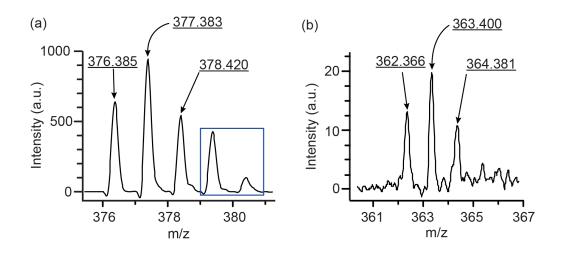
--- Supporting Information ---

¹⁷O MAS NMR Correlation Spectroscopy at High Magnetic Fields

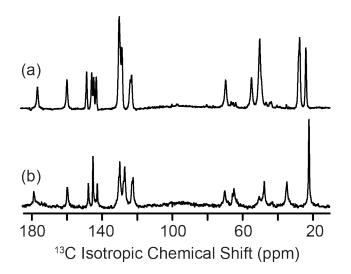
Eric G. Keeler^{1,§}, Vladimir K. Michaelis^{1,†}, Michael T. Colvin^{1,‡}, Ivan Hung², Peter L. Gor'kov², Timothy A. Cross², Zhehong Gan², and Robert G. Griffin^{1,*}

⁽¹⁾ Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

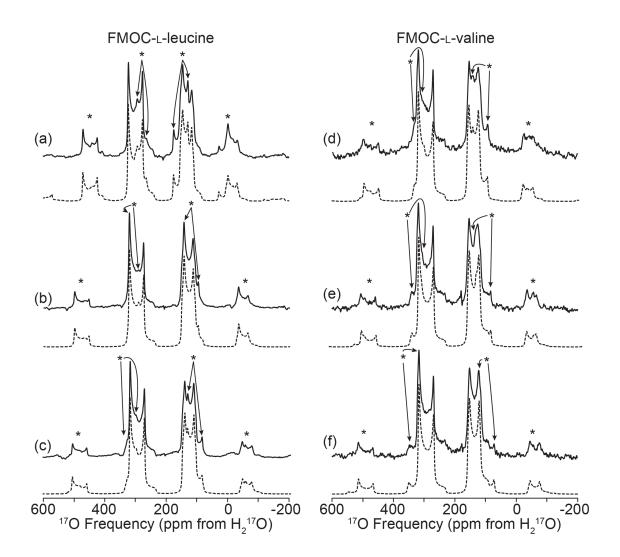
⁽²⁾ National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310

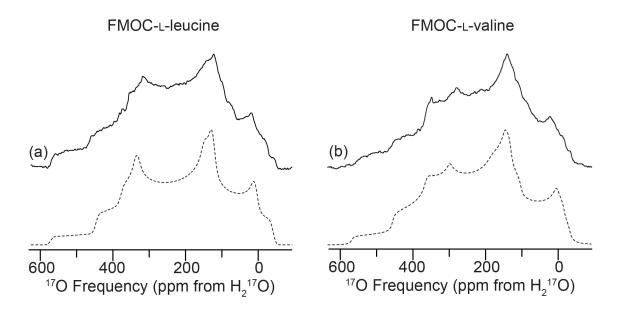

§- Current Address: Department of Chemistry, Columbia University, New York, NY, 10027 USA

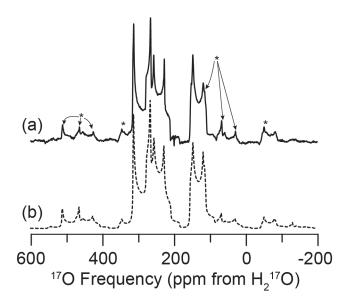
[†] - Current Address: Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2

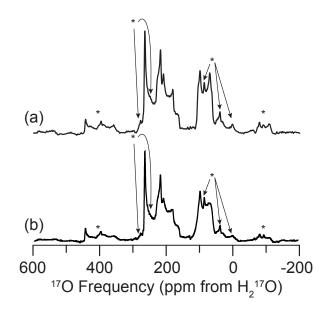

Canada

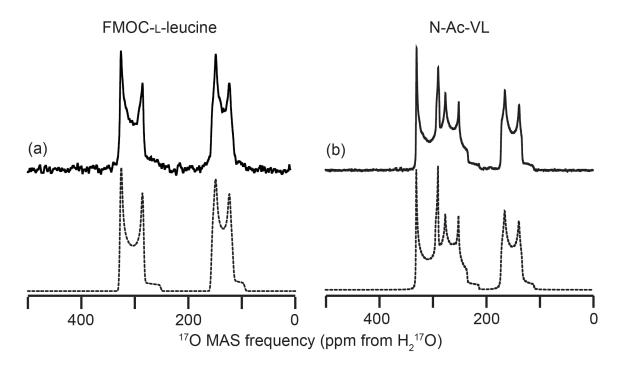
⁺ - Current Address: Ortho Clinical Diagnostics, Rochester, NY, 14626 USA

