1 Supplementary information

~	4 11 4 11		• 4		•	11		•
2	stellate cells	nrotects a	σgingt	liver i	hrosis	and h	lensfocsrcino	σεπεςις
0	stemate cens	protects a	Samo		101 0515	ana n	icpatocal cino	Schesis

- 4 Yang Yang^{1,2#}, Mayu Sun^{1,2#}, Weida Li^{1#}, Chaobao Liu¹, Zheshun Jiang¹, Pengfei Gu¹,
- 5 Jingquan Li¹, Qian Ba^{1*}, Xiaoguang Li^{1*}, Hui Wang^{1,2,*}
- ⁶ ¹State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
- 7 Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine,
- 8 Shanghai, China.
- 9 ²CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of
- 10 Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy
- 11 of Sciences, Shanghai, China.
- 12
- 13 *Correspondence: huiwang@shsmu.edu.cn (H. Wang); lixg@shsmu.edu.cn (X. Li)
- $14 \qquad and \ qba@shsmu.edu.cn \ (Q. \ Ba).$
- 15

16	[#] Yang	Yang,	Mayu	Sun and	Weida	Li c	contributed	equall	y to	this v	vork.

- 17
- 18
- 19
- 20

- 21
- 22

23 Supplementary methods

The meta-analysis included in this study was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines.

27 Database and Search strategy

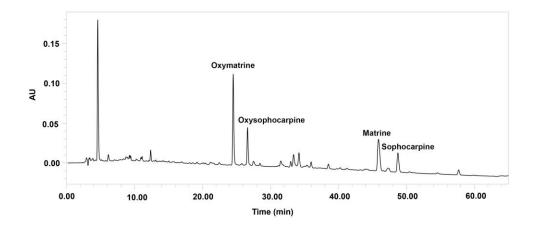
The consulted electronic databases include PubMed, Web of Science, ClinicalTrials.
gov, the China National Knowledge Infrastructure (CNKI), the Wanfang Database and
the Cqvip Database. The last search date was April 10, 2021.

The search details were conducted with the terms "kushen injection" [Title/Abstract] OR "matrine injection" [Title/Abstract] OR "Sophora flavescens Injection" [Title/Abstract] AND "liver fibrosis" [Title/Abstract] OR "liver inflammation" [Title/Abstract] OR "HBV" [Title/Abstract] OR "HCV" [Title/Abstract] OR "NASH" [Title/Abstract] OR "liver cirrhosis" [Title/Abstract].

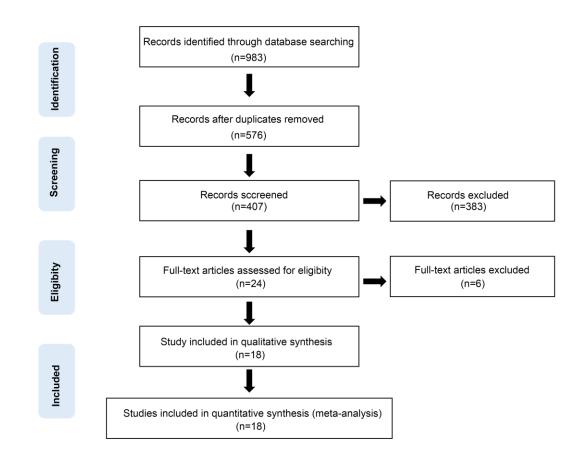
36 Inclusion and Exclusion criteria

37 Studies that met the following inclusion criteria were considered eligible for this metaanalysis: (1) trials were described as RCTs; (2) study patients were diagnosed as HBV, 38 HCV or NASH induced chronic liver inflammation, fibrosis, or cirrhosis; (3) patients 39 in the experimental group received CKI or CKI combined with regularly antiviral or 40 41 liver fibrosis treatment agents, whereas patients in the control group only received antiviral or liver fibrosis treatment agents. (4) a minimum of two of the following 42 outcomes were included in each study: ALT, AST, T-BIL, laminin (LN), hyaluronic acid 43 (HA), procollagen type III (COL3) and collagen type IV (COL4). 44

The exclusion criteria were as follows: (1) the trials were not RCTs; (2) diagnostic criteria were not clearly reported in the trials; (3) relevant outcome indexes were not reported or estimated; (4) the detailed data regarding the liver functions were not available.


49 Data Extraction and Analysis

All identified articles were retrieved in full and the following data were extracted, including (1) publication information: the name of the first author and the publication year; (2) characteristics of patients: number, gender, age, the duration of disease and etiology; (3) Information on the intervention: dosage, duration and treatment cycle; (4) outcomes: the measured data on the efficiency of treatments. The characteristics of all included RCTs are summarized in Supplementary Table 5.


All analyses were performed using R software. Continuous data were shown as the standardized mean difference (SMD) with a 95% confidence intervals (CI) and the studies were pooled with the inverse variance weighted method under the fixed model and DerSimonian and Laird random-effects model. Heterogeneity was assessed using l^2 and τ^2 statistics. Substantial heterogeneity was considered when $l^2 > 50\%$ or P < 0.01. The included trials publication bias was evaluated by Rank correlation test of funnel plot asymmetry.

63

65 Supplementary Figures and Figure legends

69 Figure S2 Working flow chart of the selection process for eligible studies.

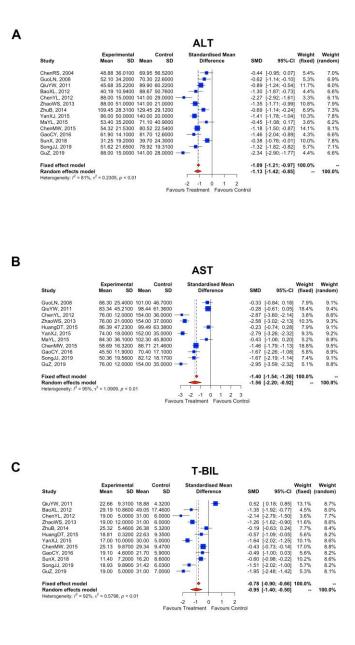
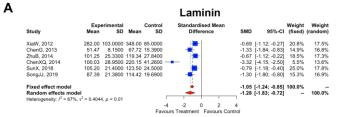
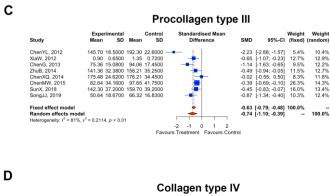




Figure S3 Forest plots showing a significant improvement in patients liver function
after CKI intervention in the experimental group compared with control group,
including the serum levels of (A) ALT, (B) AST and (C) T-BIL.

