

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Derivation of a clinical decision rule for emergency department head CT scanning in older adults who have fallen: study protocol.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044800
Article Type:	Protocol
Date Submitted by the Author:	13-Sep-2020
Complete List of Authors:	de Wit, Kerstin; McMaster University Department of Medicine, Department of Medicine; Hamilton General Hospital Mercuri, Mathew; McMaster University Clayton, Natasha; Hamilton Health Sciences Worster, Andrew; McMaster University, Division of Emergency Medicine Mercier, Eric; Centre de recherche du CHU de Québec, Axe Santé des Populations et Pratiques Optimales en Santé Emond, Marcel; Université Laval, Department of Family and Emergency Medicine Varner, Catherine McLeod, Shelley; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Department of Family and Community Medicine Eagles, Debra Stiell, Ian Barbic, David; University of British Columbia, Emergency Medicine; Morris, Judy Jeanmonod, Rebecca; St. Luke's University Health Network, Emergency Medicine Kagoma, Yoan; McMaster University Shoamanesh, Ashkan; McMaster University Sharma, Sunjay; McMaster University, Division of Neurosurgery Kearon, Clive; McMaster University Papaioannou, Alexandra; McMaster University Parpia, Sameer; McMaster University, Ontario Clinical Oncology Group
Keywords:	ACCIDENT & EMERGENCY MEDICINE, TRAUMA MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, GERIATRIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	Derivation of a clinical decision rule for emergency department head CT
	scanning in older adults who have fallen: study protocol.
5	Kerstin de Wit ^{a,b} , Mathew Mercuri ^{a,c} , Natasha Clayton ^{a,d} , Andrew Worster ^{a,b} , Éric Mercier ^{e,f} , Marcel
6	Émond ^{e,f} , Catherine Varner ^{g,h} , Shelley McLeod ^{g,h} , Debra Eagles ^{i,j} , Ian Stiell ⁱ , David Barbic ^{k,I} , Judy Morris ^m ,
7	Rebecca Jeanmonod ⁿ , Yoan Kagoma ^o , Ashkan Shoamanesh ^a , Paul Engels ^p , Sunjay Sharma ^q , Clive Kearon ^a ,
8	Alexandra Papaioannou ^{a,b} , Sameer Parpia ^{b,r} , for the Network of Canadian Emergency Researchers.
9	
10	a. Orchid https://orcid.org/0000-0003-2763-6474 . Department of Medicine, McMaster University,
11	Canada
12	b. Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
13	c. Dalla Lana School of Public Health, University of Toronto, Canada
14	d. Emergency Department, Hamilton Health Sciences
15	e. Centre de recherche du CHU de Québec – Université Laval, Québec, Canada.
16	f. Centre de recherche sur les soins et les services de première ligne de l'Université Laval, Québec,
17	Canada
18	g. Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, Ontario, Canada
19	h. Department of Family and Community Medicine, Division of Emergency Medicine, University of
20	Toronto, Toronto, Ontario, Canada
21	i. Department of Emergency Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
22	j. School of Epidemiology and Public Heath, University of Ottawa, Ottawa, Ontario
23	k. Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
24	I. Centre for Health Evaluation Outcome Sciences, St Paul's Hospital, Vancouver, Canada
25	m. Department of Family Medicine and Emergency Medicine, Université de Montréal, Canada
26	n. St. Luke's University Health Network, Bethlehem, PA, USA
27	o. Department of Radiology, McMaster University, Canada
28	p. Department of Surgery, McMaster University, Canada
29	q. Department of Oncology, McMaster University, Canada
30	
31	Corresponding author Kerstin de Wit, <u>dewitk@mcmaster.ca</u>
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

32	Word count 2055
33	Key words Older adults, intracranial bleeding, diagnosis, emergency department, clinical decision rule
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4 5 6 7 8 9 10 11	34	ABSTRACT
	35	Introduction
	36	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide.
	37	Older adults frequently present to the emergency department after falling. It can be challenging for
	38	clinicians to determine who requires brain imaging to rule out traumatic intracranial bleeding, and often
12	39	head injury decision rules do not apply to older adults who fall. The goal of our study is to derive a
13 14	40	clinical decision rule which will identify older adults who present to the emergency department after a
15	41	fall who do not have clinically important intracranial bleeding.
16 17	42	
18 19 20 21 22	43	Methods and analysis
	44	This is a prospective cohort study enrolling patients aged 65 years or older, who present to the
	45	emergency department of 11 hospitals in Canada and the United States within 48 hours of having a fall.
23 24	46	Patients are included if they fall on level ground, off a chair, toilet seat or out of bed. The primary
25	47	outcome is the diagnosis of clinically relevant intracranial bleeding within 42 days of the index
26 27	48	emergency department visit. An independent adjudication committee will determine the primary
28 29	49	outcome, blinded to all other data. We are collecting data on 17 potential predictor variables. The
30	50	treating physician completes a study data form at the time of initial assessment, prior to brain imaging.
31 32	51	Data extraction is supplemented by an independently structured electronic medical record review. We
33 34	52	will perform binary recursive partitioning using Classification and Regression Trees to derive a clinical
34 35 36 37	53	decision rule.
	54	
38 39	55	Ethics and dissemination
40	56	The study has been approved by the research ethics boards governing all participating sites. We will
41 42	57	disseminate our results by journal publication, presentation at international meetings and social media.
43 44	58	
45	59	Registration details ClinicalTrials.gov NCT03745755
46 47 48	60	
	61	
49 50	62	
51 52		
53 54		
55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 3