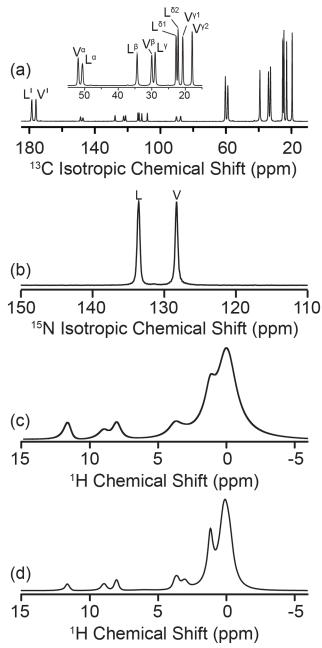

*Corresponding Author: Robert G. Griffin, rgg@mit.edu

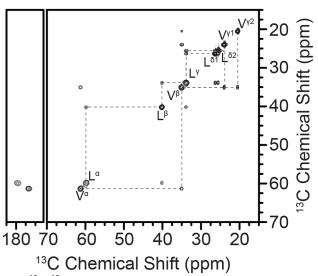

Figure S1: MALDI mass spectra of 40% - ¹⁷O labeled FMOC-L-leucine (a) and FMOC-L-valine (b). The blue box in (a) is due to the alpha-cyano background from the MALDI matrix. The isotopic enrichments were calculated by taking the integrated peak intensities of the ¹⁶O/¹⁶O species as 0%, the ¹⁶O/¹⁷O species as 50%, and the ¹⁷O/¹⁷O species as 100% enrichment.

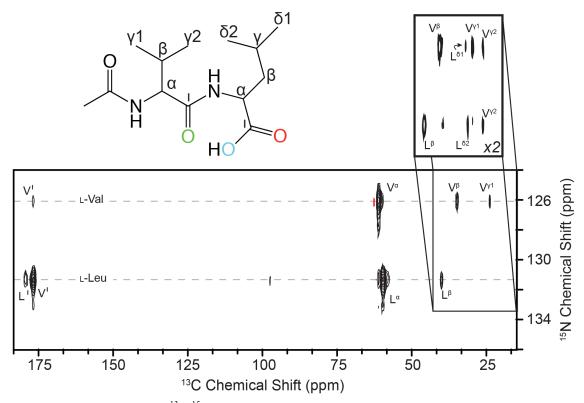

Figure S2: ¹³C{¹H} CPMAS NMR spectra of FMOC-L-leucine (a) and FMOC-L-valine (b) at 11.7 T ($\omega_{0H}/2\pi = 500$ MHz) with $\omega_R/2\pi = 10$ kHz and $\gamma B_1/2\pi = 100$ kHz ¹H TPPM decoupling.

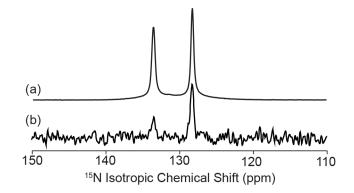

Figure S3: Oxygen-17 experimental (solid) and simulated (dashed) MAS NMR spectra of FMOC-Lleucine (right) and FMOC-L-valine (left) at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz). $\omega_R/2\pi = 15$ kHz (a), $\omega_R/2\pi = 17$ kHz (b), $\omega_R/2\pi = 18$ kHz (c) for FMOC-L-leucine and $\omega_R/2\pi = 18$ kHz (d), $\omega_R/2\pi = 19$ kHz (e), $\omega_R/2\pi = 20$ kHz (f) for FMOC-L-valine. Spinning sidebands are noted by astericks (*). NMR parameters used in spectral simulations are given in Table 4.