В

				н	lyaluronic acid				
Study	Exp Mean	erimental SD	Mean	Control SD	Standardised Mean Difference	SMD	95%-CI	Weight (fixed)	Weight (random)
LiangGL, 2004	152.70	20.9000	300.80	81.2000	ii 1	-2.47	[-3.13; -1.81]	5.5%	11.1%
XiaW, 2012	218.00	156.0000	443.00	305.0000		-0.92	[-1.36; -0.49]	12.7%	12.8%
ChenG, 2013	80.89	10.5400	100.70	13.0400		-1.67	[-2.20; -1.14]	8.6%	12.1%
ZhuB, 2014	106.13	36.7600	125.32	38.9200	÷	-0.50	[-0.95; -0.06]	12.1%	12.7%
ChenXQ, 2014	186.54	16.9500	196.54	69.4100		-0.20	[-0.72; 0.33]	8.7%	12.1%
ChenMW, 2015	95.32	41.7600	124.78	43.6600		-0.69	[-0.99; -0.39]	26.6%	13.7%
SunX, 2018	108.60	41.3000	126.70	43,1000		-0.43	[-0.80; -0.05]	16.8%	13.2%
SongJJ, 2019	109.93	21.4900	151.91	29.3900		-1.61	[-2.14; -1.09]	8.9%	12.2%
Fixed effect model					•		[-1.03; -0.72]		
Random effects model Heterogeneity: /2 = 87%, r		9 0 < 0 01				-1.03	[-1.47; -0.58]		100.0%
					-3 -2 -1 0 1 2 3				
				Fav	ours Treatment Eavours Contro	al.			

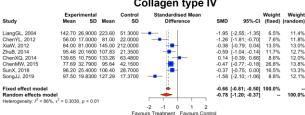
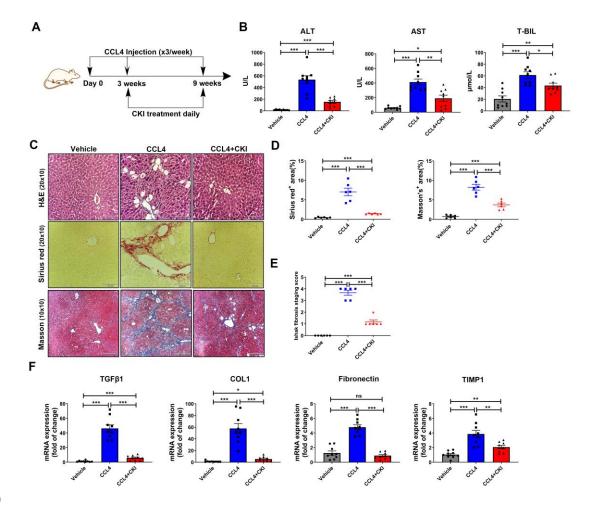
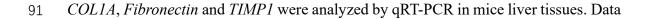
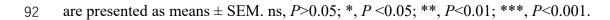
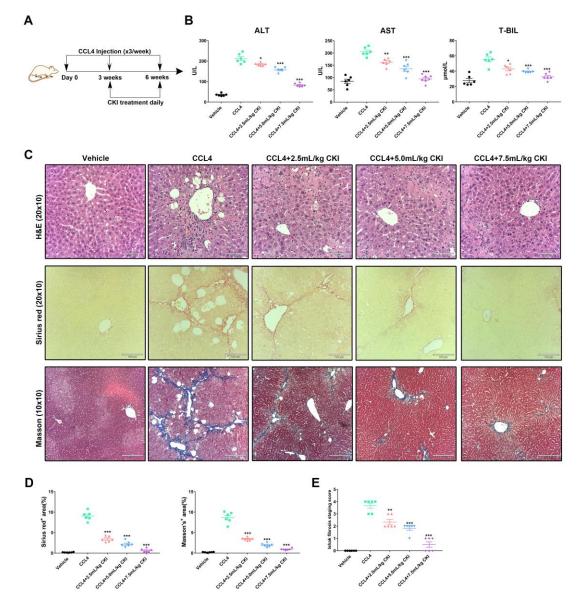



Figure S4 Forest plots showing a significant improvement in patients liver fibrosis after
CKI intervention in the experimental group compared with control group, including the
serum levels of (A) Laminin, (B) Hyaluronic acid, (C) Procollagen type III and (D)
Collagen type IV.

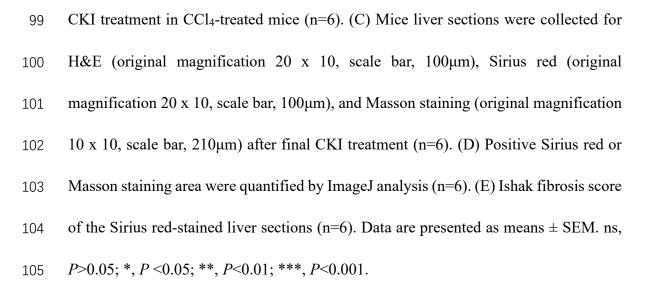


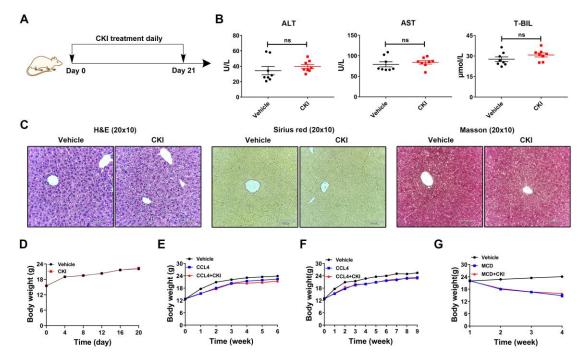

79


80 Figure S5. CKI attenuates chronic liver fibrosis.

(A) Scheme of experimental procedure for C57BL/6 mice intraperitoneally treated with 81 4mL/kg CCl₄ in olive oil for 9 weeks. Mice were intraperitoneally administrated with 82 CKI (7.5 mL/kg) mouse for 6 weeks, starting at 3 weeks post initiation of CCl₄ 83 challenge. (B) The serum levels of ALT, AST and T-BIL were detected after the final 84 CKI treatment in CCl₄-treated mice (n=9). (C) Mice liver sections were collected for 85 H&E (original magnification 20 x 10, scale bar, 110µm), Sirius red (original 86 magnification 20 x 10, scale bar, 100µm), and Masson staining (original magnification 87 10 x 10, scale bar, 220µm) after final CKI treatment (n=6). (D) Positive Sirius red or 88 Masson staining area were quantified by ImageJ analysis (n=6). (E) Ishak fibrosis score 89

