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Supplementary Information Text 

 
METHODS 
 
Animals. Three adult male rhesus macaques (Macaca mulatta) participated in the present 
experiments: monkey Ya (weight during the experiments: 14-19 kg, age: 4-6 years), monkey 
V (weight: 9-11 kg, age 8-10 years), and monkey Ym (10-13 kg, age 4-6 years). No statistical 
methods were used to predetermine sample size. The animals were trained and tested 
approximately one to two hours per day and five days per week over two years. We offered 
dairy-based nutrient rewards to the animals initially as additional treats and gradually as their 
main source of liquid intake during the behavioral tasks, supplemented by water outside of the 
tasks. On a given testing day, the animals had free access to their standard diet before and 
after the experiments and received their main liquid intake in the laboratory. The animals were 
on a standard diet for laboratory macaques, composed of high-protein dry pellets (% calories 
provided by protein: 30.36%, fat: 13.29%, carbohydrates: 56.34%), dried fruits, seeds, nuts, 
and fresh fruits and vegetables. We closely monitored the monkeys’ general health conditions 
and body weights at all times to ensure their welfare after introducing the high-calorie 
rewards. No effects of the diet on the animals’ health were observed. The animals’ body 
weights were stable (V) or increased as expected for growing animals (Ya, Ym). As shown in 
Fig. 2D, nutrient preferences were relatively stable over time within individual animals. We 
found no clear relationships between body weight and these nutrient preferences; however, 
as our study was not specifically designed to test for such relationships we are cautious in 
interpreting this result. 

All animal procedures conformed to US National Institutes of Health Guidelines. The 
experiments have been regulated, ethically reviewed and supervised by the following UK and 
University of Cambridge (UCam) institutions and individuals: UK Home Office, implementing 
the Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012, and 
represented by the local UK Home Office Inspector; UK Animals in Science Committee; 
UCam Animal Welfare and Ethical Review Body (AWERB); UK National Centre for 
Replacement, Refinement and Reduction of Animal Experiments (NC3Rs); UCam Biomedical 
Service (UBS) Certificate Holder; UCam Welfare Officer; UCam Governance and Strategy 
Committee; UCam Named Veterinary Surgeon (NVS); UCam Named Animal Care and 
Welfare Officer (NACWO). 
 
Behavioral tasks 
 
Main choice task. In the main choice task (Fig. 1A), the monkey was seated in a custom-
designed primate chair (Crist Instrument, Inc., Co., USA) in front of a horizontal touch monitor 
(EloTouch 1522L 15’, Elo Touch Solutions, Inc., USA) with his mouth close to a spout that was 
connected to computer-controlled solenoid valves. A choice trial was initiated once the 
monkey made contact with an immobile touch-sensitive key. Two visual cues were 
sequentially presented on the monitor with overlaid reward-magnitude bars and then 
displayed in left-right arrangement, determined by random alternation. Each visual cue was 
associated with a fixed reward type in the same testing session. The chosen reward was 
immediately delivered to the monkey after each choice by which the animals learned the 
associations between conditioned stimuli and reward types at the beginning of each testing 
session. Pre-trained magnitude bars cued the randomized reward amount in each trial (0.15 - 
0.90 mL per delivery). Higher magnitude bars signaled larger liquid amounts. After the 
monkey made a choice by touching one of two targets on the screen, displayed below the 
choice options, the exact amount of the chosen reward was delivered through the spout to the 
monkey. Trials were aborted in case of premature release of the touch key (before the choice 
epoch) or delayed choice responses (> 1,500 ms after the target presentation). The 
behavioral task and choice responses were controlled and registered by custom MATLAB 
codes (MATLAB version R2013b, The MathWorks, Inc., USA) using Psychophysics Toolbox 
version 3.0.8. The experimental set-up was interfaced with data acquisition boards (NI 6225; 
National Instruments Co., USA) installed on personal computers using Microsoft Windows 
7/10 systems.  
 
Alternative choice task. In the alternative choice task (Fig. S5), we offered all reward 
combinations within a single session for comparison and held the reward magnitudes 
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constant (0.3 mL). Specifically, the monkey was again sequentially presented with two 
options, this time each with three identical pre-trained visual cues that signaled the reward 
types. To simultaneously deliver a wider range of stimuli, we constructed an eight-channel 
delivery system that linked computer-controlled peristaltic pumps (ISM4408 Reglo ICC Digital 
four-channel, eight-roller peristaltic pump, Ismatec, Germany) to a custom-made eight-
channel mouthpiece (Cambridge Electronics Workshop, Department of Experimental 
Psychology, University of Cambridge). The peristaltic pumps functioned at 100 revolutions per 
minute (RPM) and the activation duration at 0.4 s, which delivered approximately 0.3 mL of 
liquid for each activation. In addition to the four factorial stimuli, we included a low-sugar 
cream stimulus to introduce additional variation in nutrient content and food textures. 
Additional trial types involving choices with a broader stimulus set were not examined in the 
present manuscript. 
 
Nutrient rewards. We prepared dairy-based nutrient-defined liquid rewards with 2 × 2 fat and 
sugar levels (Fig 1B), including low-fat low-sugar (LFLS), high-fat low-sugar (HFLS), low-fat 
high-sugar (LFHS) and high-fat high-sugar (HFHS) rewards. We used commercial skimmed 
milk and whole milk (British skimmed milk and British whole milk, Sainsbury's Supermarkets 
Ltd., UK) as baseline low-fat and high-fat liquids and flavored the liquids with fruit juice to 
increase palatability (peach juice, Robinsons Fruit & Barley Peach Squash, Robinsons Soft 
Drinks Ltd, UK; blackcurrant juice, Ribena

©
 Blackcurrant Squash, Lucozade Ribena Suntory 

Ltd, UK). We calculated the nutrient content from the nutrient composition of these 
commercial products and developed a recipe for nutrient rewards with controlled fat and 
sugar content (Table S1). Specifically, we based on the fat content of the milk and adjusted 
the sugar content using white caster sugar (Sainsbury’s White Caster Sugar, Sainsbury's 
Supermarkets Ltd., UK) to prepare the high-nutrient rewards. We added sugar to the whole 
milk to prepare the HFLS stimulus with equal sugar content to the LFLS stimulus but at higher 
fat level. For the low-fat high-sugar (LFHS) reward, we titrated the sugar content of the 
skimmed milk until the calorie content of the added sugar was identical to the calorie 
difference between HFLS and LFLS (27.2 kcal/100 mL = 6.8 g sugar/100 mL). We further 
added sugar to the whole milk up to the exact higher sugar level for HFHS. By keeping LFHS 
and HFLS isocaloric, we normalized the additional fat and sugar to their contained calories. In 
this design, fat and sugar levels were systemically manipulated while protein, salt, juice flavor 
and temperature were tightly controlled. The flavored cream used in the alternative choice 
task was a mixture of single cream (Sainsbury's British Single Cream 300 mL, Sainsbury's 
Supermarkets Ltd., UK), fruit juice and water. All rewards were prepared in 300 mL and stored 
under 4°C for 24 hours before the experiment. We monitored the temperature during the 
experiment using an infrared thermometer (Etekcity Lasergrip 1080 Non-contact Digital Laser 
IR Infrared Thermometer, Etekcity Co., USA) and offered the liquids to the monkeys at the 
temperature of around 17 ± 2°C. 
  
Measuring oral texture parameters 
 
Viscosity. We measured the viscosity of our liquid rewards at the Rheology Centre of the 
Department of Chemical Engineering, University of Cambridge. Measurements were 
performed using a Rheometric Scientific ARES controlled strain rheometer (TA Instruments, 
USA) with Couette geometry as follows: cup diameter = 34.0 mm, bob diameter = 32.0 mm, 
bob length = 34.0 mm (Fig. 3A, Left). The viscosity was determined by carrying out shear rate 
sweeps from 100 to 0.1 s

-1
 or 1 s

-1
 (reverse sweep) after allowing the samples to equilibrate at 

the experimental temperature for 300 seconds. Because viscosity was sensitive to 
temperature, we measured the samples at 18.5 ºC (delivered temperature), 25 ºC, and 37.5 
ºC (body temperature) and used the measurement at 18.5 ºC for analyses based on the 
temperature of the testing liquids (17 ± 2°C) measured during the experiment. Once the 
sample reached the experimental temperature, the cup rotated first clockwise and then 
anticlockwise (two ways). In the time-sweeping measurement, the cup was rotated in a 
clockwise direction and the shear rate was fixed at 50 s

-1
, at which rheological properties of 

liquid stimuli have been shown to be related to oral viscosity evaluations (1). 