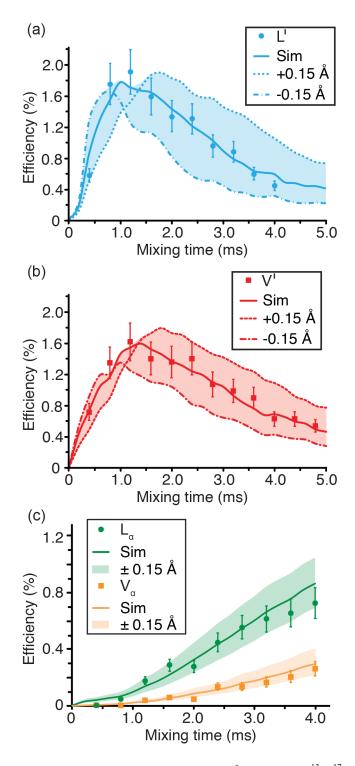

Figure S4: Oxygen-17 experimental (solid) and simulated (dashed) non-spinning NMR spectra of FMOC-L-leucine (a) and FMOC-L-valine (b) at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz) with $\gamma_{BI}/2\pi = 100$ kHz continuouswave ¹H decoupling. NMR parameters used in spectral simulations are given in Table 4.


Figure S5: Oxygen-17 MAS NMR spectrum of N-Ac-VL (a), simulation of MAS NMR spectrum (b) at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz). Spectra were acquired with $\omega_R/2\pi = 20$ kHz, spinning sidebands are noted by asterisks (*). NMR parameters used in spectral simulations are given in Table 4.


Figure S6: Oxygen-17 MAS NMR spectrum of N-Ac-VL without (a), and with (b) $\gamma B_1/2\pi = 100$ kHz continuous-wave ¹H decoupling at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz). Spectra were acquired with $\omega_R/2\pi = 18$ kHz, spinning sidebands are noted by asterisks (*).


Figure S7: Experimental (solid) and simulated (dashed) ¹⁷O MAS NMR of FMOC-L-leucine (a) and N-Ac-VL (b) at 18.8 T ($\omega_{0H}/2\pi = 800$ MHz). Spectra were acquired with $\omega_R/2\pi = 60$ kHz. NMR parameters used in spectral simulations are given in Table 4.


Figure S8: ¹³C, ¹⁵N, and ¹H MAS NMR of N-Ac-VL at 21.1 T ($\omega_{0H}/2\pi = 900$ MHz) with $\omega_R/2\pi = 20$ kHz. ¹³C{¹H} CPMAS NMR spectrum (a), ¹⁵N{¹H} CPMAS spectrum (b), and ¹H MAS NMR spectrum (c). ¹H MAS NMR spectrum at 18.8 T with $\omega_R/2\pi = 60$ kHz (d). Compared to previous NMR studies of N-Ac-VL.¹⁻³


Figure S9: Two-dimensional ¹³C-¹³C RFDR spectrum with 1.6 ms mixing at 11.7 T ($\omega_{0H}/2\pi = 500$ MHz) and $\omega_R/2\pi = 10$ kHz with $\gamma B_1/2\pi = 100$ kHz continuous wave ¹H decoupling during evolution and $\gamma B_1/2\pi = 100$ kHz TPPM ¹H decoupling during acquisition. Compared to previous study of N-Ac-VL.²

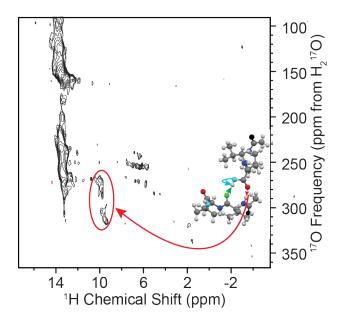
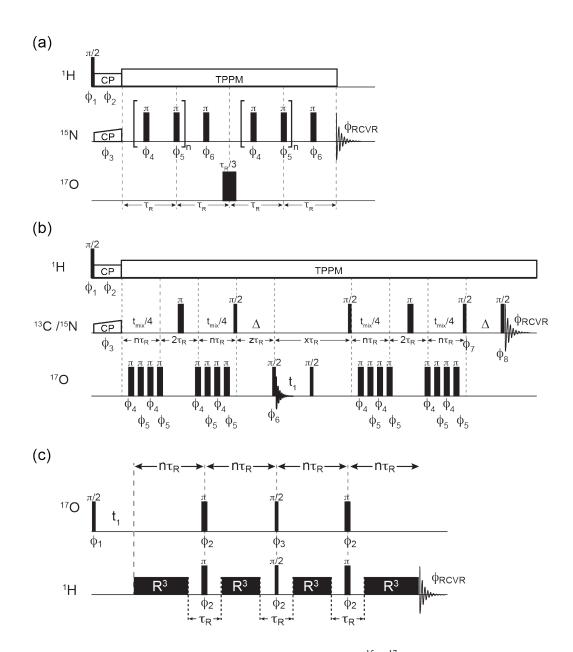

