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Supplementary Information  

Materials 

The California Ambient Air Monitoring Network. The California Ambient Air Monitoring 
Network consists of more than 250 monitoring stations operated by federal, state, and 
local agencies. The network has been dedicated to measuring ambient concentrations of 
criteria pollutants, including ground-level ozone (O3), particulate matter (PM10 and PM2.5), 
nitrogen dioxide (NO2), sulfur dioxide (SO2) and lead (Pb). It also measures meteorological 
data such as dew point, temperature, pressure, precipitation, surface radiation fluxes, 
relative humidity, and wind (1). The distribution of the California Ambient Air Monitoring 
Network in the LA Basin is shown in Fig S2. In this study we took the ground-based 
measurement data of PM2.5, NO2, O3 as observations for the training and validation of the 
machine-learning model. We took the measurements of temperature, wind, pressure, 
radiation, and relative humidity as the model input. 
 
ERA5. ERA5 provides hourly estimates of a large number of atmospheric, land and 
oceanic climate variables (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5). The data cover the Earth on a 30 km grid and resolve the atmosphere 
using 137 levels from the surface up to a height of 80 km. ERA5 includes information 
about uncertainties for all variables at reduced spatial and temporal resolutions. In this 
study, we took the data of boundary layer height and precipitation as model input. 
 
Traffic Data. The real-time based freeway traffic dataset was obtained from the California 
Department of Transportation (PeMS, http://pems.dot.ca.gov). PeMS collects data from 
varies types of vehicle detector stations, including inductive loops, side-fire radar and 
magnetometers (2), PeMS can provide flow and speed as reported by detectors over 
several years. It also supports integration with common internet-based mapping service 
(e.g., Google Maps, Google Earth) (2). Here a python-based script was created to obtain 
the data of PeMS collocated with freeways around the Los Angeles (LA) basin. There are 
approximately 3144 sensors in this area. The distribution of PeMS sites within the LA basin 
is shown in Fig S10. In this study, the hourly truck and non-truck flow data from Jan 1st, 
2019 to July 1st, 2020 have been used to study the change of traffic patterns in hourly, 
daily and monthly periods. In addition, daily total traffic volume data from 4437 arterial and 
residential roads within the research domain in 2019 were obtained from the Los Angeles 
Department of Transportation (LADOT) to provide the traffic patterns for low-ranking 
roads.  
 
A random forest (RF, see technical descriptions in Methods) model served as a platform 
to simulate the spatial distribution of link-level traffic volumes for the entire road network 
of the research domain. Annual average daily traffic (AADT) of all monitored roads served 
as dependent variables. Functional classification (i.e., freeway, arterial road and 
residential road) of the road, average AADT and total length of different road types within 
1 km circular buffers served as independent variables to train the RF model. Based on the 
spatial distribution pattern simulated by the RF model and the hourly observations from 
3144 highway traffic monitoring sites, we allocated the total traffic volumes for the entire 
road network of the research domain from Jan 1st, 2019 to July 1st, 2020. The split between 
non-truck and truck fleet for each link, as well as the hourly variation, were based on hourly 
traffic volume data from the nearest highway traffic monitoring site. Vehicle Mileage 
Traveled ( VMT = ∑ traffic volume ×  road length ) was calculated to represent traffic 
activities for both non-truck and truck fleet for each road segment, which would be further 
used as predicting variables in estimating concentrations air pollutants.  

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Points of Interest. The points of interest were taken from the previous methane inventory 
studies – Vista which is a Geographic Information System (GIS) based approach to map 
potential methane emissions source in the LA Basin (3). The Vista-LA datasets are 
available from the Oak Ridge National Ridge National Laboratory Distributed Active 
Archive Center for Biogeochemical Dynamics (ORNL DAAC; 
https://doi.org/10.3334/ORNLDAAC/1525). The spatial distribution of all parameters in this 
study has been shown in Fig S2. 
 
CMIP6 Climate Projection. The most recent Coupled Model Inter-comparison Project 
Phase 6 (CMIP6) is a project of the World Climate Research Programme (WCRP)’s 
Working Group of Coupled Modelling (WGCM) (https://www.wcrp-climate.org/wgcm-
cmip/wgcm-cmip6). CMIP6 model simulations have been regularly assessed as part of 
the IPCC Climate Assessments Reports and various national assessments. In this study, 
we took the ensemble mean of multiple runs from six CMIP6 models that predicts wind 
direction, wind speed, precipitation, solar radiation, surface air pressure, temperature, 
relative humidity as the meteorological predictions for 2035 and 2050. The monthly 
meteorological ratio patterns of 2035/2019 and 2050/2019 are shown in Fig S9.   
 