63	ARTICLE SUMMARY
64	Strengths and limitations of this study
55 56	• It can be challenging to determine which older adults have intracranial bleeding after a fall and
	there is little evidence to guide practice.
7	• This study will derive a clinical decision rule to determine which older emergency department
8	patients who present after a fall do not require head CT imaging.
59 	• Our clinical decision rule will be composed of routine clinical bedside and laboratory findings.
)	• The main threat to our study is that not all patients will have head CT imaging at their initial
1	emergency department visit and we will not know if a patient dies of undiagnosed intracranial
2	bleeding during 42-day follow up.
3	
74	
75	
	bleeding during 42-day follow up.
	For neer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml

76 INTRODUCTION

In contrast to the younger population, the incidence of traumatic intracranial bleeding in older adults is
rising¹ and has a worse prognosis.^{2,3} Older adults are at higher risk of traumatic intracranial bleeding
because there can be loss of the elastic integrity of the cerebral bridging veins and brain atrophy,
allowing rapid movements of the brain within the cerebral spinal fluid with trauma. Older adults may be
less able to withstand intracranial bleeding because of pre-existing comorbidity, frailty and
polypharmacy.

Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide, accounting for up to 80% of cases.⁴⁻⁸ Fall-associated intracranial bleeding in older adults is increasing in incidence.^{9,10} The mortality rate for fall-associated intracranial bleeding is 15%^{7,11} (accounting for half of all fall-associated deaths^{12,13}). Rather than seeing a decrease in these deaths, this mortality rate is rising.¹⁰ Emergency departments (EDs) are managing an increasing number of older adults who have fallen¹⁴ and ED visits for fall-related head injuries in older adults have increased year after year.^{9,13,15-17} There is a paucity of evidence to guide neuroimaging for intracranial bleeding in older adults.

The Canadian CT Head Rule can determine the need for head computed tomography (CT) in head-injured patients who experienced loss of consciousness, disorientation or amnesia after their injury.¹⁸ However, older ED patients who present after a fall cannot always give a history of what happened, falls are frequently unwitnessed and many older adults who fall do not sustain a head injury. Ordering a head CT scan on every older adult who has fallen would be an inefficient and costly way to diagnose intracranial bleeding when only approximately 5% have intracranial bleeding.¹⁹ Patients awaiting a CT scan will typically occupy an ED bed. CT overuse in this population not only causes prolonged ED visits, but it also contributes to ED overcrowding, which may result in worse outcomes for other patients.²⁰ Older adults are at greater risk of developing delirium the longer they stay in the ED.²¹ There is a need for a simple bedside tool which can rapidly stratify the risk of intracranial bleeding in older ED patients who present after falling. Our aim is to derive a clinical decision rule which will identify older adults who present to the ED after a fall who do not have clinically important intracranial bleeding and therefore do not require a head CT.

BMJ Open

1		
2 3	106	METHODS AND ANALYSIS
4 5	107	Study design
6 7	108	This is a prospective cohort study designed to develop a unique clinical decision rule for ED physicians
, 8 9	109	evaluating older adults who have fallen. Clinical decision rules are a commonly applied method of
10	110	standardized clinical diagnostic decision-making in the ED. The rules incorporate the standardized
11 12	111	collection and interpretation of multiple predictor variables from the patient's history, physical
13 14	112	examination and test results to optimize evidence-based clinical decision-making. For example, clinical
15	113	decision rules are used to determine which patients should have cervical spine imaging in trauma, ²²
16 17	114	thoracic imaging for pulmonary embolism ²³ and admission after syncope. ²⁴ Our study follows the
18 19	115	methodological standards for clinical decision rules in emergency medicine. ²⁵
20	116	
21 22	117	Patient and public involvement
23 24	118	Prior to the protocol development, we conducted a qualitative study with older adults who were waiting
25 26	119	in the ED for head CT after a fall. We found that diagnosing intracranial bleeding was important to the
27	120	participants, that they valued testing tailored to their personal risk and shorter ED visits. This protocol
28 29	121	was designed with feedback and input from our patient partners.
30 31	122	
32	123	Study population
33 34	124	This study is conducted at 11 hospitals in Canada and the United States and enrolls patients aged 65
35 36	125	years or older who present to the ED within 48 hours of having a fall. Patients are eligible if they fall on
37	126	level ground (either inside or outside), off a chair or toilet seat or out of bed. Patients are included
38 39	127	regardless of whether they hit their head. Patients are excluded if they fell down steps, fell from a
40 41	128	height, were knocked down by a car/bike/pedestrian or other mechanism of injury. Patients who live
42	129	outside of the hospital catchment area, who have previously been enrolled in this study, who are
43 44	130	transferred from another hospital and who leave the ED prior to completion of their medical assessment
45 46	131	are also excluded. Recruitment commenced on January 30, 2019. Patients are recruited 24 hours a day,
47	132	seven days a week.
48 49	133	
50 51	134	Patient assessment
52	135	Each patient is assessed at their index ED visit by an emergency physician who decides on the need for
53 54	136	head CT based on clinical history and examination. It would be impractical to perform a head CT on all
55 56 57 58	137	older adults who have fallen, for example, after a simple trip, because there is not always an indication
59 60		For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