 
Coefficient of sliding friction (CSF). We measured the CSF for our liquid rewards at the 
Department of Engineering, University of Cambridge. To reflect realistic lubrication conditions 
in the oral cavity, we devised a custom-designed tribometer using pig tongues as biological 
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contacting surfaces (Fig. 3A, right). Our design included a flat aluminium platform to hold the 
nominally flat fixed base pig tongue. The upper moving tongue-tip tissue was attached using 
superglue onto a dome-shaped slider of radius 100 mm. Thus, the two tissues contacted with 
a nominal point contact, avoiding issues with alignment during the sliding process. The 
anatomically upper surface of each tongue was used for each of the two contacting surfaces. 
The dome-shaped slider was mounted using low-friction bushings onto a track containing two 
rails, pivoted at one end. A counterweight was used to balance out the weight of the rail 
elements of the track. Thus, the load through the contact between the tongues was only the 
weight of the dome-shaped slider and tongue tip specimen (2.58 ± 0.07 N), which did not vary 
as the slider moved along the track. The slider was attached via a light string and pulley to an 
Instron 5544 Universal Testing machine (Instron, USA). Preliminary tests confirmed that 
pulley friction was negligible. During testing, the moving tissue was loaded against the fixed 
base pig tongue with the testing liquids interfaced as lubricating layers. The Instron machine 
then imposed a fixed velocity (v = 16 mm/s) to the slider, while measuring the traction force 
using a load cell attached to the Instron machine. This design measured the sliding friction 
between the liquids and oral tissues to approximate the oral sensing conditions of the 
animals. Because we maintained a constant velocity during the test, according to Newton’s 
First Law of Motion,  
 

𝐹 − 𝜇𝑁 = 0 
 

𝜇 =
traction force (F)

loading force (N )
=

traction force measured by the tensile machine

total weight of the slider and the fixed tongue tip
 

 

where F is the applied force (traction) by the Instron machine, N is the loading force 
perpendicular to the contact surface (normal force), and 𝜇, the coefficient of sliding friction, is 
the ratio of the traction force and the perpendicular loading force. 

The day before testing, fresh pig tongues were obtained intact from a local butcher (Leech 
& Sons, Royston, UK) and were gently rinsed with water to remove residual blood and tissue 
fluids. We then retrieved the superficial 1 cm-thick, anterior 18 cm of the tongues for a flat 
contact surface that fitted onto the testing platform. The processed pig tongue slices were 
preserved in isotonic saline buffer (Phosphate-buffered saline, PBS, 1X, pH 7.4) in a freezer 
under 4 ºC overnight. On the testing day, we first prepared the contact surfaces by gluing one 
18-cm tongue on the base platform and another tongue tip (5 cm) on the surface of the dome-
shaped slider. We weighed the dome-shaped slider with the attached tongue tip to give the 
loading force for later calculation of the CSF. Before each measurement, we rinsed both 
tongue surfaces with 10 mL of isotonic saline buffer (PBS) three times to remove residual 
testing liquids and hydrate the tongue surfaces. Next, we loaded 30 mL of the testing liquids 
between the pig tongues and pulled the slider from the posterior tongue bases forward to the 
anterior tongue tip (Fig. 3B). All procedures were approved by the Departmental Safety 
Office, Department of Engineering, University of Cambridge, including Control of Substances 
Hazardous to Health (COSHH) and biohazard risk assessments. 

For the formal testing of the stimuli, we measured each liquid with triplicate repeats using 
two pairs of pig tongues in opposite measuring orders to cancel out possible carryover effects 
(low-fat to high-fat liquids and reverse). We first averaged the triplicate measurements for 
each liquid and divided them by the corresponding loading force to obtain the coefficients of 
sliding friction along the tongue surface. We selected the anterior 5-7 cm of the tongues as 
the analysis window because the mechanosensory receptors are located mainly within the 
anterior two thirds of tongue (2, 3), and further anterior tongue tips were too thin for stable 
measurements. Because inevitable variations in tongue conditions influenced the absolute 
sliding-friction measurement, for each pair of testing tongues we normalized the measured 
coefficients with the coefficient of water obtained from the same pair of tongues. This 
normalization adjusted the offset in absolute measurement due to variations of the tongues 
and provided comparable results between different tongue pairs. Finally, we averaged the two 
normalized coefficients obtained from the different tongues for further analyses. 

Our engineering approach measured sliding friction on biological tissues to approximate 
oral food-sensing conditions. We followed an earlier study that used pig tongues to measure 
sliding friction and link human fat perception to lower friction coefficients (4). The physical 
mechanism by which fat in emulsions lowers friction, i.e. produces lubrication, likely involves 
coalescence of fat droplets on oral surfaces that form an adhering fat layer (5-7). The present 
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study is the first to combine food-engineering methods with a controlled repeated-choice 
paradigm. To refine this technique, future studies should examine differences in 
hydrodynamic conditions between the tribological set-up and oral conditions, dependences on 
lubrication by saliva and testing speed, and measure related food properties (e.g. 
coalescence of fat particles, fatty-acid concentration) (8). 

 

 
Data analysis and statistical methods 
 
Unless otherwise specified, all data were analyzed separately for each animal and different 
juice flavors (peach and blackcurrant) using custom code and in-built functions in MATLAB 
R2017b. 
 
Nutrient-specific choice biases. We assessed the preferences for fat and sugar content 
based on choice biases including choice frequency, choice repetition, magnitude-nutrient 
trade-off, and reward values between nutrient-defined rewards. Analyses were performed 
separately for each monkey. 
 
Choice frequency. For each monkey, we pooled choice data for the same offered liquid 
rewards across sessions to compute the mean choice frequency. We first transformed the 
observed left-right choices into reward-based choice outcomes and fitted the binary reward 
choice outcomes using the binomial distribution (binofit function, MATLAB) to estimate the 
mean choice frequency and the 95 % confidence interval. Statistical significance of choice 
frequencies was determined based on two-tailed one-sample proportion tests against the null 
hypothesis, 𝑝0 = 0.5. In addition, differences of choice frequencies between two samples were 
examined based on two-sided two-sample proportion test against the null hypothesis 
𝑝1̂ − 𝑝2̂ = 0. 
 
Choice repetition. We quantified choice repetition based on repeated-choice counts, which 
tracked how many consecutive choices for the same reward had been performed up to the 
current choice trial (Fig. 1E, Fig. S1). Starting from zero, repeated-choice counts 
accumulated when the chosen reward on the current trial matched the previously chosen 
reward and returned to zero otherwise. Therefore, each session had two strings of repeated-
choice counts that tracked the numbers of repetitive choices for each reward. Repeated-
choice counts for each reward were compared using a two-sided likelihood ratio test: 
 

𝑈 =
𝜃1̂

𝜃2̂
~𝐹(2𝑛1, 2𝑛2) 

 

where 𝜃1̂ and 𝜃2̂ were the means of two exponential repeated-choice counts and the degrees 
of freedom were twice the sample numbers (𝑑𝑓1 = 2𝑛1, 𝑑𝑓2 = 2𝑛2). 
 
Nutrient-magnitude trade-off. To examine nutrient-magnitude trade-offs, we computed the 
intake of fat, sugar, and reward amount with respect to the maximally and minimally available 
intake in each session (Fig. S1). For each choice trial, we multiplied the reward amount and 
the nutrient concentration to calculate the amount of fat and sugar for both options. We then 
summed the larger nutrient amount between the options in each trial as the upper bound of 
the fat and sugar intake, respectively. Similarly, the smaller nutrient amounts were summed to 
derive the lower bound of nutrient intake. We then normalized the actual fat, sugar, and 
reward intake amount into percentage between these bounds, 
 

intake (%) =
𝐼 − 𝐼𝑚𝑖𝑛
𝐼𝑀𝑎𝑥 − 𝐼𝑚𝑖𝑛

× 100 % 

 
where 𝐼 is the actual intake of fat and sugar (g) or reward amount (mL); 𝐼𝑀𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the 
maximally and minimally available intake amount. Therefore, any monkey who aimed to 
maximize the reward amount should obtain 100 % of reward amount (𝐼 = 𝐼𝑀𝑎𝑥). By contrast, 
because the controlled nutrient content was identical in both rewards, the intake of the 
controlled nutrient scaled with the percentage of reward intake. The intake of the manipulated 
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nutrient, however, should be 50 % for a reward maximizer because the reward magnitudes 
were randomized. The equally distributed choices should translate to the mean of the 
maximal and minimal intake, i.e. 𝐸[𝐼] = (𝐼𝑀𝑎𝑥 + 𝐼𝑚𝑖𝑛)/2 or 50 % intake percentage. However, 
if the monkeys showed a preference for the manipulated nutrient, they would choose the high-
nutrient reward even when it was offered in lower amounts, thereby reducing the intake of 
reward amount (< 100 %) in exchange for the preferred manipulated nutrient (> 50 %). The 
extent to which the intake of reward amount reduced from 100 % revealed the willingness of 
the monkeys to trade reward magnitudes for preferred nutrients. 
 
Psychometric curves and subjective reward values. We estimated subjective reward 
values based on the psychometric curves that linked choice probabilities to the offered reward 
amounts (Fig. 1F, Fig. 2A). Specifically, as we used LFLS as the common reference to 
estimate the values of other rewards, we first binned the log offer ratios (LFLS/alternatives) 
into deciles and computed the binned choice frequencies of LFLS. We then fitted the choice 
frequencies at different offer ratios with a two-parameter logistic function:  
 

𝑃(𝑙𝑒𝑓𝑡 𝑐ℎ𝑜𝑖𝑐𝑒) = 𝑓(𝑥) =
1

1 + 𝑒−𝑘(𝑥−𝑥0)
    , 𝑥 ∈ ℝ+ 

 
where 𝑥 was the log offer ratio between LFLS and the alternatives; 𝑥0 was the inflection point 

of the logistic curve; 𝑘 was a steepness constant of the curve, and 𝑒 was the base of natural 
logarithm. The inflection point 𝑥0 represented the specific ratio at which both rewards were 

chosen with equal probability (indifference point), i.e. 𝑝(𝑐ℎ𝑜𝑖𝑐𝑒) = 0. 5 , and signaled the 

relative exchange rate between rewards, i.e. one unit of reward was equally valued to 𝑥0 
unit(s) of LFLS. Therefore, an indifference point larger than (𝑥0 > 1)  and a right-shifted 
psychometric curve revealed a positive preference for the alternative reward compared to 
LFLS, and vice versa (Fig. 2A, top). To compress the psychometric curves for better 
visualization while preserving noticeable changes of the indifference points, we log-
transformed the offered ratios with respect to base 2 and reversed the transformation once 
we acquired the indifference point estimates. We further performed a 10-fold cross-validation 
to examine the reward value estimates by transforming the trial-by-trial offers into value 
equivalents of LFLS. Specifically, we computed the value equivalents of high-nutrient rewards 
(𝑉) by multiplying the offered reward amount (𝑅𝑀) with the subjective reward value (𝑆𝑉) and 

predicted choices based on the differential LFLS-equivalent offers (𝑉𝐿 − 𝑉𝑅) (Fig. 2B), 
 

𝑉 = 𝑅𝑀 × 𝑆𝑉 

𝑃(𝑙𝑒𝑓𝑡 𝑐ℎ𝑜𝑖𝑐𝑒) = 𝑓(𝑥) =
1

1 + 𝑒−𝑘(𝑉𝐿−𝑉𝑅)
 

 
The probability of left choices was again fitted with the two-parameter logistic function to 
assess how well the subjective reward values served as the exchange rates between rewards 
to explain the choices. The distribution of the adjusted R

2
 in the sigmoid fit evaluated the out-

of-sample validity of these value estimates. 
 