90 of the Sirius red-stained liver sections (n=6). (F) The mRNA expression of $TGF-\beta I$,

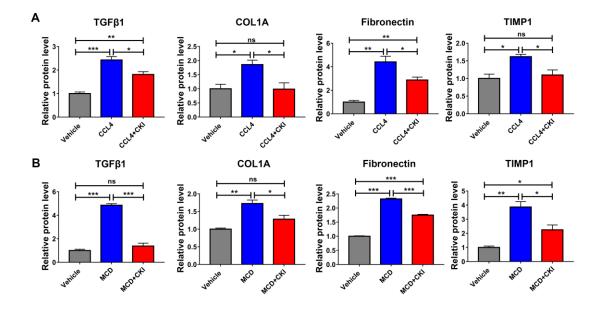




93

94 Figure S6. CKI inhibits chronic liver fibrosis in a dose-dependent manner.

(A) Scheme of experimental procedure for C57BL/6 mice intraperitoneally treated with
4mL/kg CCl₄ in olive oil for 6 weeks. Mice were intraperitoneally administrated with
CKI (2.5, 5.0 and 7.5 mL/kg) for 3 weeks, starting at 3 weeks post initiation of CCl₄
challenge. (B) The serum levels of ALT, AST and T-BIL were detected after the final



107 Figure S7. CKI treatment has no side effect on mice.

(A) Scheme of experimental procedure for normal C57BL/6 mice intraperitoneally
administrated with CKI (7.5 mL/kg) for 3 weeks. (B) The serum levels of ALT, AST
and T-BIL were detected after the final CKI treatment (n=8). (C) Mice liver sections
were collected for H&E, Sirius red, and Masson staining (original magnification 20 x
scale bar, 100µm). (D-G) The curves of mouse bodyweight changes were shown

from different models. (D) related to the model in Supplementary Figure 6A. (E) related
to the model in Figure 1A. (F) related to the model in Supplementary Figure 4A. (G)

related to the model in Figure 1C. Data are presented as means \pm SEM. ns, *P*>0.05.

118 (A and B) Quantitative analysis of the protein expression of TGF- β 1, COL1A, 119 Fibronectin and TIMP1 in liver tissues from CCl₄-challenged (A) or MCD diet-120 challenged (B) mice. Data are presented as means ± SEM. ns, *P*>0.05; *, *P* <0.05; **, 121 *P*<0.01; ***, *P*<0.001.

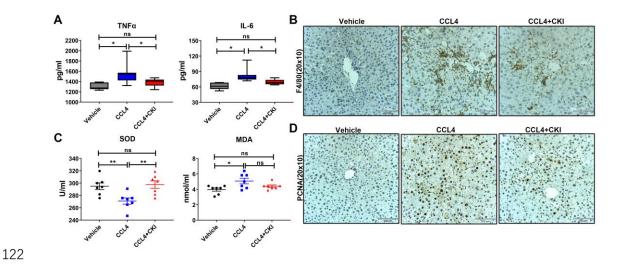
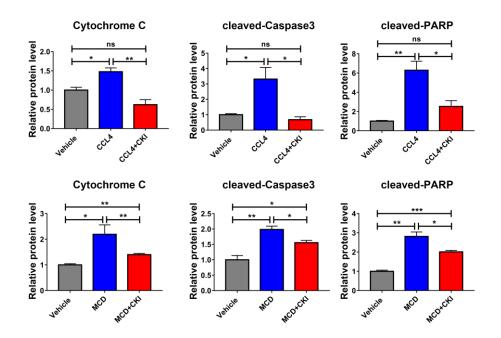
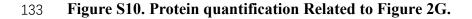
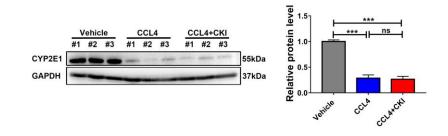
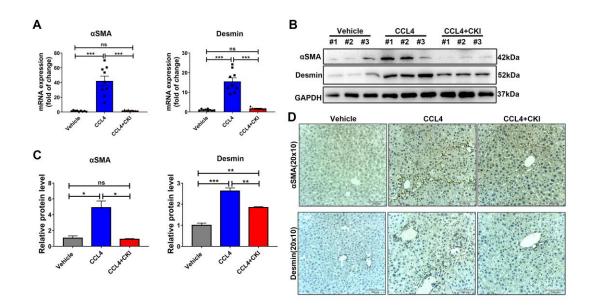
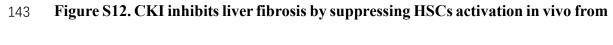




Figure S9. CKI ameliorates inflammatory response, oxidative stress, and liver
 compensatory proliferation of mice in Supplementary Figure 5A model.


(A) The serum levels of TNFα and IL-6 were detected by Elisa assays (n=9). (B) Representative F4/80 immunostaining of macrophages in mice liver sections were displayed (original magnification 20 x 10, scale bar, 100µm). (C) The serum levels of SOD and MDA were quantified by Elisa assays (n=7). (D) Representative immunostaining of PCNA in the liver section of mice were shown after indicated treatments (original magnification 20 x 10, scale bar, 100µm). Data are presented as means \pm SEM. ns, *P*>0.05; *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001.

132


Quantitative analysis of the protein expression of Cytochrome C, cleaved-Capase3 and
cleaved-PARP in liver tissues from CCl₄-challenged or MCD diet-challenged mice.
Data are presented as means ± SEM. ns, P>0.05; *, P <0.05; **, P<0.01; ***, P<0.001.