Extended Methods 
Development of RF Prediction Model. The key input to the machine learning model and 
related experiments is summarized in Fig S1. RF is a machine learning method based on 
decision trees (4). It constructs each tree by bootstrapping (random resampling with 
replacement) and splits each point in the tree according to the best of a subset of randomly 
chosen predictors at each point. Versus traditional parametric modelling techniques, RF 
presents some advantages. Firstly, it can handle non-linear relationships with a low 
likelihood of overfitting. RF algorithm also copes with highly correlated variables since 
once a variable has been selected to build a tree from the subset of variables, a highly 
correlated variable will be less likely selected to grow the tree (5). It also gives higher 
predictive accuracy compared to parametric techniques, and provides information about 
the underlying mechanism reporting as variable importance of the predictor variables (4). 
Considering the advances above, we chose RF as a platform to model air pollutant 
concentrations, and then evaluate the contribution of traffic decline to air quality changes 
during COVID-19 lockdown by applying traffic-as-usual scenarios to the model.  
 
Three RF models for hourly NO2, O3, and PM2.5 concentrations were developed based on 
site-specific air quality, meteorological and traffic data at hourly accuracy from 1 Jan 2019 
to 30 June 2020, as well as up-to-date demographic and land use data (all predictors are 
listed in Table S2). Meteorological data for each air quality site (AQS) were extracted from 
the nearest meteorological monitoring site (i.e., the California Ambient Air Monitoring 
Network and ERA5). Traffic and demographic variables were calculated around each AQ 
site in 10 circular regions with radii of 50 m to 5 km as either an average (e.g., population 
density) or sum (e.g., vehicle mileage traveled, VMT) within each buffer. In particular, non-
truck and truck fleets were considered separately in the prediction parameters of the RF 
models. Distance to importance point of interest (POIs) serves as land use indictors that 
reflect the potential impact from nearby industrial manufacturers or transportation facilities. 
In order to allow the RF model to utilize the temporal correlations in the data, we 
considered temporal variables such as day of a week and public holidays in model training.  
 
RF models for NO2, O3, and PM2.5 concentrations were trained in R (a programming 
language) using the ranger package. Two user-defined parameters: the optimum number 

https://doi.org/10.3334/ORNLDAAC/1525
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
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of trees (ntree) and variables randomly tried at each split in the random forests (mtry) were 
determined by maximizing the out-of-bag (OOB) correlation coefficient squared (R2) 
calculated as 1-MSE/var(Y), where Y is the observed values and MSE is the mean of the 
OOB errors for all the prediction points. Then the model performance was validated using 
a 5-fold cross validation scheme. R2 and root mean squared error (RMSE) between the 
predictions and observations were computed as indicators of the model performance. A 
key advantage of the RF model over alternative machine learning algorithms is the ability 
to measure variable importance. We utilized Gini importance, a commonly-used indicator 
that could be calculated in R (i.e., ranger) (6), to rank the important factors affecting the 
air quality. Gini importance is computed by the sum of Gini impurity decrease for all nodes 
in the forest when a split on one variable has been conducted (7, 8). A split with a large 
decrease of Gini impurity is considered important, and variables used for splitting at 
important splits are also considered important. Thus, higher Gini importance indicates 
higher variable importance. 
To account for the secondary PM2.5 formations due to atmospheric oxidation processes, 
we experimented to include O3 as a predictor in the PM2.5 model. The results indicate that 
including concurrent O3 concentrations would much improve R2 from 0.53 to 0.65, which 
has been used in the PM2.5 RF model (see Fig S11(a) and (b)). However, including O3 
concentrations does not significantly increase R2 for NO2 prediction (see Fig S11(c) and 
(d)). Thus, we opt to not consider O3 concentrations in predicting NO2 concentrations. 
 
