp0.5, 1q, the solid lines represent the simulation results of the CI

associated with xRRp0.5, 0.5q, and the dotted lines represent the simulation results of the

CI associated with xRRp0.5, 1q. CI: Confidence interval, RR: Relative risk
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also note that the expected lengths of the Haldane interval are much shorter than the

TACC interval. From the bottom four panels of Additional Fig. 4 to 9 with large p2,

the hybrid interval provides the best performance with the coverage probabilities close

to the nominal level when n1 ă n2. When n1 ą n2, the CIs except the Carter interval

are almost identical in most settings, as long as ln(RR) is not very large.

Appendix 5: Comparison of the random-effects models with the

existing correction methods

Appendix 6: Meta-analyses of COVID-19 data with OR being

the effect size

By applying Haldane’s continuity correction, we note from the top panel of Additional

Fig. 11 that the overall effect size of 0.09 with the 95% CI being r0.01, 0.67s indicates

a significant effect of a further physical distance. The middle panel of Additional Fig.

11 shows that the random-effects model with the treatment arm continuity correction

yields the overall effect size of 0.07 with the 95% CI being r0.01, 0.54s. Moreover, the

bottom panel of Additional Fig. 11 shows that the random-effects model with the em-

pirical continuity correction yields the overall effect size of 0.06 with the 95% CI being

r0.01, 0.51s. In addition, for the results not presented in Additional Fig. 11, the GLMM

with the logit link yields the overall effect size of 0.15 with the 95% bootstrap CI being

r0.02, 0.51s. Meanwhile, the GLMM with the probit link yields the overall effect size of

0.14 with the 95% CI being r0.01, 0.51s.

After including the double-zero-event studies, the top panel of Additional Fig. 12

shows that the random-effects model with Haldane’s continuity correction yields the

overall effect size of 0.16 with 95% CI being r0.03, 0.82s. The middle panel of Additional

Fig. 12 presents that the random-effects model with the treatment arm continuity cor-

rection yields the overall effect size of 0.14 with the 95% CI being r0.03, 0.68s. Then for

the empirical continuity correction, we note from the bottom panel of Additional Fig. 12
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Additional Fig. 4: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 20, n2 “ 40. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 5: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 20, n2 “ 80. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 6: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 20, n2 “ 160. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 7: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 40, n2 “ 20. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 8: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 80, n2 “ 20. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 9: Comparison of the five CIs of RR with p2 “ 0.05, 0.15, 0.85 or 0.95,
and n1 “ 160, n2 “ 20. The dot-dashed lines represent the simulation results of the
Haldane interval, the long dashed lines represent the simulation results of the TACC
interval, the short dashed lines represent the simulation results of the Carter interval,
the dotted lines represent the simulation results of the Pettigrew interval, and the solid
lines represent the simulation results of the hybrid interval. CI: Confidence interval, RR:
Relative risk, TACC: Treatment arm continuity correction
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Additional Fig. 10: Comparison of the four methods with k “ 3, 6 or 12, τ 2 “ 0.25 or
1. “1” represents the results of the random-effects model with the Haldane estimator,
“2” represents the results of the random-effects model with the TACC estimator, “3”
represents the results of the random-effects model with the Carter estimator, and “4”
represents the results of the random-effects model with the Pettigrew estimator. CI:
TACC: Treatment arm continuity correction, MSE: Mean squared error
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that the overall effect size is 0.11, and the 95% CI is [0.02, 0.53]. Last but not least, the

GLMM with the logit link provides the overall effect size of 0.23 with the 95% CI being

r0.05, 0.63s, and the GLMM with the probit link provides the overall effect size of 0.22

with the 95% CI being r0.06, 0.53s.

Appendix 7: R code for analyzing COVID-19 data

# Effect size: RR

# Without the double-zero-event studies

# Random-effects model with the Haldane estimator

library(meta)

Covid1 = read.table(header = TRUE, as.is = TRUE, text = "

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

")

meta1 = metabin(event.e, n.e , event.c, n.c, data = Covid1, sm = "RR",

incr = 0.5, studlab = author, RR.Cochrane = 1, comb.fixed = F)

forest(meta1)

# Random-effects model with the TACC estimator

Covid2 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3
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Additional Fig. 11: Meta-analyses of COVID-19 data without the double-zero-event
studies by applying Haldane’s continuity correction (top), the treatment arm continu-
ity correction (middle), and the empirical continuity correction (bottom). COVID-19:
Coronavirus disease 2019, OR: Odds ratio, CI: Confidence interval
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Additional Fig. 12: Meta-analyses of COVID-19 data with the double-zero-event studies
by applying Haldane’s continuity correction (top), the treatment arm continuity correc-
tion (middle), and the empirical continuity correction (bottom). COVID-19: Coronavirus
disease 2019, OR: Odds ratio, CI: Confidence interval
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Cheng 5 47 7 36