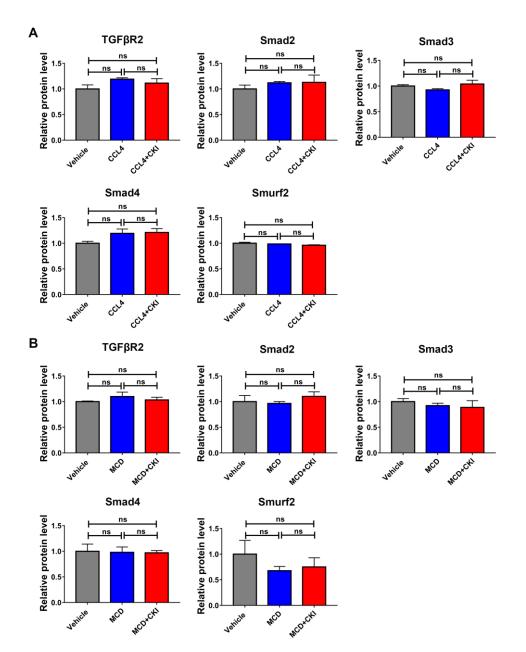


138 Figure S11. CKI treatment has no effect on CCl4 metabolism *in vivo*.

Mice were intraperitoneally administrated with CKI (7.5 mL/kg) mouse for 6 weeks, starting at 3 weeks post initiation of CCl₄ challenge. Western bolt analysis of the expression of CYP2E1 in mouse liver lysates.

142

144 Supplementary Figure 5A model.

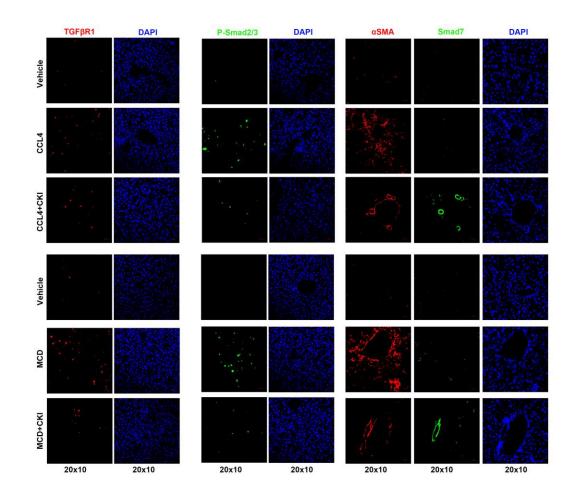

145 (A) Mice were treated with CCl₄ for 9 weeks along with CKI treatment for 6 weeks

- 146 (n=9). The mRNA expression of α SMA and desmin in mice liver tissues were analyzed
- 147 by qRT-PCR. (B) Western blot assay for detecting the expression of α SMA and desmin
- 148 in mice liver tissues. (C) Quantitative analysis of the protein expression of αSMA and
- 149 desmin. (D) Representative immunohistochemistry images of aSMA and desmin stain

150 of liver sections after indicated treatments (original magnification 20 x 10, scale bar,

151 100 μ m). Data are presented as means ± SEM. ns, *P*>0.05; *, *P* <0.05; **, *P*<0.01; ***,

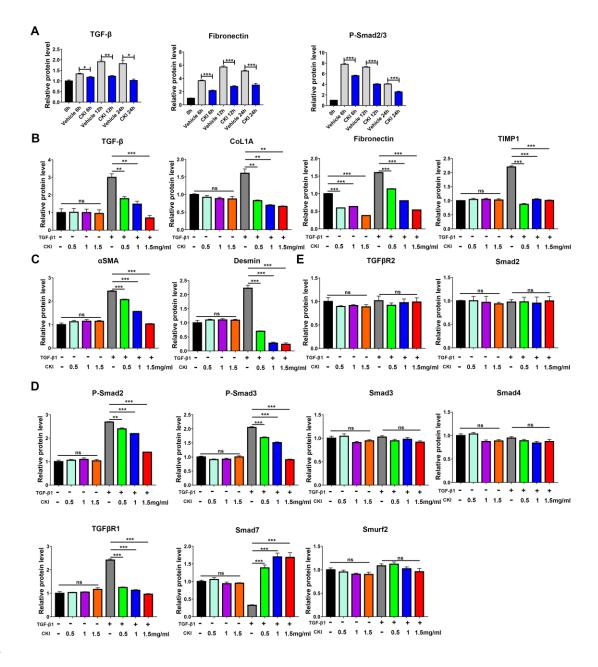
152 *P*<0.001.



153

154 Figure S13. Protein quantification Related to Figure 4B and D.

155 (A and B) Quantitative analysis of the protein expression of TGFβ2, Smad2, Smad3,


- 156 Smad4 and Smurf2 in liver tissues from CCl₄-challenged (A) or MCD diet-challenged
- 157 (B) mice. Data are presented as means \pm SEM. ns, *P*>0.05.

158

159 Figure S14. The uncropped immunofluorescence staining images of TGF β R1, p-

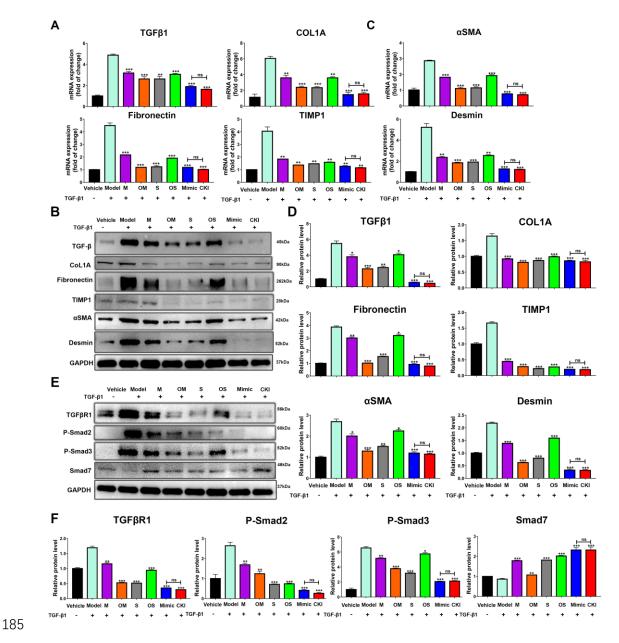
160 Smad2/3, α SMA, Smad7 and DAPI for Figure4.