Transitivity of relative values. To validate the reward values derived from the psychometric 
curves as subjective exchange rates between rewards, we examined the transitivity of these 
values by comparing direct relative values between reward pairs and their corresponding 
indirect relative rewards through another intermediate reward (Fig. S2). If reward values are 
suitable exchange rates between rewards, the direct values and the indirect values should be 
equal, as in the following derivation: 
  

𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑗) × 𝑣𝑎𝑙𝑢𝑒(𝑗, 𝑘) =
𝑣𝑗

𝑣𝑖
×
𝑣𝑘
𝑣𝑗
=
𝑣𝑘
𝑣𝑖
= 𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑘) 

 
where the indirect relative value from reward 𝑖 to reward 𝑗 (𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑗)) and then from reward 𝑗 
to reward 𝑘  (𝑣𝑎𝑙𝑢𝑒(𝑗, 𝑘) ) was computed based on the multiplication of the value ratios 
between the relevant rewards. The result was identical to the direct relative value between 
reward 𝑖  and reward 𝑘 (𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑘) ). Thus, valid reward value estimates should fulfill this 
transitivity criterion to explain choices between rewards with different level of preferences. We 
performed this analysis across all pairs between the four factorial rewards, except for those 
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involving the HFHS reward because for some of the animals the reward estimates for the 
highly preferred HFHS reward were outside of the appropriate estimation range, due to the 
necessarily limited magnitude range we could offer in the task. 
 
Logistic regression analysis 
 
Mixed-effects multinomial logistic regression. We adopted mixed-effects multinomial 
logistic regression analysis (fitglme function, MATLAB) to model the animals' trial-by-trial 
choices. Specifically, we modelled the left-right choices excluding the first 50 trials in each 
session (during which associations between visual cues and liquid rewards were learned) and 
specified the categorical session number (Session) as the group variable to account for 
session-by-session (i.e. day-by-day) variations (random effects). We adopted the global 
model in which we estimated both the main effects and random effects of all the relevant 
regressors. The response variable was the dichotomous left ( 𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛 = 1 ) or right 
(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛 = 0) trial-by-trial choice, collected from 𝑆𝑘  sessions in monkey 𝑘  (𝑆𝑘 ∈ ℕ, 𝑘 =
1,2,3). Under the framework of generalized linear mixed models (GLMMs) with logit function 
as the link function, the logistic regression model can be specified as 

 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗
𝐿 ) = 𝑙𝑜𝑔 (

𝜋(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑖𝑗 = 1)

𝜋(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑖𝑗 = 0)
) = 𝐱𝑖𝑗

′ 𝛃 + 𝐳𝑖𝑗
′ 𝐮𝑖 + 𝜀𝑖𝑗     , 𝜀𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎

2) 

 

where 𝜋𝑖𝑗
𝐿  denotes the probability of choosing left in the 𝑗th trial of session 𝑖 ( 𝑗 = 1,2, … , 𝑇𝑖 ∈

ℕ; 𝑇𝑖 =  the total number of trials in session 𝑖 ); 𝐱𝑖𝑗  is a vector of trial-by-trial predictors 

depending on the models (fixed-effect regressors; see below) and 𝐳𝑖𝑗 is vector of trial-by-trial 

predictors nested in 𝐱𝑖𝑗, and the effects of these predictors vary across sessions (random-

effect regressors). Under the assumption that the session-by-session variations of random 
effect regressors followed normal distribution with mean 0 and covariance matrix Ω, 
 

𝐮𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, Ω), Ω = [
𝜎11
2 ⋯ 0
⋮ ⋱ ⋮
𝜎1𝑖
2 ⋯ 𝜎𝑖𝑖

2
]  , 𝑖 = 1,2, … , 𝑆𝑘 ∈ ℕ, 𝑘 = 1,2,3 

 
the model estimated the coefficients of fixed-effect regressors, 𝛃 , and the session-wise 

variations of the random-effect regressors, 𝐮𝑖. The estimated left-right choice responses, 𝑝𝑖𝑗
𝐿 , 

were derived by reverse logit function conditional on the session-wise random effects (𝐮𝑖), 
and the session-wise regression coefficients ( 𝛈𝒊 ) were derived from the fixed-effect 

coefficients (𝛃) and the session-wise calibration terms (𝐮𝑖). 
 

𝑝𝑖𝑗
𝐿 = 𝑃(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛 = 1|𝐮𝑖) =

exp(𝐱𝑖𝑗
′ 𝛃 + 𝐳𝑖𝑗

′ 𝐮𝑖)

1 + exp(𝐱𝑖𝑗
′ 𝛃 + 𝐳𝑖𝑗

′ 𝐮𝑖)
∈ [0,1], 𝛈𝒊 = 𝛃 + 𝐮𝑖 

 
 
Regression models. 
 
1. Nutrient model. In the main nutrient model (Table S2), we modeled basic nutrient 

sensitivities while controlling task-related regressors including the position of the liquid-
delivery spout (Spout) and the presentation order of visual cues (LeftFirst) in a mixed-
effect model. Importantly, we specified the categorical session number (Session) as the 
group variable to address session-wise variations of nutrient sensitivities as follows, 

 

𝒍𝒐𝒈𝒊𝒕(𝑳𝒆𝒇𝒕𝑪𝒉𝒐𝒔𝒆𝒏) =  𝜷𝟎  + 𝜷𝟏 × 𝑳𝒆𝒇𝒕𝑭𝒊𝒓𝒔𝒕 + 𝜷𝟐 × 𝑺𝒑𝒐𝒖𝒕 + 𝜷𝟑 × 𝑹𝑴  
 +𝜷𝟒 × 𝑺𝒖𝒈𝒂𝒓𝑳𝒗 + 𝜷𝟓 × 𝑭𝒂𝒕𝑳𝒗 + 𝜷𝟔 × 𝑺𝒖𝒈𝒂𝒓𝑳𝒗 ×  𝑭𝒂𝒕𝑳𝒗 | 𝑺𝒆𝒔𝒔𝒊𝒐𝒏  

 

where 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 indicated whether the left option was shown first (1, if the left option was 

shown first; 0 if the right option was shown first), 𝑆𝑝𝑜𝑢𝑡 indicated the spout channel that 

delivered the left reward option (1, if left, 0 if right). 𝑅𝑀  represented the left offer 
magnitudes minus the right offer magnitudes, whereas 𝐹𝑎𝑡𝐿𝑣 and 𝑆𝑢𝑔𝑎𝑟𝐿𝑣  coded the 
ordinal left-right nutrient level differences (1, if left > right; 0, if left = right; -1, if left < right) 
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and 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 ×  𝐹𝑎𝑡𝐿𝑣 captured the additional fat-sugar interactions (1, if the left option 
was both high-fat and high-sugar, but the right was not; -1, if the opposite, and 0, if 
otherwise). 
 

2. Energy model. To test the hypothesis of energy maximization, we combined reward 
magnitudes and nutrient content into a single energy-content regressor and included the 
energy difference between left-right options to construct the energy model as follows 
(Table S2),  

 

𝑙𝑜𝑔𝑖𝑡(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛) = 

 𝛽0  +  𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 +  𝛽2 × 𝐶𝑆1𝐿𝑒𝑓𝑡 + 𝛽3𝑅𝑀 + 𝛽4 × 𝐸𝑛𝑒𝑟𝑔𝑦 | 𝑆𝑒𝑠𝑠𝑖𝑜𝑛  
 
where the newly included 𝐸𝑛𝑒𝑟𝑔𝑦 regressor represented the left-right differences in 
actual energy content (kcal). 

 
3. Nutrient history model. We explored how past fat and sugar choices influenced current 

nutrient sensitivities by including interaction terms between current nutrient sensitivities 
and within-nutrient (sugarsugar, fatfat) or across-nutrient (sugarfat, fatsugar) 
feedback up to 10 trials prior to current trial (Table S2). 
 