Heinzerling 0 4 3 33

")

meta2 = metabin(event.e ,n.e, event.c, n.c, data=Covid2, sm = "RR",

incr = "TACC", studlab = author,

RR.Cochrane = 1, comb.fixed = F)

forest(meta2)

# Random-effects model with the hybrid estimator

Covid3 = read.table(header = TRUE, as.is = TRUE, text = "

author event.e n.e event.c n.c

Bai 0.5 77 12.5 42.5

Burke 0.5 14 2.5 2.5

Liu 0.5 18 2.5 3.5

Cheng 5.5 48 7.5 36.5

Heinzerling 0.5 5 3.5 33.5

")

meta3 = metabin(event.e, n.e, event.c, n.c, data = Covid3, sm = "RR",

studlab = author, incr = 0, comb.fixed = F)

forest(meta3)

# The GLMM

library(altmeta)

sid = c(1,1,2,2,3,3,4,4,5,5) # study id

tid = c(0,1,0,1,0,1,0,1,0,1) # 0/1: control/experiment group

e = c(12,0,2,0,2,0,7,5,3,0) # the number of events

n = c(42,76,2,13,3,17,36,47,33,4) # the number of samples

18



data_glmm = data.frame(sid, tid, e, n)

glmm_logit = meta.biv(sid, tid, e, n, data_glmm, link = "logit",

alpha = 0.05, b.iter = 1000)

glmm_probit = meta.biv(sid, tid, e, n, data_glmm, link = "probit",

alpha = 0.05, b.iter = 1000)

# With the double-zero-event studies

# Random-effects model with the Haldane estimator

library(meta)

Covid1 = read.table(header = TRUE, as.is = TRUE, text = "

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

Burke 0 50 0 76

Burke 0 41 0 37

")

meta1 = metabin(event.e, n.e, event.c, n.c, data = Covid1,

sm="RR",incr = 0.5, allstudies = T, studlab = author,

RR.Cochrane = 1, comb.fixed = F)

forest(meta1)

# Random-effects model with the TACC estimator

Covid2 = read.table(header=TRUE, as.is=TRUE, text="
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author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

Burke 0 50 0 76

Burke 0 41 0 37

")

meta2 = metabin(event.e, n.e, event.c, n.c, data = Covid2,

sm="RR",incr = "TACC", allstudies = T, studlab = author,

RR.Cochrane = 1, comb.fixed = F)

forest(meta2)

# Random-effects model with the hybrid estimator

Covid3 = read.table(header = TRUE, as.is = TRUE, text = "

author event.e n.e event.c n.c

Bai 0.5 77 12.5 42.5

Burke 0.5 14 2.5 2.5

Liu 0.5 18 2.5 3.5

Cheng 5.5 48 7.5 36.5

Heinzerling 0.5 5 3.5 33.5

Burke 0.5 51 0.5 76.5

Burke 0.5 42 0.5 37.5

")

meta3 = metabin(event.e ,n.e, event.c, n.c, data = Covid3,

sm = "RR", studlab = author, incr = 0, comb.fixed = F)

forest(meta3)
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# The GLMM

# study id

sid = c(1,1,2,2,3,3,4,4,5,5,6,6,7,7)

# 0/1: control/experiment group

tid = c(0,1,0,1,0,1,0,1,0,1,0,1,0,1)

# the number of events

e = c(12,0,2,0,2,0,7,5,3,0,0,0,0,0)

# the number of samples

n = c(42,76,2,13,3,17,36,47,33,4,76,50,37,41)

data_glmm = data.frame(sid, tid, e, n)

glmm_logit = meta.biv(sid, tid, e, n, data_glmm, link = "logit",

alpha = 0.05, b.iter = 1000)

glmm_probit = meta.biv(sid, tid, e, n, data_glmm, link = "probit",

alpha = 0.05, b.iter = 1000)

# Effect size: OR

# Without the double-zero-event studies

# Random-effects model with Haldane’s continuity correction

library(meta)

Covid1 <- read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

")
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meta1<- metabin(event.e ,n.e, event.c, n.c, data=Covid1,

sm = "OR", incr = 0.5, studlab = author,

comb.fixed = F)

forest(meta1)