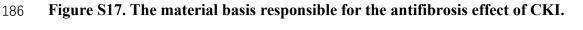
163 (A) Quantitative analysis of the protein expression of TGF β , Fibronectin and p-164 Smad2/3 in LX-2 cells from Figure 5C. (B) Quantitative analysis of the protein 165 expression of TGF β , COL1A, Fibronectin and TIMP1 protein levels in LX-2 cells from 166 Figure 5B. (C) Quantitative analysis of the protein expression of α SMA and desmin in 167 LX-2 cells from Figure 5G. (D and E) Quantitative analysis of the protein expression 168 of TGF β R1, TGF β R2, p-Smad2, total Smad2, p-Smad3, total Smad3, Smad4, Smad7

Α С COL1A TGFβ1 TGFβ1 COL1A a 1.5 level mRNA expression (fold of change) mRNA expression (fold of change) Relative protein le ns protein 1.0 0.5 0.5 0.5 Fibronectin TIMP1 Fibronectin TIMP evel Relative protein level ns mRNA expression (fold of change) protein 1.0 1.0 0.5 Relative 0.5 0.0 0.0 0.0⊥ TGF-β1 0.0⊥ TGF-β1 TGF-β1 TGF-β1 + -+ 2 + + : + : + + + скі скі скі + скі mRNA expression **D** (fold of change) в Desmir TGF-β1 αSMA mRNA expression скі (fold of change) TGFβ1 1.0 COL1A 0. Fibronectir 0. TIMP1 CKI F le vel Desmin αSMA GAPDH ns protein ns Ε TGF-β1 0.5 αSMA Relative De -TGF-B1 --: +++ + GAPD -+ + скі G Н TGF6R1 TGF_{BR2} P-Smad2 Relative protein level eve Relative protein level Relative protein TGF-β1 скі TGFβR1 Smad2 P-Smad3 Relative protein level Relative protein level Relative protein level ns TGFβR2 P-SI Smad P-Sr 2.0 1.5[.] 1.0 eve Smad4 Relative protein level 1.5 Smad4 ns Relative protein ns GAPD d 0.5-0.0 TGF-β1 0.0 TGF-β1 --+ <u>+</u> : TGF-β1 +++ 2 + + ++ : +++ + скі скі скі

and Smurf2 in LX-2 cells from Figure 5H. Data are presented as means \pm SEM. ns,

170 *P*>0.05; *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001.

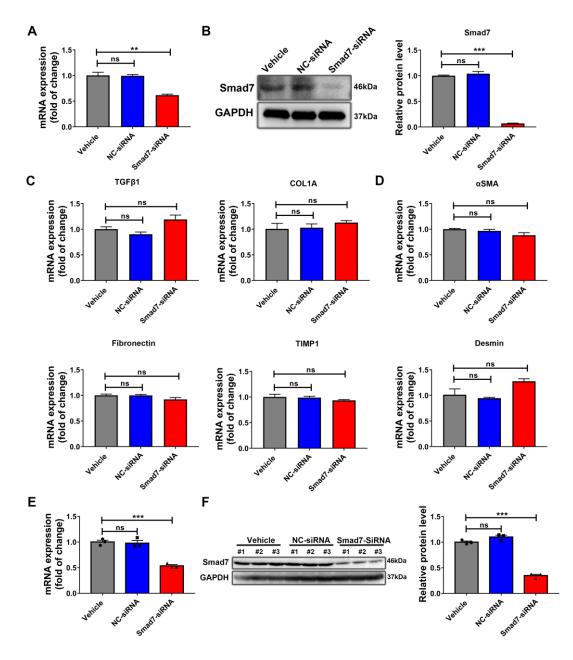

171


172 Figure S16. The influence of CKI on LO2 cells in vitro.

(A) LO2 cells were treated with 5ng/mL TGF-β1 along with 1mg/mL CKI for12h. The
mRNA expression of *TGF-β1*, *COL1A*, *Fibronectin* and *TIMP1* were detected by qRT-

175	PCR in LO2 cell lysates. (B) Western bolt for TGF- β 1, COL1A, Fibronectin and TIMP1
176	in LO2 cells after CKI treatment. (C) Quantitative analysis of the protein expression of
177	TGF- β 1, COL1A, Fibronectin and TIMP1. (D) qRT-PCR analysis of α SMA and desmin
178	<i>mRNA</i> expression in LO2 cells. (E) The protein expression of α SMA and desmin were
179	quantified by western blot in LO2 cells. (F) Quantitative analysis of the protein
180	expression of α SMA and desmin. (G) Western blot analysis of TGF β R1, TGF β R2, p-
181	Smad2, total Smad2, p-Smad3, total Smad3, Smad4, Smad7 and Smurf2 in LO2 cells.
182	(H) Quantitative analysis of the protein expression of TGFβR1, TGFβR2, p-Smad2,
183	total Smad2, p-Smad3, total Smad3, Smad4, Smad7 and Smurf2. Data are presented as

184 means ± SEM. ns, *P*>0.05; *, *P* <0.05; **, *P*<0.01; ***, *P*<0.001.



187 (A) LX-2 cells were treated with or without 5ng/mL TGF- β 1 along with Matrine (M,

188 0.3034mg/mL), Oxymatrine (OM, 0.964mg/mL), Sophocarpine (S, 0.0827mg/mL),

- 189 OxySophocarpine (OS, 0.229mg/mL), Mimic (M+OM+S+OS) and CKI (1.5mg/mL)
- 190 for 12h. The mRNA expression of TGF- β 1, COL1A, Fibronectin, and TIMP1 were
- 191 detected by qRT-PCR in LX-2 cell lysates. (B) The protein expression of TGFβ,
- 192 COL1A, Fibronectin, TIMP1, αSMA and desmin were quantified by western blot in

193 LX-2 cells. (C) qRT-PCR analysis of HSCs activation markers α SMA and desmin 194 mRNA expression in LX-2 cells. (D) Quantitative analysis of the protein expression of 195 TGF β , COL1A, Fibronectin, TIMP1, α SMA and desmin. (E) Western blot analysis of 196 TGF β R1, p-Smad2, p-Smad3 and Smad7 in LX-2 cells. (F) Quantitative analysis of the 197 protein expression of TGF β R1, p-Smad2, p-Smad3 and Smad7. Data are presented as 198 means ± SEM. ns, *P*>0.05; **, *P*<0.01; ***, *P*<0.001.