𝑙𝑜𝑔𝑖𝑡(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛) =  ( 𝛽0  + 𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 + 𝛽2 × 𝐶𝑆1𝐿𝑒𝑓𝑡 + 𝛽3 × 𝑅𝑀 
+ 𝛽4 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 +  𝛽5 × 𝐹𝑎𝑡𝐿𝑣 | 𝑆𝑒𝑠𝑠𝑖𝑜𝑛)  
+∑ (𝛽5+𝑘 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 × 𝑆𝑢𝑔𝑎𝑟𝐼𝑛𝑡𝑎𝑘𝑒𝑘)

10
𝑘=1   

+ ∑ (𝛽15+𝑘 × 𝐹𝑎𝑡𝐿𝑣 × 𝐹𝑎𝑡𝐼𝑛𝑡𝑎𝑘𝑒𝑘)
10
𝑘=1   

+ ∑ (𝛽25+𝑘 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 × 𝐹𝑎𝑡𝐼𝑛𝑡𝑎𝑘𝑒𝑘)
10
𝑘=1   

+ ∑ (𝛽35+𝑘 × 𝐹𝑎𝑡𝐿𝑣 × 𝑆𝑢𝑔𝑎𝑟𝐼𝑛𝑡𝑎𝑘𝑒𝑘)
10
𝑘=1   

 
In this model, in addition to the nutrient model, we computed the intake of fat and sugar 
up to 10 trials prior to the current trial (𝐹𝑎𝑡𝐼𝑛𝑡𝑎𝑘𝑒𝑘, 𝑆𝑢𝑔𝑎𝑟𝐼𝑛𝑡𝑎𝑘𝑒𝑘, 𝑘 = 1,2,3, … ,10). The 
within-nutrient effects were modeled by the interactions between past sugar intake and 
current sugar sensitivity, as well as past fat intake and current fat sensitivity; the across-
nutrient effects were captured by the influences of past sugar intake on current fat 
sensitivity and the influences of past fat intake on current sugar sensitivity. 

 
Model comparison. We compared the performance of regression models (Fig. 4E) based on 
the Akaike Information Criteria (AIC), 
 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔𝐿 
 
where 𝑘 is the number of parameters in the model and 𝐿 is the maximal likelihood of the 

model predictions given the actual data. Because the relative likelihood of model 𝑡  (𝑅𝐿𝑡 ) 
suggested by the AIC difference is  
 

𝑅𝐿𝑡 = exp (
𝐴𝐼𝐶0 − 𝐴𝐼𝐶𝑡

2
) 

 
where 𝐴𝐼𝐶0 and 𝐴𝐼𝐶𝑡  are the AIC values of the reference model and model 𝑡, respectively, we 
accepted that a model was better if the model likelihood was 5 times more than the competing 
models, i.e. Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶0 − 𝐴𝐼𝐶𝑡 > 2𝑙𝑜𝑔5 ≈ 3.22. We constructed the main nutrient model by 
including significant task-related regressors based on AIC criteria for all three monkeys. We 
then performed similar model comparison between the nutrient model and the energy model 
to test the energy maximization hypothesis against the nutrient valuation strategy (Fig. 4E). 
 
Cross-prediction validation. We examined the robustness of the models across sessions, 
across flavors (Fig. 2E), and across animals (Fig. 2F, Fig. S5). The cross-prediction analyses 
validated the regression models outside of the training samples. Specifically, we first 
separated the data into mutually exclusive training and testing sets. We then predicted 
choices in the testing set based on the regression coefficients derived from the training data. 
The performance of the cross-prediction was evaluated by (McFadden’s) cross-validated 
pseudo-R

2
, 
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Cross-validated pseudo-R2 = 1 −
𝐿𝐿𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡
𝐿𝐿𝑛𝑢𝑙𝑙

 

 
which was based on the log-likelihood ratio of choices predicted by the nutrient model 
(𝐿𝐿𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 ) and the intercept model (𝐿𝐿𝑛𝑢𝑙𝑙 ). Higher cross-validated pseudo-R

2
 indicated 

better cross prediction performance, therefore more robust nutrient-value functions across 
conditions. Based on this concept, in the cross-session prediction, we sequentially left out one 
session as testing set and fitted the nutrient model in the remaining training data. We then 
reported the mean cross-validated pseudo-R

2
 to indicate the stability of the nutrient model 

across testing sessions. In the cross-flavor prediction (Fig. 2E), we took turns using choice 
data in one flavor as training set to predict choices in another flavor. The cross-predicted 
pseudo-R

2
 was reported in the confusion matrix. Lastly, in the cross-animal prediction (Fig. 

2F, Fig. S5), we used the nutrient-value function from one monkey to predict the other two 
monkeys’ choices. We first randomly selected one flavor-matched testing session from each 
of the three monkeys. We then fitted the nutrient model in one of the monkeys (training 
monkey) using choices excluding the left-out session and predicted choices in the three 
testing sessions. We compared the prediction performance on the other two monkeys (testing 
monkeys) to that on the training monkey. Importantly, we truncated the testing sessions to 
identical trial numbers to ensure comparability.  
 
Preference dissimilarity index (PDI). To quantify the distinctiveness of choice patterns 
across monkeys, we defined the preference dissimilarity index (PDI) as the bidirectional 
average ratio of the log-likelihood (𝐿𝐿) 
 

𝑃𝐷𝐼𝑚𝑛 = log [
1

2
(
𝐿𝐿𝑚𝑛
𝐿𝐿𝑚𝑚

+
𝐿𝐿𝑛𝑚
𝐿𝐿𝑛𝑛

)] 

 
where 𝐿𝐿𝑚𝑛 denotes the log-likelihoods of using trained nutrient preference of monkey 𝑚 to 

predict choices of monkey 𝑛 , and 𝐿𝐿𝑛𝑚  the opposite; 𝐿𝐿𝑚𝑚  and 𝐿𝐿𝑛𝑛  were self-predicted 
reference models based on the monkey's own nutrient preferences. The PDI compared the 
cross-predictability to self-predictability, with PDI = 1 indicating comparable cross-
predictability based on self and other nutrient preferences. PDIs larger than 1 suggested 
inconsistency between other-predicted and the reference self-predicted choices (distinct 
choice patterns). The cross-prediction was repeated for 1,000 iterations between each pair of 
the monkeys to compute the average log likelihood ratios for pairwise PDIs. The results were 
visualized in a preference triangle using pairwise PDIs as side-lengths; therefore, longer 
between-animal distances indicated more distinct choice patterns of the two connected 
animals (Fig. 2F Fig. S5). The importance of fat and sugar in explaining the individual 
differences of choice patterns were estimated by repeating the cross-animal predictions after 
systematically including fat and sugar regressors in the nutrient model. The nutrient 
contribution was estimated by the percentage change of PDI with and without the nutrient 
regressor in the nutrient model. 
 

Nutrient contribution =
𝑃𝐷𝐼𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 − 𝑃𝐷𝐼𝑛𝑢𝑙𝑙
𝑃𝐷𝐼𝑓𝑢𝑙𝑙 − 𝑃𝐷𝐼𝑛𝑢𝑙𝑙

 

 
With the null model containing only the reward magnitudes and task-related control variables, 
the nutrient contribution of choice discrepancies was quantified as the increase in the PDI 
after adding specific nutrient regressor into the null model (𝑃𝐷𝐼𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡) normalized with the 
whole range of PDI, which was bounded by the full nutrient model (𝑃𝐷𝐼𝑓𝑢𝑙𝑙) and the null model 

(𝑃𝐷𝐼𝑛𝑢𝑙𝑙) (Fig. 2G). 
 
Mediation analysis. We adopted mediation analysis (9, 10) in logistic regressions to assess 
possible causal relationships between the nutrient content, oral texture parameters and 
reward choices. The framework of mediation analysis involved three components (Fig. 3D): 
Component 1 (path c) — fat and sugar contents were significant predictors for choices (total 
effect); Component 2 (path a) — fat and sugar content (predictors) were correlated with the 
texture parameters (mediators); Component 3 (path c’) — after including the mediators into 
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the regression model, they replaced the effects of the original predictors, either completely 
(complete mediation) or partially (partial mediation). The direct effect (path c’) of the nutrient 
content (predictors) on choices (outcome) was defined as the coefficients of nutrient content 
(predictors) after controlling the texture parameters (mediators). The mediation effect (indirect 
effect = c-c’) was then quantified as the coefficient differences between the total effect and the 
direct effect.  

Specifically, we examined whether the oral texture parameters replaced the effects of fat 
and sugar in the nutrient model by independently including viscosity and CSF into the nutrient 
model (Table S2):  

 
𝑙𝑜𝑔𝑖𝑡(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛)

= 𝛽0 + 𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 + 𝛽2 × 𝑆𝑝𝑜𝑢𝑡 + 𝛽3 × 𝑅𝑀 + 𝛽4 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 + 𝛽5 × 𝐹𝑎𝑡𝐿𝑣
+ 𝛽6 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 ×  𝐹𝑎𝑡𝐿𝑣 + 𝛽7 × 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 | 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 

 
𝑙𝑜𝑔𝑖𝑡(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛)

= 𝛽0 + 𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 + 𝛽2 × 𝑆𝑝𝑜𝑢𝑡 + 𝛽3 × 𝑅𝑀 + 𝛽4 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 + 𝛽5 × 𝐹𝑎𝑡𝐿𝑣
+ 𝛽6 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 ×  𝐹𝑎𝑡𝐿𝑣 + 𝛽7 × 𝐶𝑆𝐹 | 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 

 
The differences of fat and sugar regression coefficients before (nutrient model, total effect: c) 
and after including texture parameters (texture model, direct effect: c’) in all three monkeys 
showed that viscosity and CSF partially replaced both fat and sugar sensitivities (Fig. 3E). We 
tested the significance of the mediation effects using a bootstrap analysis (11, 12) with 1,000 
iterations. We accepted significant mediation effects if the iterated distributions of the 
mediation effects significantly deviated from zero. 
 