Quantifying Impacts of Traffic Decline on Air Quality During COVID-19 Lockdown. 
We established two prediction scenarios (i.e., Normal Traffic and Normal Truck) assuming 
the traffic activities of the entire fleet and the truck fleet follow the average weekly and 
diurnal patterns from 1 Jan to 4 Mar, 2020 (see Table S3). Then we predicted the hourly 
pollutant concentrations during COVID-19 using the established RF models based on the 
assumed traffic activities and the actual meteorological conditions and calculated the 
difference ratio between predicted and actual concentrations to represent the impact of 
total traffic and truck fleet respectively (Eq. 1 and 2). 
 
 

Traffic impact ratio =
Observation-Prediction of Normal traffic scenario

Prediction of Normal traffic scenario
       Eq. 1        

                  

 

Truck impact ratio =  
Observation-Prediction of Normal truck scenario

Prediction of Normal truck scenario 
      Eq. 2    

                      

 
 
 
Projection of Future Air Pollution Changes by Traffic and Climate 
The RF models were also utilized to predict the ambient concentrations of PM2.5, O3 and 
NO2 in the future based on the predicted meteorological profiles and traffic emissions. We 
analyze CIMIP6 simulations to predict the future meteorological changes in 2035 and 2050 
comparing with the pattern in 2019. We use output from six different climate models for 
the predication of key parameters such as wind speed, wind direction, precipitation, solar 
radiation at surface, surface air pressure, surface temperature and relative humidity, as 
listed in Table S4. To minimize the influence of large interannual variations of climate 
states in the analysis, we use 6-year means of 2015-2020, 2030-2035, 2045-2050 to 
represent 2019, 2035, 2050, respectively. We first take grids from our research domain 
(latitude: 33.68N - 34.22N, longitude: 118.60W - 117.39W), and then calculate the 
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ensemble mean of each parameter for each model. We then calculate the ratio between 
2035 and 2019 and the ratio between 2050 and 2019 for wind speed, precipitation, solar 
radiation at surface, surface air pressure, surface temperature, and relative humidity. We 
also calculate the difference between 2035 and 2019 and the difference between 2050 
and 2019 for wind direction. In order to calculate the ratio mean and variance from all 
models for a specific month, we take the ratio between 2035 and 2019 as an example: 
The difference percentage ratio between 2019 and 2035 for a random variable in a specific 
model can be calculated as: 
 

𝑦𝑛𝑖
= (

𝑥𝑛𝑖2035

𝑥𝑛𝑖2019

 − 1) × 100%     Eq. 3 

 
Here, 𝑦𝑛𝑖 represents the difference percentage ratio in month 𝑖 of 2035 compared with the 

month 𝑖 of 2019 for model 𝑛 for a random variable; 𝑥𝑛𝑖2035
 is a random variable value for 

the model 𝑛 in the month 𝑖 of 2035, 𝑥𝑛𝑖2019
 is the variable value for the model 𝑛 in month 

𝑖 of 2035.  
 
We followed the method in Kendall’s Advanced Theory of Statistics (9) and Survival 
Models and Data Analysis (10). Given random variables in month i of 2019 and 2035: 
𝑋𝑖 2035 and 𝑋𝑖 2019 where 𝑋2019 either has no mass at 0 (discrete) or has support [0, ∞). Let 

𝐺 = 𝑔(𝑋𝑖2035, 𝑋𝑖2019). The approximations for the mean of the ratio of random variable 𝑋 

in month 𝑖 of 2035 and 2019 𝐸(𝑋𝑖2035
/𝑋𝑖2019)after 2 Taylor expansion can be improved 

approximately as: 

𝐸(𝑋𝑖 2035
/𝑋𝑖 2019

) ≈
𝜇𝑥𝑖2035

𝜇𝑥𝑖2019

−
𝐶𝑜𝑣(𝑋𝑖 2035

, 𝑋𝑖 2019)

(𝜇𝑥𝑖2019
)

2 +
𝑉𝑎𝑟 (𝜇𝑥𝑖2019

) 𝜇𝑥𝑖2035

(𝜇𝑥𝑖2019
)

3       Eq. 4 

 
μxi2035

 and μxi2019
 are the mean the random variable X  in month i  of 2035 and 2019; 

Cov(Xi2035
,   Xi2019) is the covariance of random variable X in month i of 2035 and 2019; 

Var(μxi2019
) is the variance of random variable X in month i of 2019.  