# Random-effects model with the treatment arm continuity correction

Covid2 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

")

meta2 = metabin(event.e ,n.e, event.c, n.c, data=Covid2, sm = "OR",

incr = "TACC", studlab = author,

comb.fixed = F)

forest(meta2)

# Random-effects model with the empirical continuity correction

Covid3 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33
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")

Omega = (5*29)/(42*7)

for(i in 1:nrow(Covid3))

{

group.ratio = Covid3[i,5]/Covid3[i,3]

if(Covid3[i,2]==0|Covid3[i,4]==0)

{

Covid3[i,2] = Covid3[i,2] + Omega/(group.ratio + Omega)

Covid3[i,3] = Covid3[i,3] + 2*Omega/(group.ratio + Omega)

Covid3[i,4] = Covid3[i,4] + group.ratio/(group.ratio + Omega)

Covid3[i,5] = Covid3[i,5] + 2*group.ratio/(group.ratio + Omega)

}

}

meta3 = metabin(event.e ,n.e, event.c, n.c, data=Covid3, sm = "OR",

incr = 0, studlab = author,

comb.fixed = F)

forest(meta3)

# The GLMM

library(altmeta)

sid = c(1,1,2,2,3,3,4,4,5,5) # study id

tid = c(0,1,0,1,0,1,0,1,0,1) # 0/1: control/experiment group

e = c(12,0,2,0,2,0,7,5,3,0) # the number of events

n = c(42,76,2,13,3,17,36,47,33,4) # the number of samples

data_glmm = data.frame(sid, tid, e, n)

glmm_logit = meta.biv(sid, tid, e, n, data_glmm, link = "logit",

alpha = 0.05, b.iter = 1000)

glmm_probit = meta.biv(sid, tid, e, n, data_glmm, link = "probit",

alpha = 0.05, b.iter = 1000)
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# Effect size: OR

# With the double-zero-event studies

# Random-effects model with Haldane’s continuity correction

Covid1 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

Burke 0 50 0 76

Burke 0 41 0 37

")

meta1 = metabin(event.e, n.e, event.c, n.c, data = Covid1,

sm="OR",incr = 0.5, allstudies = T, studlab = author,

comb.fixed = F)

# Random-effects model with the treatment arm continuity correction

Covid2 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

Burke 0 50 0 76
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Burke 0 41 0 37

")

meta2 = metabin(event.e, n.e, event.c, n.c, data = Covid2,

sm="OR",incr = "TACC", allstudies = T, studlab = author,

comb.fixed = F)

forest(meta2)

# Random-effects model with the empirical continuity correction

Covid3 = read.table(header=TRUE, as.is=TRUE, text="

author event.e n.e event.c n.c

Bai 0 76 12 42

Burke 0 13 2 2

Liu 0 17 2 3

Cheng 5 47 7 36

Heinzerling 0 4 3 33

Burke 0 50 0 76

Burke 0 41 0 37

")

Omega = (5*29)/(42*7)

for(i in 1:nrow(Covid3))

{

group.ratio = Covid3[i,5]/Covid3[i,3]

if(Covid3[i,2]==0|Covid3[i,4]==0)

{

Covid3[i,2] = Covid3[i,2] + Omega/(group.ratio + Omega)

Covid3[i,3] = Covid3[i,3] + 2*Omega/(group.ratio + Omega)

Covid3[i,4] = Covid3[i,4] + group.ratio/(group.ratio + Omega)

Covid3[i,5] = Covid3[i,5] + 2*group.ratio/(group.ratio + Omega)
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}

}

meta3 <- metabin(event.e ,n.e, event.c, n.c, data = Covid3, allstudies = T,

sm = "OR", studlab = author, incr = 0, comb.fixed = F)

forest(meta3)

# The GLMM

# study id

sid = c(1,1,2,2,3,3,4,4,5,5,6,6,7,7)

# 0/1: control/experiment group

tid = c(0,1,0,1,0,1,0,1,0,1,0,1,0,1)

# the number of events

e = c(12,0,2,0,2,0,7,5,3,0,0,0,0,0)

# the number of samples

n = c(42,76,2,13,3,17,36,47,33,4,76,50,37,41)

data_glmm = data.frame(sid, tid, e, n)

glmm_logit = meta.biv(sid, tid, e, n, data_glmm, link = "logit",

alpha = 0.05, b.iter = 1000)

glmm_probit = meta.biv(sid, tid, e, n, data_glmm, link = "probit",

alpha = 0.05, b.iter = 1000)
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