Structural Equation Modelling. Based on the framework of structural equation modelling 
(SEM), we combined three logistic regressions in the path analysis to describe the 
relationships between nutrient content, food texture parameters and choices (Fig. 3F). The 
first two regressions recapitulated how fat and sugar content influenced viscosity and sliding 
friction: 
 

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =  𝛽0 + 𝛽1 × 𝐹𝑎𝑡𝐿𝑣 + 𝛽2 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉  
𝐶𝑆𝐹 =  𝛽0 + 𝛽1 × 𝐹𝑎𝑡𝐿𝑣 + 𝛽2 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 

 
The third regression characterized the influences of food textures and the direct influences of 
sugar content independent of its texture (direct effect) on choices: 
 

Total effect: logit(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛) = 𝛽0 + 𝛽1 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 + 𝛽2 × 𝐹𝑎𝑡𝐿𝑣

Direct effect: logit(𝐿𝑒𝑓𝑡𝐶ℎ𝑜𝑠𝑒𝑛) = 𝛽′0 + 𝛽′1 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑉 + 𝛽′2 × 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 + 𝛽′3 × 𝐶𝑆𝐹
 

 
The differences between the regression coefficients for sugar level in the two models (𝛽1 −
𝛽′1) were defined as the mediation effect of the texture parameters between sugar content 
and choices. We performed a bootstrap test with 1,000 iterations to evaluate the significance 
of these regression coefficients and the mediation effects. All path coefficients were 
normalized and expressed in the path diagrams to indicate how fat and sugar content could 
change the food textures to influence reward choices. 
 
Reward space choice trajectories. In the reward space, starting from the origin, we plotted 
the cumulative choices between the two options against each other (Fig. 4A, B). We 
normalized the choice counts to the total trial number in each session and averaged the 
cumulative choices across sessions. Thus, indiscriminate choices would show a choice 
trajectory that follows the 45-degree unity line and an endpoint that rests on the midpoint of 
the hypotenuse. Conversely, deviations away from the unity line suggest a choice bias and 
the continuous trajectory describes the changing choice patterns within the session. In 
addition, we compared reference trajectories based on three strategies that maximized 
energy, sugar, or fat, respectively. Specifically, we first computed the target component 
(energy, fat, or sugar) of both options in each trial. The simulated maximizers then chose on 
each trial the option with the higher target component and chose randomly when the two 
options matched in target component.  
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Nutrient space choice trajectories. In the nutrient space, we converted the choice 
trajectories from the reward space to visualize the changing patterns of nutrient sensitivity 
within sessions (Fig. 4C, D). Specifically, we first computed the energy intake from fat and 
sugar (kcal) on each trial, based on the chosen reward magnitude and the nutrient 
composition of the chosen reward. Next, we normalized the trial-by-trial nutrient-specific 
energy intake to the total trial number in each session before averaging them to derive the 
final trajectories. For visualization, we plotted the smoothed energy intake from sugar against 
fat (kcal/kcal) across sessions. Thus, in the isocaloric comparison, the slope of the trajectory 
revealed the animals’ trade-off between fat and sugar as source of energy, indicated by the 
angle 𝜃 between the trajectory and the horizontal axis,  
 

𝜃 = 𝑡𝑎𝑛−1 (
Energy intake from sugar (𝑘𝑐𝑎𝑙)

Energy intake from fat (𝑘𝑐𝑎𝑙)
) 

 
Likewise, the three reference trajectories in the reward space were transformed into the 
nutrient space, to indicate the relative nutrient intake in the three maximizing strategies. 
 
Geometric Framework for Nutrition (GFN). We used the right-angled mixer triangle 
developed by Raubenheimer which implements a proportion-based variant of the Geometric 
Framework for Nutrition (GFN) (13, 14) in which the available food compositions, reference 
nutritional targets, and the actual nutrient-intake balance could be analyzed in a common 
framework (Fig. 5A). The compositions of food rewards were plotted in a mixer triangle (13) 
based on the percentage contribution of fat and sugar to total energy content. The actual 
nutrient-intake balance (𝐍∗, a vector of nutrient composition in percentage of total energy) 
was calculated based on the ratio of consumed fat and sugar amount from the choices:  
 

𝐍∗ =
Total energy intake from nutrients (kcal)

Total energy intake (kcal)
× 100% =

𝐼𝑁
𝐼𝑡𝑜𝑡𝑎𝑙

× 100% 

 
Because nutrients can be acquired through reward A or reward B, the total intake can be 
separated based on the source of rewards, 
 
 

𝐼𝑁= 𝐸𝐴 ∙ 𝐍𝐴 ∙ ∑ 𝑅𝑀𝑖
𝐴𝑛

𝑖=1 ∙ 𝐼𝑖
𝐴

⏟        
intake amount of reward A

+ 𝐸𝐵 ∙ 𝐍𝐵 ∙ ∑ 𝑅𝑀𝑖
𝐵𝑛

𝑖=1 ∙ 𝐼𝑖
𝐵

⏟        
intake amount of reward B

  

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐴 ∙ ∑ 𝑅𝑀𝑖
𝐴𝑛

𝑖=1 ∙ 𝐼𝑖
𝐴

⏟        
intake amount of reward A

+ 𝐸𝐵 ∙ ∑ 𝑅𝑀𝑖
𝐵𝑛

𝑖=1 ∙ 𝐼𝑖
𝐵

⏟        
intake amount of reward B

  

 

where 𝑅𝑀𝑖
𝐴 and 𝑅𝑀𝑖

𝐵 were the offered magnitudes (mL) of reward A and B on trial 𝑖 across 

total 𝑛 trials; 𝐼𝐴 and 𝐼𝐵 were indicator functions whose values were 1 only when the specific 
reward was chosen, and 0 if otherwise. The intake amounts of rewards were then multiplied 
by the energy density, 𝐸𝐴  and 𝐸𝐵  (kcal/mL), and the nutrient composition, 𝑁𝐴  and 𝑁𝐵  (% 
energy), to compute the energy intake from specific nutrients. Because the reward 
compositions (𝐍𝐀, 𝐍𝐵) were constant within sessions, the geometric representations of final 
nutrient balance were interpolations between the two points for reward options, 𝐍𝐴 and 𝐍𝐵, 
weighted by the energy intake contributed by each reward. 
 

𝐍∗ =
𝐼𝐴

𝐼𝐴 + 𝐼𝐵
∙ 𝐍𝐴 +

𝐼𝐵
𝐼𝐴 + 𝐼𝐵

∙ 𝐍𝐵 = 𝛼 ∙ 𝐍𝐴 + 𝛽 ∙ 𝐍𝐵 ∈ 𝐍𝐴𝐍𝐵 

, 𝛼 =
𝐼𝐴

𝐼𝐴 + 𝐼𝐵
∈ [0,1], 𝛽 =

𝐼𝐵
𝐼𝐴 + 𝐼𝐵

∈ [0,1], 𝛼 + 𝛽 = 1 

 
Nutrient reference comparison. We compared the nutrient intake balance derived from the 
animals’ choices with two nutrient reference points, a recommended (‘optimal’) diet 
composition for adult macaques (15) and macaque milk (16). Because the actual nutrient 
balance should lie on the segments that connected the reward options, we orthogonally 
projected the reference points onto the lines that connected LFLS and HFLS or LFHS, using 
vector orthogonal projection as below (Fig. 5C, Fig. 5D):  
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𝐴𝑅′⃑⃑ ⃑⃑ ⃑⃑  = 𝑅′ − 𝐴 =
𝐴𝑅⃑⃑⃑⃑  ⃑ ∙ 𝐴𝐵⃑⃑⃑⃑  ⃑

‖𝐴𝐵⃑⃑⃑⃑  ⃑‖
2 ∙ 𝐴𝐵
⃑⃑⃑⃑  ⃑ 

 
where A and B were nutrient compositions of reward A and reward B, R was the nutrient 

reference point and R’ was its projection onto line 𝐴𝐵⃡⃑⃑⃑  ⃑ . These projection points were the 
closest achievable targets that served as surrogate nutrient references in these comparisons. 
 
 
 
Reinforcement Learning (RL) simulation 
 
Reversal-learning task. We simulated a reversal-learning task involving binary choices 
between high-nutrient (H) and low-nutrient (L) reward options. Each option was associated 
with a specific reward probability, in this case 𝑃(𝐻) = 0.6, 𝑃(𝐿) = 0.4 (Fig. S9A). The reward 
probability was reversed regularly without notification every 50 trials, e.g. 𝑃(𝐻) = 0.6 ⟶
0.4, 𝑃(𝐿) = 0.4 ⟶ 0.6. Therefore, the agent should track the changing reward values through 
trial and error. This basic reversal-learning task has been widely used as a paradigm for 
adaptive learning in neuroscience and has been successfully modelled by RL models (17-19). 
 