The approximations of the variance of the ratio of random variable X in month i of 2035 
and 2019 Var(Xi2035

/Xi2019) after 2 Taylor expansion can be improved approximately as: 

 

𝑉𝑎𝑟(𝑋𝑖 2035
/𝑋𝑖 2019

) ≈
(𝜇𝑥𝑖2035

)2

(𝜇𝑥𝑖2019
)2 [

𝑉𝑎𝑟 (𝜇𝑥𝑖2035
)

(𝜇𝑥𝑖2035
)

2 − 2
𝐶𝑜𝑣(𝑋𝑖 2035

, 𝑋𝑖 2019)

𝜇𝑥𝑖2035
𝜇𝑥𝑖2019

+
𝑉𝑎𝑟 (𝜇𝑥𝑖2019

)

(𝜇𝑥𝑖2019
)

2 ]       Eq. 5 

        

 
𝑉𝑎𝑟(𝜇𝑥𝑖2035

)  is the variance of random variable 𝑋  in month 𝑖  of 2035. According to 

equation 3, in month  𝑖 the average difference percentage ratio between 2019 and 2035 

for all models can be summarized as:  
 

𝐸(𝑋𝑖 2035
/𝑋𝑖 2019

− 1) ≈ [
𝜇𝑥𝑖2035

𝜇𝑥𝑖2019

−
𝐶𝑜𝑣(𝑋𝑖 2035

, 𝑋𝑖 2019)

(𝜇𝑥𝑖2019
)

2 +
𝑉𝑎𝑟 (𝜇𝑥𝑖2019

) 𝜇𝑥𝑖2035

(𝜇𝑥𝑖2019
)

3 − 1] × 100%    Eq. 6  

       

 
In month i the variance of difference percentage ratio between 2019 and 2035 for all 
models can be summarized as: 
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𝑉𝑎𝑟(𝑋𝑖 2035
/𝑋𝑖2019

− 1) ≈
(𝜇𝑥𝑖2035

)2

(𝜇𝑥𝑖2019
)2 [

𝑉𝑎𝑟 (𝜇𝑥𝑖2035
)

(𝜇𝑥𝑖205
)

2 − 2
𝐶𝑜𝑣(𝑋𝑖 2035

, 𝑋𝑖 2019)

𝜇𝑥𝑖2035
𝜇𝑥𝑖2019

+
𝑉𝑎𝑟 (𝜇𝑥𝑖2019

)

(𝜇𝑥𝑖2019
)

2 ] × 10%    Eq. 7  

 
The calculation result for equations 6 and 7 can be found at Fig S9.  
 
For future traffic profiles, we follow the RF model framework by using the change of traffic 
VMT to approximate the change of traffic emissions (truck and non-truck separately). The 
California Air Resources Board (CARB)’s official traffic emission model, EMFAC (11), 
provides the on-road emission inventories of four LA Basin counties (Los Angeles, 
Orange, San Bernardino and Riverside) from calendar year 2000 to 2050. The EMFAC 
model has specific emission estimation for more detailed vehicle category and aggregated 
the emission results into truck and non-truck fleets. Nitrogen oxides (NOX) and total 
organic gases (TOG) are known as two of the most important traffic-related pollutants in 
the atmospheric chemical reactions (12). Of note, the default EMFAC emission inventories 
have mild ratios of zero-emission vehicles for future years (e.g., 4.4% for non-truck and 
none for truck in 2035). In addition, CARB has adopted the new low-NOx omnibus 
regulation that will reduce NOx emission limit by 90% for new trucks from 2027. However, 
due to the large presence of out-of-state trucks (more than 60% in 2017) operating in 
California and a considerable fraction of low-load driving conditions (e.g., speed below 25 
mile per hour), CARB estimates that the low-NOx omnibus regulation would reduce by 
17% and 29% heavy-duty vehicle NOx emissions in 2035 and 2050, respectively, 
compared with the original 2017 version of EMFAC emission inventories (13). We have 
updated the truck emission inventories with considerations of the future heavy-duty vehicle 
NOx emission standard. Based on the updated result of EMFAC inventories, we found the 
relative emission ratio of NOX and TOG are very similar in the future years (Fig. S5 A and 
B). Thus, using the 2019 emissions as baseline, the change of traffic emissions in the 
future years was calculated as the average relative emissions of NOX and TOG for truck 
and non-truck fleets respectively (Fig. S5 C).  
 