Figure S10: Two-dimensional ¹³C-¹⁵N ZF-TEDOR spectrum with 2.0 ms mixing at 11.7 T ($\omega_{0H}/2\pi = 500$ MHz) and $\omega_R/2\pi = 10$ kHz with $\gamma B_1/2\pi = 100$ kHz TPPM ¹H decoupling during acquisition. Compared to previous study of N-Ac-VL.²

Figure S11: Comparison of 1D ¹⁵N CPMAS (a) and ¹⁵N-¹⁷O ZF-TEDOR with 7.88 ms of mixing (b) at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz). Spectra acquired with $\omega_R/2\pi = 18$ kHz, ¹⁵N $\gamma B_1/2\pi = 36$ kHz, and ¹H $\gamma B_1/2\pi = 100$ kHz TPPM decoupling.


Figure S12: Experimental and simulated, including ± 0.15 Å errors, 1D $^{13}C^{-17}O$ ZF-TEDOR buildup curves as a function of mixing time for leucine C' (a), valine C' (b), and Ca (leucine, green circles and valine, yellow squares) (c), at 21.1 T ($\omega_{0H}/2\pi = 900$ MHz) with $\gamma_{B1}/2\pi$ (^{17}O) = 100 kHz, and 100 kHz TPPM ^{1}H decoupling during acquisition. Best fit simulated curves (solid lines) determined using SPINEVOLUTION.⁴ Measured $^{13}C^{-17}O$ distances given in Table 5.

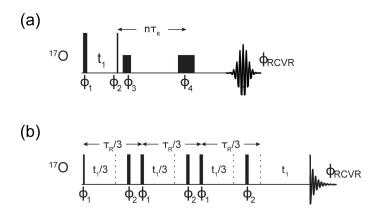

Figure S13: Two-dimensional ¹H-¹⁷O R³-R-INEPT spectrum with R³ = 100 μ s. Spectra were acquired with $\omega_R/2\pi = 20$ kHz at 17.6 T ($\omega_{0H}/2\pi = 750$ MHz). The correlation, circled in red, between the leucine amide proton to the leucine CO oxygen (red arrow) is indicated on the crystal structure of N-Ac-VL in the inset.⁵

Figure S14: Experimental ¹⁷O MAS NMR spectra of N-Ac-VL (a) at 35.2 T ($\omega_{0H}/2\pi = 1500$ MHz) with $\omega_R/2\pi = 19$ kHz. Sum projection of the ¹⁷O MAS NMR spectrum of N-Ac-VL (b) after shearing transform of the direct dimension of the MATPASS spectrum to yield an axis that is equivalent to an infinite spinning frequency MAS spectrum. Two-dimensional ¹⁷O MATPASS spectrum of N-Ac-VL (c) showing the centerband of each oxygen chemical environment for each sideband order.

Figure S15: Pulse sequences utilized for correlation experiments. ¹⁵N-¹⁷O REAPDOR pulse sequence (a), the phase cycle was: $\phi_1 = 13$, $\phi_2 = 1$, $\phi_3 = 1133\ 2244$, $\phi_4 = 1$, $\phi_5 = 2$, $\phi_6 = 1133\ 2244$, $\phi_{RCVR} = 1331\ 2442$. ¹⁵N/¹³C-¹⁷O ZF-TEDOR pulse sequence (b), the phase cycle was: $\phi_1 = 13$, $\phi_2 = 1$, $\phi_3 = 2$, $\phi_4 = 1$, $\phi_5 = 2$, $\phi_6 = 133\ 2442\ 3113\ 2442\ 3113\ 4224$. ¹H-¹⁷O R³-R-INEPT pulse sequence (c), the phase cycle was: $\phi_1 = 1234$, $\phi_2 = 1$, $\phi_3 = 2$, $\phi_{RCVR} = 3412$.

References

1. Jaroniec, C. P.; Filip, C.; Griffin, R. G., J. Am. Chem. Soc. 2002, 124, 10728-10742.

2. Jaroniec, C. P.; Tounge, B. A.; Herzfeld, J.; Griffin, R. G., J. Am. Chem. Soc. 2001, 123, 3507-3519.

3. Reif, B.; Jaroniec, C. P.; Rienstra, C. M.; Hohwy, M.; Griffin, R. G., *J. Magn. Reson.* **2001**, *151*, 320-327.

4. Veshtort, M.; Griffin, R. G., J. Magn. Reson. 2006, 178, 248-282.

5. Carroll, P. J.; Stewart, P. L.; Opella, S. J., *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1990**, *46*, 243-246.