Standard RL model. In the standard RL model, we adopted the basic form of a Q-learning 
algorithm that followed the Rescorla-Wagner learning rule (20, 21) and performed 100 
repetitions of choice simulations in the reversal learning task (Fig. 6A). The agent tracked the 

values of the high-nutrient (H) and low-nutrient (L) rewards through trial-and-error (𝑄𝐻: value 

of the high-nutrient reward; 𝑄𝐿: value of the low-nutrient reward) and made choices based on 
the value difference (𝛿) in each trial. Specifically, starting with equal values for both rewards 

and indiscriminate choices (𝑄1
𝐻 = 𝑄1

𝐿 = 0.5; 𝑃(𝐻)1 = 𝑃(𝐿)1 = 0.5), the agent computed in each 

choice trial the value difference based on the latest value information (𝛿𝑡−1) and transformed it 
via the softmax function into the choice probability, 
 

𝛿𝑡−1 = 𝑄𝑡−1
𝐻 − 𝑄𝑡−1

𝐿  

𝜋(𝐻)𝑡 =  
1

1 + exp(−𝛿𝑡−1)
∈ [0,1] 

 
where 𝜋(𝐻)𝑡 denoted the probability of choosing the high-nutrient reward on trial t, and the 

low-nutrient choice probability was 𝜋(𝐿)𝑡 = 1 − 𝜋(𝐻)𝑡 .  We then dichotomized the choice 
probability at 0.5 to for the choice actions, 
 

𝐴(𝐻)𝑡 = {

1    , if 𝜋(𝐻)𝑡 > 0.5

𝑌    , if 𝜋(𝐻)𝑡 = 0.5

0    , if 𝜋(𝐻)𝑡 < 0.5

  𝐴(𝐿)𝑡 = {
1    , if 𝐴(𝐻)𝑡 = 0

0    , if 𝐴(𝐻)𝑡 = 1.
 , 𝑌~𝐵(1,0.5) 

 
The choice action for the high-nutrient reward 𝐴(𝐻)𝑡 was 1 when the choice probability was 
larger than 0.5, and was 0 if otherwise. In case of equal choice probability (𝜋(𝐻)𝑡 = 𝜋(𝐿)𝑡 =
0.5), the agent flipped a fair coin (Bernoulli trial) to decide which reward to choose. The 
subsequent reward outcomes of the choices were randomly drawn depending on the task-
assigned reward probability, which alternated every 50 trials in the reversal-learning task. The 
received rewarded value was 1 if the agent received the reward and was 0 if otherwise.  
 

𝑅𝑡
𝐻 = 𝑅𝑡

𝐿 = {
1    , if rewarded     
0    , if unrewarded

 

 
Importantly, in the standard RL model, the values for both rewards were identical, irrespective 
of their nutrient composition. This value specification was later modified in the nutrient RL 
model to incorporate the nutrient preferences into the RL framework. 
 
Nutrient-sensitive RL model. In the nutrient-sensitive model, we extended the standard RL 
model by assigning higher reward outcomes for the high-nutrient reward than for the low-
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nutrient reward, when rewarded. The higher value for the high-nutrient reward was controlled 
by a nutrient-sensitivity parameter 𝜂 ∈ [0,1) as follows (Fig. 6B, Fig. S9), 
 

𝑅𝑡
𝐻 = {

1

1−𝜂
≥ 1  ,if rewarded

           0            , if unrewarded
 𝑅𝑡
𝐿 = {

1    , if rewarded     
0    , if unrewarded

 

 
The single nutrient-sensitivity parameter 𝜂 , created a continuous spectrum of nutrient-

sensitive RL models, which degenerated to the standard RL model when 𝜂 = 0  and 

converged into high-nutrient only choices regardless of the reward probability when 𝜂 → 1 

(𝑅𝑡
𝐻 → ∞). By contrast, the reward outcome for the low-nutrient reward remained unchanged 

as the standard RL model. 
 
Economic choice theory simulation 
Nutrient indifference map. We simulated each monkey’s choices in the nutrient choice task 
in which we systematically compared randomized amounts of LFLS with rewards across 
combinations of interpolated fat and sugar content (Fig. S10). We systematically sampled 

LFLS (𝐹𝑎𝑡𝐿𝑣 = 0, 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 = 0) against rewards with combinations of fat and sugar level from 
0.1 to 1 with in steps of 0.1. The 10,000 simulated choices were based on the regression 
coefficients derived from each monkey (Fig. 2C). We then based on the simulated choices to 
estimate the reward values for each fat-sugar combination using the indifference points on the 
psychometric curves. In the model, we log-transformed the fat and sugar level to follow the 
formulation of Cobb-Douglas utility function (22, 23), which created non-overlapping, non-
decreasing, and negative-sloped indifference curves that have been widely used in economic 
studies. 
 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗
𝐿 ) = 𝑘𝑖𝑗 + 𝛼𝑖 ∙ 𝑙𝑜𝑔 (

𝐹𝑎𝑡𝐿𝑣𝐿
𝐹𝑎𝑡𝐿𝑣𝑅

) + 𝛽𝑖 ∙ 𝑙𝑜𝑔 (
𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝐿
𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝑅

) + 𝜀𝑖𝑗   , 𝜀𝑖𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎
2) 

 

where 𝜋𝑖𝑗
𝐿  denotes the probability of choosing left in the 𝑗th trial in session 𝑖, 𝑘𝑖𝑗 represents the 

aggregated task-related parameters as in the nutrient model, 𝜀𝑖𝑗 is the Gaussian random error.  

 
Extension of indifference analysis. We proposed an approach for indifference analysis 
between goods with common ingredients but different compositions (Fig. 6D). Specifically, we 
constructed four example composite food rewards, each with different compositions of fat and 
sugar (fat/sugar): A (70%/30%), B (10%/90%), C (90%/10%), D (20%/80%). We assumed that 
the values for fat and sugar followed the exponential utility function,  
 

𝑣(𝑐) = {
(1 − 𝑒−𝑎𝑐)

𝑎⁄ 𝑎 ≠ 0
𝑐 𝑎 = 0

 

 
where c is the quantity of the nutrients and a is a risk attitude parameter that determines the 
curvature of the function. In addition, we also assumed that the values for fat and sugar were 
additive; therefore, the value of reward X was the weighted sum of values of its nutrient 
constituents, 
 

𝑈(𝑋) = 𝑈(𝑓, 𝑠) =
1 − 𝑒𝑥𝑝(−𝑎𝑓 ∙ 𝑓)

𝑎𝑓
∙ 𝑤𝑓 +

1 − 𝑒𝑥𝑝(−𝑎𝑠 ∙ 𝑠)

𝑎𝑠
∙ 𝑤𝑠 

 
Without loss of generality, we set the risk attitude parameters for fat and sugar as 𝑎𝑓 = 2, 

𝑎𝑠 = 5, and the weights that integrated values of fat and sugar into the composite reward 

values as 𝑤𝑓 = 0.3, 𝑤𝑠 = 0.7. The slightly larger parameters for sugar reflected the observed 

stronger influences of sugar content than fat content on choices. Next, we illustrated how four 
reward bundles (a, b, c, d) and their relative preference ranking linearly transformed from 
reward space A-B to the nutrient space, and finally to reward space C-D. Specifically, each 
bundle point 𝑃𝑘  (𝑘 = 1,2,3,4)  in the reward space A-B was linearly transformed into the 
nutrient space,  
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𝑃′𝑘 = 𝑇𝑁𝑃𝑘 = 𝑁𝐴𝐵𝑃𝑘 = [
𝑁𝑓
𝐴 𝑁𝑠

𝐴

𝑁𝑓
𝐵 𝑁𝑠

𝐵] [
𝑃𝑘
𝑓

𝑃𝑘
𝑠
] 

 
where 𝑃′𝑘 was the transformed bundle point in the nutrient space, the transformation matrix to 
nutrient space (𝑇𝑁) was the nutrient composition matrix (𝑁𝐴𝐵) that included the nutrient vectors 

of the composite reward A and B (𝑁𝑓
𝐴: fat content in reward A, 𝑁𝑠

𝐴: sugar content in reward A; 

𝑁𝑓
𝐵: fat content in reward B, 𝑁𝑠

𝐵: sugar content in reward B). Similarly, the same four bundle 

points can be again linearly transformed into reward space C-D, which was defined by 
rewards with the same ingredients as reward A,B but with different compositions.  
 

𝑃′′𝑘 = 𝑇𝑅𝑃′𝑘 = 𝑁𝐶𝐷
−1𝑃′𝑘 = [

𝑁𝑓
𝐶 𝑁𝑠

𝐶

𝑁𝑓
𝐷 𝑁𝑠

𝐷
]

−1

[
𝑃′𝑘
𝑓

𝑃′𝑘
𝑠
] 

 
Each bundle point in the reward space C-D 𝑃′′𝑘 was transformed from those in the nutrient 

space 𝑃′𝑘 by multiplying the points with the transformation matrix for reward space (𝑇𝑅), which 
was the inverse of the nutrient composition matrix that included the nutrient vectors of reward 
C and D (𝑁𝐶𝐷 ). Notably, the relative rankings between the four bundles were preserved 
throughout the transformation. This value-preserving property illustrated that the same choice 
analysis could be performed in the nutrient space or in reward spaces constructed by rewards 
with different compositions, therefore providing a unifying framework that links indifference 
analyses across different reward sets via their common ingredients. 
 