200 Figure S18. The knock-down efficiency of Smad7-siRNA in vitro and in vivo.

- 201 (A and B) The mRNA and protein levels of Smad7 in LX-2 cells after Smad7-siRNA
- 202 treatment. (C) Smad7 siRNA-knockdown has no effect on the mRNA expression of
- 203 *TGF-β1*, *COL1A*, *Fibronectin* and *TIMP1* in quiescent LX-2 cells. (D) Smad7 siRNA-
- 204 knockdown didn't influence the activation of quiescent LX-2 cells *in vitro*. (E and F)
- 205 72h after 5mg/kg Smad7-siRNA treatment, the knockdown efficiency of Smad7-siRNA
- 206 in mouse livers were explored by qRT-PCR and western blotting (n=3). Data are
- 207 presented as means ± SEM. ns, *P*>0.05, **, *P*<0.01; ***, *P*<0.001.
- 208

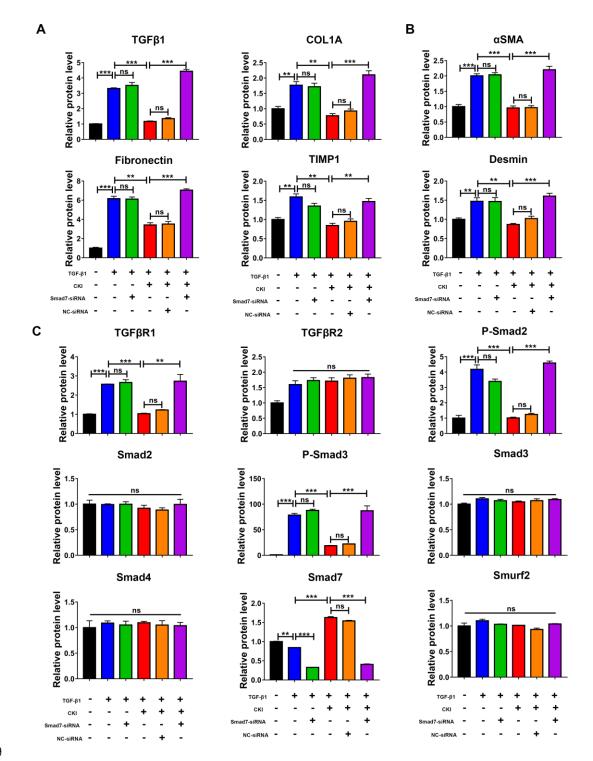
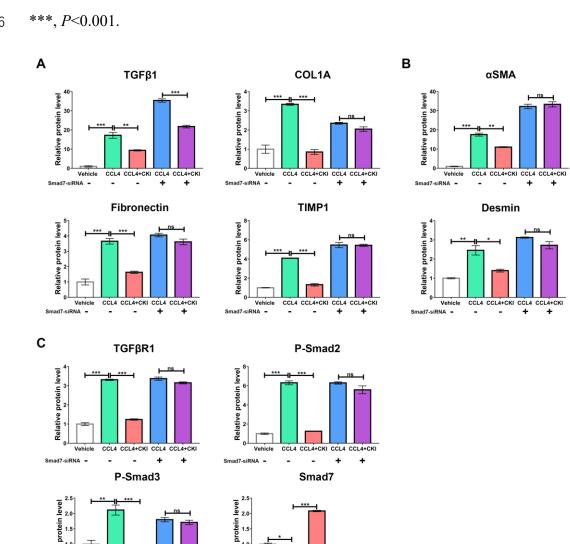



Figure S19. Protein quantification Related to Figure 6C, E and F.

(A) Quantitative analysis of the protein expression of TGFβ, COL1A, Fibronectin and
TIMP1 from Figure 6C. (B) Quantitative analysis of the protein expression of αSMA
and desmin from Figure 6E. (C) Quantitative analysis of the protein expression of

TGFβR1, TGFβR2, p-Smad2, total Smad2, p-Smad3, total Smad3, Smad4, Smad7 and 214 Smurf2 from Figure 6F. Data are presented as means \pm SEM. ns, P>0.05; **, P<0.01; 215

216

Relative

Smad7-siRNA -

Smad7-siRNA -

CCL4 CCL4+CKI CCL4 CCL4+CKI

+

+

(A) Quantitative analysis of the protein expression of TGF-β1, COL1A, Fibronectin 219 and TIMP1 from Figure 7G. (B) Quantitative analysis of the protein expression of 220 αSMA and desmin in Figure 7I. (C) Quantitative analysis of the protein expression of 221

CCL4+CKI CCL4

CCL

+

+

CCL4

--

222	TGF β R1, p-Smad2, p-Smad3 and Smad7 from Figure 7J. Data are presented as means
223	± SEM. ns, <i>P</i> >0.05; *, <i>P</i> <0.05; **, <i>P</i> <0.01; ***, <i>P</i> <0.001.
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	

247 Supplementary tables

248

249Table S1. The identified primary bioactive alkaloid content in CKI by HPLC

		·
Alkaloid	Molecular formula	Concentration
Oxymatrine	$C_{15}H_{25}O_2N_2$	9.640mg/ml
Oxysophocarpine	$C_{15}H_{23}O_2N_2$	2.290mg/ml
Matrine	C ₁₅ H ₂₅ ON ₂	3.034mg/ml
Sophocarpine	C ₁₅ H ₂₃ ON ₂	0.827mg/ml

Targets		Primer sequence (5'-3')
GAPDH	Forward	ATGTTCCAGTATGACTCCACTCAC
	Reverse	GACACAGTAGACTCCACGACATA
β-actin	Forward	AGAGGGAAATCGTGCGTGAC
	Reverse	CAATAGTGATGACCTGGCCGT
TGF-β1	Forward	GGTTCATGTCATGGATGGTGC
	Reverse	TGACGTCACTGGAGTTGTAC
CoL1A	Forward	GGAAACCTCTCTCGCCTCTT
	Reverse	GAACAGGGTGTTCCTGAGA
Fibronectin	Forward	GGCTACATCATCCGCCATCA
	Reverse	GCCCGGATTAAGGTTGGTGA
TIMP1	Forward	GGCTAAATTCATGGGTTCAC
	Reverse	CTCAGAGTACGCCAGGGAACCA
	Reverse	AGTTGCTTCTAGCCCAAAGAAC
αSMA	Forward	CATCACCAACTGGGACGACA
	Reverse	TCCGTTAGCAAGGTCGGATG
Desmin	Forward	GTGGATGCAGCCACTCTAGC
	Reverse	TTAGCCGCGATGGTCTCATAC
Smad7	Forward	GGCCGGATCTCAGGCATTC
	Reverse	TTGGGTATCTGGAGTAAGGAGG

Table S2. Mouse primer sequences for real-time PCR

	Primer sequence (5'-3')
Forward	AAGAAGG TGGTGAA
Reverse	TCCACCACCCT GTT
Forward	GTTGTCGACGACG
	Reverse