In addition, we introduced three degrees of fleet electrification (also include other zero-
emission vehicles like hydrogen fuel cell vehicles) based on the default EMFAC emission 
inventories (see Table S1 for scenario description). The moderate electrification scenario 
(E1) for trucks was determined based on CARB’s Advanced Clean Truck (ACT) Program 
(14). CARB’s estimate suggests the ACT regulation would result in approximately 5% and 
10% NOx emission reductions in 2035 and 2050 compared with the original EMFAC 
results, which would be considered as the overall percentages of electrified mileage of 
truck fleets. We note that the highest electrification scenario (E3, 80% for non-truck and 
40% for truck in 2050) projects less mileage penetration of zero-emission vehicles (mostly 
non-truck) proposed by the L.A.’s Green New Deal (15), because higher electrification 
scenarios might be beyond the application boundary of air quality prediction models which 
is determined by the range of training dataset. However, in 2050, the electrification rate of 
non-truck mileage under E3 (80%) is not far away from CARB’s projection for Advanced 
Clean Cars program (i.e., 80% population ratio for battery electric vehicles and hydrogen 
fuel cell vehicles, and 13% for plug-in hybrid electric vehicles) (16). The relative emission 
ratios of truck and non-truck emissions in 2035 and 2050 comparing with 2019 for three 
electrification scenarios are shown in Fig S7. 
We used Monte Carlo simulations to analyze the probable uncertainty due to the variability 
in predicting meteorological and traffic profiles. As there is no prior distribution of future 
meteorology and emissions, we assumed normal distributions for all parameters. Random 
sampling was repeated for 100 times according to the normal distribution in each scenario. 
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The means of repeating predictions were calculated as final results and the standard 
deviations are shown as error bars. 
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Fig. S1. A flow chart of the methodology in this study. 
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Fig. S2. Spatial distribution of factors contributing to the RF model. 
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Fig. S3. Similar as Fig. 1 but based on daily average data. 
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Fig. S4. Observed changes in LA traffic and air pollution during the COVID-19. 
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Fig. S5. Prediction of future emission ratios of truck and non-truck fleets relative to 2019 based 
on the result of EMFAC inventories. Columns in (C) are average relative emission ratios of most 
important traffic-related pollutants (i.e., NOX and TOG) and the error bars represent standard 
variations among pollutants. For future truck emissions, the estimated benefits from the low-NOx 
omnibus regulation by CARB are considered in panels (B) and (C). 
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Fig. S6. Reduction ratios of NO2, MDA8 O3 and PM2.5 concentrations in different calendar years 
relative to 2019 based on baseline traffic emissions from EMFAC. The error bars represent 
uncertainty of model predictions calculated by the Monte Carlo Method. Random sampling was 
repeated for 100 times considering uncertainty of traffic emissions in prediction of each calendar 
year. 
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Fig. S7. Future emission ratios in 2035 and 2050 relative to 2019 under different electrification 
scenarios. columns are average relative emission ratios of most important traffic-related 
pollutants (i.e., NOX and TOG) and the error bars represent standard variations among pollutants. 
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Fig. S8. Responses of pollutants to the perturbations on four key meteorological factors in the RF 
model. 
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Fig. S9. Relative changes of meteorological conditions in 2035 and 2050 compared to 2019 
based on the CMIP6 SSP585 future projection. 
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Fig. S10. The distribution of PeMS sensors located in LA Basin. 
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Fig. S11. Model performance of PM2.5 and NO2 RF models with and without O3 as an indicator. 
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Fig. S12. Relationship between afternoon NOx and O3 in a new RF model in which O3 is a 
function of NOx and all other factors are fixed constant. The RF model is trained by the same 
observational dataset in 2019. 
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Table S1. Electrification ratios of total fleet mileage for truck and non-truck fleets in different 
future scenarios 

Calendar 
Year 

Fleet 
Future traffic from 
EMFAC 

Electrification 1 Electrification 2 Electrification 3 

2035 Non-Trucks 4.41% 10% 20% 40% 

2050 Non-Trucks 5.23% 20% 40% 80% 

2035 Trucks 0.00% 5% 10% 20% 

2050 Trucks 0.00% 10% 20% 40% 
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Table S2. Summary of predictors used to train RF models 

Codes Prediction variables Units 

Meteorological indicators 

Pressure 
Atmospheric pressure from the nearest meteorological 
monitoring site 

Pa 

Wind direction 
Wind direction from the nearest meteorological 
monitoring site 

degree 

Wind Speed 
Wind speed from the nearest meteorological 
monitoring site 

m/s 

Temperature 
Air temperature at 2 m from the nearest meteorological 
monitoring site 