Human psychophysical experiment. Healthy, non-obese participants (N = 23, aged 18-21, 
15 male) gave written informed consent and participated in an experiment that involved 
sampling and psychophysically evaluating liquid rewards. The experiment was approved by 
the Local Research Ethics Committee of the Cambridgeshire Health Authority. The rewards 
were the same stimuli as used in our monkey experiment, but prepared specifically for human 
testing, and included the four factorial rewards, a cream-based stimulus, water and water-
diluted fruit juice concentrate (an additional stimulus involving a food-thickener was tested in a 
subset of 14 subjects). All stimuli were blackcurrant-flavored. Subjects sampled and 
swallowed 1.5 mL of each stimulus from opaque cups in randomized order; after sampling a 
stimulus, subjects gave psychophysical ratings on a touchpad and rinsed their mouth with 
water before sampling the next stimulus. Each stimulus was sampled six times. Rating scales 
ranged from 1 to 10, with endpoints labelled as ‘none’ and ‘very strong’. Ratings were z-
scored before analysis. 
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Fig S1. Preferences for fat and sugar rewards across monkeys. Choice frequencies, 
choice repetitions and nutrient-magnitude trade-offs suggested preferences for high-nutrient 
rewards. (A) Choice frequencies (± s.e.m.) for high-fat (HFLS) and high-sugar (LFHS) 
rewards when compared with the low-nutrient (LFLS) reference option in the three animals 
(***: P < 1.0 × 10

-10
, binomial test). (B) Repeated-choice counts. All three monkeys chose 

high-fat and high-sugar rewards more repeatedly (all P < 0.001), except high-fat reward for 
monkey Ym, likelihood ratio test.; error bars: s.e.m.) (C) Trade-offs between nutrient content 
and reward amounts. The monkeys’ choices reduced total intake of reward amount (left bars, 
% of total offered amount in each session) and increased intake of fat and sugar (right bars, 
% of total offered nutrients in each session; error bars: s.e.m.). 
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Fig S2. Transitive reward values reflected nutrient composition. (A) Reward values are 
transitive if preferences are preserved even after intermediate comparisons between rewards. 
We validated transitivity of the reward values by comparing the direct and indirect value 
estimates between rewards. The scatter plots (± s.e.m.) show that direct relative values 
between reward 𝑖 and 𝑘, value(𝑖, 𝑘), are identical to the indirect values via another reward 𝑗, 
value(𝑖, 𝑗) × value(𝑗, 𝑘), in all three monkeys (see Methods). (B) The reward value estimates 
are significantly correlated with the fat and sugar content of the offered rewards in all three 
monkeys, except the effect of fat content in monkey Ym. 
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Fig S3. Stability of fat and sugar regression coefficients within testing sessions. 
Regression coefficients (± s.e.m.) for fat, sugar and reward magnitude (RM) from the nutrient 
model fitted to deciles of consecutive trial-windows in each testing session. Following initial 
learning of associations between conditioned stimuli and rewards coefficients for fat (blue) 
and sugar (green) were typically stable or increased throughout the session, compared to 
constant or slightly decreased coefficients for magnitude (yellow). 
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Fig S4. Nutrient-history effects on choices. Regression coefficients (± s.e.m.) from the 
‘nutrient history model’ (see Methods) that extended our main nutrient model with coefficients 
for nutrient history, obtained by pooling trials across sessions within each animal. In monkey 
V and Ya, recent fat choices facilitated current-trial fat choice; whereas recent sugar choices 
inhibited current-trial fat choice (upper right panel, significant positive fat→fat weights and 
lower right panel, negative sugar→fat weights). These effects were absent in monkey Ym. 
However, monkey Ym showed a positive sugar feedback on sugar choices, which was not 
seen in the other two animals. 
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Fig S5. Results in the alternative choice task. (A) Task design. Monkeys chose between 
sequentially presented choice options offered in constant amounts. Options were drawn from 
a set of five reward stimuli, including the four factorial nutrient-rewards and a cream-based 
high-fat low-sugar reward (‘cream’). (B) Rewards were cued by two sets of pre-trained 
conditioned stimuli; flavors were matched (blackcurrant or peach) within the same session. 
(C) Choice frequencies for the tested rewards across sessions and animals, shown 
separately for the two flavors. (D) Pairwise comparisons between the tested rewards. Color 
scale represents choice frequency; arrow direction indicates the preferred reward. (E) 
Regression coefficients of fat and sugar content from mixed-effects logistic regressions fitted 
separately for the two flavors. (F) Psychometric functions show that choice frequency followed 
the difference in subjective value derived from the regression model (E). (G) Geometry of 
cross-animal predictions visualized choice discrepancies as triangles, with preference 
dissimilarity indices (PDI, see Method) as side lengths (stated as numbers on the sides). 
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Fig S6. Relationship between sugar and food-texture parameters; human 
psychophysical experiment. (A) Viscosity (left) and CSF (right) as a function of sugar 
content in our stimulus set for the two flavors (orange: peach; purple: blackcurrant) (linear 
regressions). (B, C) Human psychophysical experiment: Relationships between texture 
parameters and subjective thickness and oiliness ratings, based on the same stimulus set as 
in the monkey experiments (blackcurrant flavor). (B) Texture influences on thickness ratings. 
Standardized regression coefficients (mean across subjects ± s.e.m.) from a multiple 
regression model with regressors including log(viscosity) and CSF, and thickness ratings as 
dependent variable. The regression was significant in 23/23 subjects with mean R

2
 across 

subjects of 0.589 ± 0.032 (s.e.m.). Effect sizes of viscosity and CSF were not significantly 
different (P = 0.549, t-test on unsigned regression coefficients). (C) Texture influences on 
oiliness ratings. Standardized regression coefficients (mean across subjects ± s.e.m.) from a 
multiple regression model with regressors including log(viscosity) and CSF, and oiliness 
ratings as dependent variable. The regression was significant in 22/23 subjects with mean R

2
 

across subjects of 0.473 ± 0.041 (s.e.m.). The (unsigned) regression coefficient for CSF on 
oiliness was significantly larger than that for viscosity (P = 0.011, t-test on unsigned 
regression coefficients). 
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Fig S7. Path analysis between nutrients, food textures and choices for the alternative 
choice task. Path analysis based on the framework of structural equation modelling (SEM) 
and path coefficients. The effect of fat was completely mediated by the food textures, and 
thus removed from the path diagram. However, sugar had a direct effect on choices 
independent of food textures. Significance of coefficients was derived from bootstrap (1,000 
iterations). 
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Fig S8. Choice trajectories in reward and nutrient space for choices involving medium-
fat and medium-sugar rewards. (A) Schematic of tests: Monkeys chose between a medium-
fat medium-sugar reward (MFMS) and isocaloric low-fat high-sugar (LFHS) or high-fat low-
sugar (HFLS) rewards. (B) Cumulative choices for the two tested animals (black: mean 
trajectory of actual choices, grey: single-session trajectories; colors: simulated choice 
trajectories based on reference strategies that maximized calories, fat, or sugar). (C) Choice 
trajectories transformed from reward space into nutrient space (same sessions as in (C); 
black: actual choices; colors: reference simulated choices). 
  



 

 

23 

 

 
 
Fig S9. Nutrient-sensitive reinforcement learning simulation results. (A) Schematic of 
simulated binary choice probabilistic reversal-learning task. The probability of receiving high- 
or low-nutrient reward reversed every 50 trials. (B) Frequency of high-nutrient choices in the 
nutrient-sensitive reinforcement-learning model (red) and a standard reinforcement-learning 
model (blue) shown across probability reversals. (C) Reward values for the high-nutrient 
option (solid lines) and low-nutrient option (dashed lines) shown for both models across 
probability reversals. (D) Reward and nutrient outcomes across learning rates and nutrient-
sensitivity parameters. Left: Color map represents obtained reward outcomes (% of offered 
rewards). Right: Color map represents obtained nutrient outcomes (% of rewarded trials). 
Results in the paper are shown for α = 0.2 and η = 0.2; inverse temperature parameter β was 
fixed at 5. (E) Reward and nutrient intake as a function of the nutrient-sensitivity parameter. 
Reward intake was not affected by the nutrient sensitivity parameter η due to the symmetric 
experimental design (i.e. same number of high probability blocks for both options), but 
nutrient intake increased with higher nutrient sensitivity from nutrient-indiscriminate choices 
(50% nutrient intake) to nutrient-exclusive choices (100% nutrient intake). The animal 
obtained higher reward intake due to faster learning driven by the higher nutrient content in 
the high-probability option. However, the nutrient-sensitive animal was reluctant to switch to 
low-nutrient choices after probability reversal even if the high-nutrient option was now 
associated with a lower reward probability. The gain and loss of reward intake would cancel 
out in a symmetric experimental design as in (A), but the nutrient intake would always 
increase irrespective of the task structure. 
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Fig S10. Indifference maps simulated based on the monkeys’ nutrient-value functions. 
(A) Three-dimensional indifference maps constructed by using each animal's regression-
derived nutrient-value function to simulate choices for different fat-sugar combinations. 
Reward values increased continuously with both fat and sugar content with higher gradients 
for sugar content. (B) Two-dimensional iso-contour plots illustrate indifference curves with 
higher value gradients for sugar content compared to fat content. 
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Table S1. Nutrient content and texture parameters of liquid food rewards 

 
Nutrient rewards 

Peach flavor Blackcurrant flavor 
Water 

LFLS HFLS LFHS HFHS LFLS HFLS LFHS HFHS 
R

e
c
ip

e
 

Peach juice (mL) 30 30 30 30 0 0 0 0 

NA 

Blackcurrant juice (mL) 0 0 0 0 30 30 30 30 

Skimmed milk (mL) 270 0 270 0 270 0 270 0 

Whole milk (mL) 0 270 0 270 0 270 0 270 

Caster sugar (g) 0 0.81 20.4 21.21 0 0.81 20.4 21.21 

Total (mL) 300 300 300 300 300 300 300 300 

N
u
tr

ie
n
t 
c
o
n
te

n
t 

(p
e
r 

1
0
0
 m

L
) 