Table S3. Human primer sequences for real-time PCR

1415005		Timer sequence (5°5)
GAPDH	Forward	AAGAAGG TGGTGAAGCAGGC
	Reverse	TCCACCACCCT GTTGCTGTA
Actin	Forward	GTTGTCGACGACGAGCG
	Reverse	GCACAGAGCCTCGCCTT
TGF-β1	Forward	CAATTCCTGGCGATACCTCAG
	Reverse	GCACAACTCCGGTGACATCAA
CoL1A	Forward	TGGCCAAGAAGACATCCCTGAAGT
	Reverse	ACATCAGGTTTCCACGTCTCACCA
Fibronectin	Forward	CCATCGCAA ACCGCTGCCAT
	Reverse	AACACTTCTCAGCTATGGGCTT
TIMP1	Forward	CTTCTGCAATTCCGACCTCGT
	Reverse	ACGCTGGTATAAGGTGGTCTG
αSMA	Forward	ACTG AGCGTGGCTATTCCTCCGTT
	Reverse	GCAGTGGCCATCTCATTTTCA
Desmin	Forward	GACGTGGATGCAGCTACTCTA
	Reverse	GGAACGCGATCTCCTCGTTG
Smad7	Forward	GGACAGCTCAATTCGGACAAC
	Reverse	GTACACCCACACCATCCAC

Product	Product Name		Company
code		range	
ab13575	Cytochrome C	1:1000	Abcam
9661	cleaved-Caspase3	1:1000	CST
9544	cleaved-PARP	1:1000	CST
3711	TGF-β	1:1000	CST
sc-59772	COL1A	1:200	Santa Cruz
ab2413	Fibronectin	1:1000	Abcam
sc-21734	TIMP1	1:200	Santa Cruz
ab5694	αSMA	1:1000	Abcam
ab15200	Desmin	1:1000	Abcam
ab28146	CYP2E1	1:1000	Abcam
ab31013	531013 TGF-β R1		Abcam
sc-17702	TGF-β R2	1:200	Santa Cruz
sc-365846	Smad7	1:200	Santa Cruz
8828	P-Smad2/3	1:1000	CST
3108	P-Smad2	1:1000	CST
5339	Smad2	1:1000	CST
9520	P-Smad3	1:1000	CST
9523	Smad3	1:1000	CST
38454	Smad4	1:1000	CST
12024	Smurf2	1:1000	CST
2118	GAPDH	1:1000	CST
7074	Anti-rabbit IgG HRP-linked	1:2000	CST
7076	Anti-mouse IgG HRP-linked	1:2000	CST
5127	Anti-rabbit IgG (conformation specific)	1:2000	CST
sc-516102	m-IgGк BP-HRP	1:2000	Santa Cruz

		Table	e 55 Chara	cteristics of	the inclu	ded triais	
	Sample	size (M/F)	Α	ge	Progre	ss (year)	
Study ID	Control	Treatment	Control	Treatment	Control	Treatment	Etiology
Song J. 2019	22/16	21/17	43.34±3.9	43.15±3.65	3.66±0.71	3.79±0.54	HBV induced liver inflammation
Chen R. 2004	17/13	19/11	16-59	17-56	Ν	I R	HBV induced liver inflammation
Sun X. 2018	30/25	29/26	44.15±11.82	43.95±12.37	2.40±1.57	2.34±1.62	HBV induced liver inflammation
Zhu B. 2014	4	8/32	42.15	5±9.31	10.32	2±3.12	HBV induced liver inflammation
Zhao W. 2013	52/20	53/19	40±6	41±5	6±2.5	6±2.5	HBV induced liver inflammation
Qiu Y. 2011	43/27	42/28	16-56	18-59	Ν	I R	HBV induced liver inflammation
Yan X. 2015	7	6/64	42.15	5 ± 8.98	Ν	JR.	HBV induced liver inflammation
Bao X. 2014	3	8/20	40 =	± 9.1	Ν	JR.	HBV induced liver cirrhosis
Guo L. 2008	21/9	18/12	20-56	18-60	Ν	JR	HCV induced liver inflammation
Ma Y. 2015	12/8	11/9	36.5±0.5	38.2±0.5	Ν	JR.	HCV induced liver inflammation
Gao C. 2016	20/10	19/11	52.6±8.9	54.1±7.7	2.6±1	2.8±0.8	HCV induced liver inflammation
Chen Y. 2012	3	5/25	52.2±7.6	53.9±6.9	Ν	I R	HBV or HCV induced liver cirrhosi
Chen M, 2015	56/34	51/39	56.78±12.32	52.31±12.56	Ν	JR.	HBV or HCV induced liver cirrhosi
Gu Z, 2019	23/18	25/16	55.5±6.4	54.2±3.2	4.44±1.06	4.53±1.09	HBV induced liver cirrhosis
Chen G, 2013	4	5/30	41.05	5±9.64	Ν	JR	HBV induced liver cirrhosis
Xia W, 2012	35/10	32/13	21-53	25-53	Ν	JR	HBV induced liver fibrosis
Liang G, 2004	23/9	22/10	36.1±12.8	38±13.3	6.8±4.8	7.6±4.3	HBV induced liver fibrosis
Chen X, 2014	16/12	16/12	40.1±5.9	40.4±6.2	4.8±1.6	4.9±1.1	HCV induced liver cirrhosis