℃ 

Boundary layer height 
Boundary layer height from the nearest meteorological 
monitoring site 

m 

Total precipitation 
Total precipitation from the nearest meteorological 
monitoring site 

m 

Solar radiation 
Solar radiation from the nearest meteorological 
monitoring site 

 

RH Relative humidity % 
Traffic indicators 

Non-truck VMT* 
Total Vehicle Mileage Traveled (VMT) ** of the non-
truck fleet in buffers 

miles 

Truck VMT* 
Total Vehicle Mileage Traveled (VMT) of the truck fleet 
in buffers 

miles 

Demographic indicators 
pop* Population density in buffers count/m2 
Distance to importance POIs 
D_CNG_Fueling_Station
s 

Distance to the nearest Compressed Natural Gas 
(CNG) fueling station 

miles 

D_Landfills Distance to the nearest landfill miles 

D_LNG_Fueling_Stations 
Distance to the nearest Liquefied Natural Gas (LNG) 
fueling station 

miles 

D_NG_Compressor_Stati
ons 

Distance to the nearest Natural Gas (NG) compressor 
station 

miles 

D_NG_Processing_Plant
s 

Distance to the nearest Natural Gas (NG) processing 
plant 

miles 

D_NG_Storage_Fields Distance to the nearest Natural Gas (NG) storage field miles 
D_Oil_Gas_Wells Distance to the nearest oil gas well miles 
D_Petroleum_Refineries Distance to the nearest petroleum refinery miles 
D_Power_Plants Distance to the nearest power plant miles 
D_Wastewater_Treatmen
t_ Plants 

Distance to the nearest wastewater treatment plant miles 

D_airport Distance to the nearest airport miles 

Temporal indicators 

DOW Day of week (1-7) n/a 
holiday 1 for weekends and national holidays, otherwise is 0. n/a 

Note: * Buffer value variables (buffer radii 50 m, 100 m, 200 m, 300 m, 500 m, 1000 m, 2000 m, 
3000 m, 4000 m, 5000 m)  
** Vehicle Mileage Traveled (VMT) = ∑ traffic volume ×  road length 
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Table S3. Parameter setting of two prediction scenarios 

Prediction 
scenarios 

Meteorology 
indicators 

Traffic indicators 

Normal Traffic 
Observed 
meteorology 

Weekly average activity level based on Jan to Mar, 2020 
(pre-COVID 19) for both non-truck and truck fleets 

Normal Truck 
Observed 
meteorology 

Weekly average activity level based on Jan to Mar, 2020 
(pre-COVID 19) for truck fleet + real activity level for 
non-truck fleet 
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Table S4. Primary features of the physical meteorological components participating models in 
this study 

Modelling 
Group 

ESM Variable  
Model 
Variant 

Experiment 
ID 

Nominal 
Resolution  

Table 
ID  

Frequ
ent  

CSIRO  
ACCESS-
ESM1-5 

Surface 
Temperature 
(ts), 
Precipitation 
flux (pr), 
Surface Air 
Pressure 
(ps), Surface 
Downwelling 
Shortwave 
Flux in Air 
(rsds), 
Relative 
Humidity 
(hur), Wind 
Speed 
(sfcWind), 
Northward 
Wind (vas), 
Eastward 
Wind (uas)  

r1i1p1f1, 
r2i1p1f1,r3i
1p1f1,r4i1p
1f1,r5i1p1f1 

ssp585 

250 km  

Amon  Month  

MPI-M  
MPI-
ESM1-2-
LR 

r1i1p1f1, 
r2i1p1f1,r3i
1p1f1,r4i1p
1f1,r5i1p1f1 

250 km  

MOHC 
HadGEM
3-GC31-
LL 

r1i1p1f3, 
r2i1p1f3, 
r3i1p1f3, 
r4i1p1f3 

250 km  

 MOHC 
UKESM1-
0-LL 

r1i1p1f2,r2i
1p1f2,r3i1p
1f2,r4i1p1f2
,r8i1p1f2, 

250 km  

NASA-
GISS 

GISS-E2-
1-G 

r1i1p3f1, 
r2i1p3f1, 
r3i1p3f1, 
r4i1p3f1, 
r5i1p3f1 

250 km  

E3SM-
Project 

E3SM-1-1 r1i1p1f1 100 km  
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