Calorie (kcal) 33.5 60.7 60.7 87.9 43.9 71.1 71.1 98.3 0 

Fat (g) 0.45 3.33 0.45 3.33 0.45 3.33 0.45 3.33 0 

Sugar (g) 4.50 4.50 11.30 11.30 6.80 6.80 13.60 13.60 0 

Protein (g) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 0 

Salt (g) 0.11 0.10 0.11 0.10 0.14 0.13 0.14 0.13 0 

Sugar/fat (kcal/kcal) 4.444 0.601 11.161 1.508 6.716 0.908 13.432 1.815 NA 

T
e
x
tu

re
 

p
a
ra

m
e

te
r 

Viscosity (19ºC) (cP)* 1.82 4.37 2.00 7.32 1.78 2.18 2.16 2.59 0.99 

Normalized CSF** 0.753 0.638 0.679 0.613 0.653 0.606 0.639 0.574 1.000 

* cP = centipoise = mPa*s 

**normalized CSF = coefficient of sliding friction normalized with water (CSFwater = 1.000) 
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Table S2. Regression models and performance 

Basic regressors = Intercept + First + Spout + RM AIC BIC Loglikelihood Pseudo-R2 

Monkey V – Peach flavor N = 7,718 trials (19 sessions) 

Nutrient model = RM model + Fat + Sugar + Sugar × Fat 4292.342 4535.638 -2111.171 0.605 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 4061.487 4318.685 -1993.743 0.627 

Intercept + First + Spout + Energy 4534.803 4632.121 -2253.402 0.579 

Basic regressors  + Fat + Sugar + Sugar × Fat + Visc 4304.959 4610.817 -2108.480 0.606 

Basic regressors  + Fat + Sugar + Sugar ×Fat + CSF 4304.959 4610.817 -2108.480 0.606 

Basic regressors + Sugar + Visc + CSF 4291.492 4534.787 -2110.746 0.605 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar × FatHist 1-10 

4000.493 4521.841 -1925.247 0.640 

Monkey Ya – Peach flavor N = 9,449 trials (23 sessions) 

Nutrient model = RM model + Fat + Sugar + Sugar × Fat 2896.097 3146.476 -1413.049 0.784 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 2691.821 2956.506 -1308.910 0.800 

Intercept + First + Spout + Energy 2906.902 3007.054 -1439.451 0.780 

Basic regressors + Fat + Sugar + Sugar × Fat + Visc 2913.025 3227.786 -1412.512 0.784 

Basic regressors + Fat + Sugar + Sugar × Fat + CSF 2913.025 3227.786 -1412.512 0.784 

Basic regressors + Sugar + Visc + CSF 2908.045 3158.423 -1419.022 0.783 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar ×FatHist 1-10 

2735.077 3271.602 -1292.538 0.803 

Monkey Ym – Peach flavor N = 7,033 trials (18 sessions) 

Nutrient model = Basic regressors + Fat + Sugar + Sugar × Fat 3550.377 3790.420 -1740.189 0.642 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 3539.350 3793.110 -1732.675 0.644 

Intercept + First + Spout + Energy 4224.665 4320.682 -2098.332 0.569 

Basic regressors + Fat + Sugar + Sugar × Fat + Visc 3567.062 3868.830 -1739.531 0.643 

Basic regressors + Fat + Sugar + Sugar × Fat + CSF 3567.062 3868.830 -1739.531 0.643 

Basic regressors + Sugar + Visc + CSF 3555.661 3795.704 -1742.831 0.642 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar × FatHist 1-10 

3569.879 4084.257 -1709.939 0.649 

Monkey V – Blackcurrant flavor N = 9,169 trials (20 sessions) 

Nutrient model = Basic regressors + Fat + Sugar + Sugar × Fat 4187.948 4437.273 -2058.974 0.676 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 4152.486 4416.059 -2039.243 0.679 

Intercept + First + Spout + Energy 4858.781 4958.511 -2415.390 0.620 

Basic regressors + Fat + Sugar + Sugar × Fat + Visc 4198.753 4512.191 -2055.377 0.676 

Basic regressors + Fat + Sugar + Sugar × Fat + CSF 4198.753 4512.191 -2055.377 0.676 

Basic regressors + Sugar + Visc + CSF 4185.510 4434.836 -2057.755 0.676 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar × FatHist 1-10 

4136.576 4670.845 -1993.288 0.686 

Monkey Ya – Blackcurrant flavor N = 13,535 trials (29 sessions) 

Nutrient model = Basic regressors + Fat + Sugar + Sugar × Fat 5685.296 5948.252 -2807.648 0.699 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 5367.902 5645.884 -2646.951 0.716 

Intercept + First + Spout + Energy 5965.324 6070.507 -2968.662 0.682 

Basic regressors + Fat + Sugar + Sugar × Fat + Visc 5687.228 6017.801 -2799.614 0.700 

Basic regressors + Fat + Sugar + Sugar × Fat + CSF 5687.228 6017.801 -2799.614 0.700 

Basic regressors + Sugar + Visc + CSF 5691.504 5954.460 -2810.752 0.699 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar × FatHist 1-10 

5577.029 6140.507 -2713.515 0.709 

Monkey Ym – Blackcurrant flavor N = 8,301 trials (20 sessions) 

Nutrient model = Basic regressors + Fat + Sugar + Sugar × Fat 3980.256 4226.101 -1955.128 0.660 

Basic regressors + Fat + Sugar + Trial × Fat + Trial × Sugar 3959.734 4219.627 -1942.867 0.662 

Intercept + First + Spout + Energy 4794.873 4893.211 -2383.436 0.586 

Basic regressors + Fat + Sugar + Sugar × Fat + Visc 3990.290 4299.352 -1951.145 0.661 

Basic regressors + Fat + Sugar + Sugar × Fat + CSF 3990.290 4299.352 -1951.145 0.661 

Basic regressors + Sugar + Visc + CSF 3978.154 4223.998 -1954.077 0.660 

Nutrient model + Sugar × SugarHist 1-10 + Fat × FatHist 1-10 
+ Fat × SugarHist 1-10 + Sugar × FatHist 1-10 

3996.916 4523.726 -1923.458 0.666 
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Table S3. Regression table of the nutrient model 

Flavor Monkey Regressors Estimate SE t-value DF p-value 

Peach 

flavor 

Monkey V 

 

N = 7,718  

(19 sessions) 

Intercept -0.057185 0.17803 -0.32121 7711 0.74806 

Spout 0.59454 0.27125 2.1919 7711 0.028419 

First -0.1577 0.1286 -1.2262 7711 0.22015 

Sugar 3.5703 0.23769 15.021 7711 2.7565e-50 

Fat 1.3938 0.10887 12.802 7711 3.8037e-37 

RM 1.9277 0.24905 7.7405 7711 1.1165e-14 

Sugar × Fat -0.46566 0.3393 -1.3724 7711 0.16997 

Monkey Ya 

 

N = 9,449  

(23 sessions) 

Intercept 0.24861 0.37993 0.65437 9442 0.51289 

Spout 0.53655 0.66735 0.804 9442 0.42142 

First -0.4 0.26778 -1.4938 9442 0.13527 

Sugar 5.7386 0.42211 13.595 9442 1.058e-41 

Fat 3.2958 0.37169 8.8672 9442 8.867e-19 

RM 1.7922 0.24199 7.4062 9442 1.4112e-13 

Sugar × Fat -4.0704 0.55829 -7.2907 9442 3.3306e-13 

Monkey Ym 

 

N = 7,033  

(18 sessions) 

Intercept -0.26553 0.15121 -1.756 7026 0.079127 

Spout 1.379 0.20946 6.5833 7026 4.933e-11 

First -0.18599 0.12168 -1.5285 7026 0.12643 

Sugar 1.522 0.27151 5.6055 7026 2.1552e-08 

Fat 0.55991 0.18927 2.9583 7026 0.0031036 

RM 5.1763 0.2607 19.855 7026 2.1128e-85 

Sugar × Fat -0.73119 0.49144 -1.4879 7026 0.13683 

Blackcurrant 

flavor 

Monkey V 

 

N = 9,169  

(20 sessions) 

Intercept 1.2403 0.1342 9.2425 9162 2.9489e-20 

Spout -2.0985 0.35247 -5.9537 9162 2.7179e-09 

First -0.0056799 0.27592 -0.020585 9162 0.98358 

Sugar 0.70642 0.18008 3.9228 9162 8.8167e-05 

Fat 0.62955 0.12074 5.2139 9162 1.8891e-07 

RM 5.8851 0.47731 12.33 9162 1.1781e-34 

Sugar × Fat 5.9808 0.41146 14.536 9162 2.4208e-47 

Monkey Ya 

 

N = 13,535  

(29 sessions) 

Intercept 0.76681 0.20232 3.79 13528 0.00015131 

Spout -0.49087 0.39785 -1.2338 13528 0.2173 

First -0.43209 0.18021 -2.3977 13528 0.016513 

Sugar 4.0922 0.29238 13.996 13528 3.3486e-44 

Fat 2.095 0.42659 4.9109 13528 9.1697e-07 

RM 2.2328 0.31717 7.0398 13528 2.018e-12 

Sugar × Fat -1.7988 0.58492 -3.0754 13528 0.0021066 

Monkey Ym 

 

N = 8,301  

(20 sessions) 

Intercept -0.81857 0.44558 -1.8371 8294 0.066231 

Spout 2.5297 0.745 3.3956 8294 0.00068797 

First -0.53788 0.18881 -2.8487 8294 0.0044 

Sugar 1.0788 0.36205 2.9796 8294 0.0028947 

Fat -0.37921 0.239 -1.5866 8294 0.11263 

RM 5.8858 0.34629 16.997 8294 1.0316e-63 

Sugar × Fat 0.21265 0.39036 0.54476 8294 0.58593 
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