Table S5 Characteristics of the included trials

	Intervention (Day)				
Study ID	Control Treatment		Duration	Outcomes measures	
Song J. 2019	Entacvir	CKI, 20mL, iv + Entacvir	8 weeks	ALT, AST, T-BIL, LN, HA, COL3, COL4	
Chen R. 2004	Diammonium glycyrrhizinate	CKI, 20mL, iv + Diammonium glycyrrhizinate	8 weeks	ALT, AST, T-BIL	
Sun X. 2018	Interferon α-1b	CKI, 10mL, iv + Interferon α-1b	6 weeks	ALT, T-BIL, LN, HA, COL3, COL4	
Zhu B. 2014	Adefovir dipivoxil	CKI, 10mL, iv + Adefovir dipivoxil	8 weeks	ALT, T-BIL, LN, HA, COL3, COL4	
Zhao W. 2013	Entacvir	CKI, 20mL, iv + Entacvir	8 weeks	ALT, AST, T-BIL	
Qiu Y. 2011	Lamivudine	CKI, 20mL, iv + Lamivudine	8 weeks	ALT, AST, T-BIL	
Yan X. 2015	Lamivudine	CKI, 20mL, iv + Lamivudine	6 weeks	ALT, AST, T-BIL	
Bao X. 2014	Hepatinica	CKI, 600mg, iv + Hepatinica	8 weeks	ALT, T-BIL	
Guo L. 2008	Interferon injection	CKI, 20mL, iv + Interferon injection	12 weeks	ALT, AST	
Ma Y. 2015	Interferon injection	CKI, 20mL, iv + Interferon injection	3 months	ALT, AST	
Gao C. 2016	Hepatinica	CKI, 20mL, iv + Bicyclol	6 months	ALT, AST, T-BIL	
Chen Y. 2012	Hepatinica	CKI, 20mL, iv + Hepatinica	8 weeks	ALT, AST, T-BIL, COL3, COL4	
Chen M, 2015	Hepatinica	CKI, 600mg, iv + Hepatinica	6 months	ALT, AST, T-BIL, HA, COL3, COL4	
Gu Z, 2019	Alprostadil Injection	CKI, 600mg, iv + Alprostadil Injection	21 days	ALT, AST, T-BIL	
Chen G, 2013	Lamivudine	CKI, 20mL, iv + Lamivudine	12 months	LN, HA, COL3	
Xia W, 2012	Compound glycyrrhizin	CKI, 30mL, iv + Compound glycyrrhizin	8 weeks	LN, HA, COL3, COL4	
Liang G, 2004	Thymosin injection	CKI, 20mL, iv	8 weeks	HA, COL4	
Chen X, 2014	Hepatinica	CKI, 600mg, iv + Hepatinica	6 months	LN, HA, COL3, COL4	

Table S6 Intervention characteristics and outcome measures of the included trials	5

Table S7 List of selected studies for meta-analysis

- Song J, Song S. Observation on the therapeutic effect of Entecavir combined with Compound kushen injection against chronic Hepatitis B. Journal of Qiqihar Medical University. 2019; 40(5):598-599. DOI: 10.3969/j.issn.1002-1256.2019.05.030
- Chen R. Compound kushen injection combined with Arixin injection in the treatment of 30 patients with chronic Hepatitis B. Journal of Practical Traditional Chinese Medicine. 2004; 20(9):500.
- Sun X, Wang H, Gong Y, Liu Q, Xiao L. Compound kusGhen injection and Interferon α-1b in Treating 55 Cases of Chronic Hepatitis B. Western Journal of Traditional Chinese Medicine. 2018; 31(12):95-97.
- Zhu B, Zhang P. Observation on therapeutic effect of Compound kushen injection combined with adefovir dipivoxil in the treatment for the chronic hepatitis B. The Chinese Journal of Clinical Pharmacology. 2014; 30(3):179-181. DOI: 10.13699/j.cnki.1001-6821.2014.03.005
- Zhao W, Li Y, Ji J. The improvement effect of patient liver function with the chronic hepatitis B after Compound kushen injection combined with Entecavir. Chinese Journal of Information on Traditional Chinese Medicine. 2013; 20(3):70-71. DOI: 10.3969/j.issn.1005-5304.2013.03.027
- Qiu Y, Sun H, Yu C. Compound kushen injection combined with Lamivudine in treating 70 cases of chronic hepatitis B. Zhejiang Journal of Traditional Chinese Medicine. 2011; 46(5):389.
- Yan X, Dong L, Zhang L. Observation on Therapeutic Effect of Compound Kushen Injection Combined with Lamivadine in Treatment of Chronic Hepatitis B. Research of Integrated Traditional Chinese and Western Medicine. 2015; 7(1):7-9. DOI: 10.3969/j.issn.1674-4616.2015.01.002
- Bao X, Yin G. On Effect of Matrine Injection in Treatment of Hepatitis B Cirrhosis and Its Mechanism. Journal of Beihua University (Natural Science). 2014; 15(6):780-782. DOI: 10.11713/j.issn.1009-4822.2014.06.020
- 9. Guo L, Sun J, Wang G. Compound kushen injection combined with Interferon in treating 30 cases of chronic hepatitis C. Modern Journal of Integrated Traditional

Chinese and Western Medicine. 2008; 17(36):5582.

- Ma Y, Zhang L. The therapeutic effect of Compound kushen injection combined with Interferon against chronic hepatitis C. Asia-Pacific Traditional Medicine. 2015; 11(13):114-115. DOI: 10.11954/ytctyy.201513057.
- Gao C, Yang Y. Compound kushen injection combined with Bicyclol in treating 30 cases of chronic hepatitis C. Shaanxi Medical Journal. 2016; 45(9):1239-1241. DOI: 10.3969/j.issn.1000-7377.2016.09.066
- Chen Y, Lin J, Lou X, Yan H, Chen J. The Curing Effect of Complex Radix Sophorae Flavescentis Injection on Hepatitis Liver Cirrhosis. 2012; 12(5):53-55.
 DOI: 10.3969/j.issn.1671-332X.2012.5.021
- Chen M. Influence of Kushen injection on fibrosis index and interleukin in serum and ascites for patients with cirrhosis. Journal of Hainan Medical University. 2015; 21(4): 476-478. DOI: 10.13210/j.cnki.jhmu.20150104.006.
- 14. Gu Z. The therapeutic effect of Compound kushen injection combined with Alteplase against hepatitis liver cirrhosis. 2019; 31(6):108-109.
- 15. Chen G, Mao J, Jiao Z, Li Y. Efficacy Observation of Compound Sophora flavescens Injection Combined with Lamivadine on Chronic Hepatitis B Cirrhosis. China Pharmacy. 2013; 24(4): 342-344. DOI: 10.6039/j.issn.1001-0408.2013.04.19
- 16. Xia W, Wang D, Xiao S, Shan J. Efficacy of Compound kushen Injection in Preventing Hepatic Fibrosis Formation in Patients with Chronic Hepatitis B. Research of Integrated Traditional Chinese and Western Medicine. 2012; 4(5): 229-230+233. DOI: 10.3969/j.issn.1674-4616.2012.05.002
- 17. Liang G. Compound kushen injection in treating 30 cases of chronic hepatitis C induced liver fibrosis. Guangxi Medical Journal. 2004; 26(11):1628-1630.
- Chen X. Clinical efficacy of Compound Matrine injection in treatment of hepatitis C cirrhosis and its mechanism. Drugs & Clinic. 2014; 29(5):527-531. DOI: 10.7501/j.issn.1674-5515.2014.05.019

Index	P value	
	1 value	
ALT	0.622	
AST	0.392	
T-BIL	0.100	
LN	0.039	
НА	0.138	
COL3	0.083	
COL4	0.083	

Table S8 The *P* value of risk of publication bias