3 4	138	for CT, hospitals have limited resources and ordering a CT delays discharge home. However, if
5	139	participants return to the ED within 42 days of enrolment with new confusion, headache, loss of
6 7	140	balance, repeat falls, change in behaviour, reduced Glasgow Coma Score (GCS) or other neurological
8 9	141	symptoms, they will undergo head CT.
9 10	142	
11 12	143	Outcome definition and measurement
13 14	144	The primary outcome is ' <i>clinically important intracranial bleeding</i> ' diagnosed within 42 days of the
15	145	index ED presentation. Our definition was derived after surveying specialists (including neurosurgeons,
16 17	146	neurologists, trauma physicians, geriatricians, thrombosis and emergency physicians) who determined
18 19	147	that symptoms from intracranial bleeding might develop as late as six weeks after a fall. 'Clinically
20	148	important intracranial bleeding' is defined as bleeding within the cranial vault (including subdural,
21 22	149	intracerebral, intraventricular, subarachnoid, epidural blood and cerebral contusion), which requires
23 24	150	medical or surgical treatment. Medical treatment is defined as any of the following: temporary or
25	151	permanent discontinuation of anticoagulant or antiplatelet medication; administration of an
26 27	152	antifibrinolytic drug; reversal of anticoagulation; or admission to hospital for neurological observation.
28 29	153	Clinically important intracranial bleeding will be determined by independent adjudication of head CT
30	154	scans by the centralized outcome adjudication committee consisting of a study neurologist,
31 32	155	neurosurgeon, trauma surgeon and radiologist. The adjudicators will be blinded to all ED baseline data.
33 34	156	Secondary outcomes relate to the 'severity' of the intracranial bleeding: 1) neurosurgical intervention; 2)
35	157	intensive care admission; 3) hospital length of stay; 4) in-hospital death as determined by medical record
36 37	158	review.
38 39	159	
40	160	We found poor sensitivity (37%, 95% confidence interval: 21 to 56%) for patient-reported diagnosis of
41 42	161	intracranial bleeding. ²⁶ Furthermore, our experience of personal follow up in this population ²⁷ is that it is
43 44	162	frequently not feasible because of residence in nursing homes or baseline cognitive impairment.
45 46	163	Therefore, the current study follow up is restricted to systematic medical record review with
47	164	independent validation and enrollment is restricted to patients who reside within the hospital
48 49	165	catchment area.
50 51	166	
52	167	Predictor variables
53 54	168	Demographic and predictor variables are collected in two ways: 1) the treating physician completes a
55 56 57 58	169	standardized data collection form at the time of initial patient assessment, and before the results of the
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

head CT are available (therefore blinded to outcome); 2) data is collected by trained on-site research
assistants using standardized medical record review protocols, following detailed data definitions and
instructions for systematic medical record review. We follow standardized validation procedures for all
medical record review data points: de-identified source documentation is uploaded for validation by the
coordinating centre. A query is sent to the site research assistant to resolve each discrepancy. The study
site investigator resolves discrepancies which persist after research assistant review. Table 1 details the
demographic and predictor variables collected.

Table 1: Description of collected demographic and predictor variables

O_		Data collected by
	Data collected by	systematic medical
	treating physician at	record review by
	initial assessment	research assistant
Predictor variables	1	
Age		x
Sex		x
Head injury (as reported by patient or carer)	x	
Loss of consciousness	×	
New amnesia about events of fall	X	
History of previous major bleed ²⁸		x
Cirrhosis	0	x
Previous diagnosis of ischemic stroke		x
Chronic renal impairment	x	x
Reduced Glasgow Comma Score from normal	x	
Bruise or laceration on the head	x	
New abnormality on neurological examination	x	
Haemoglobin		x
Platelet count		x
Anticoagulation medication	x	x
Antiplatelet medication	x	x
Clinical Frailty Score ²⁹	x	

Living circumstances		×
		^
Diabetes		х
Hypertension		x
Active cancer within past 2 years		х
Dementia		х
History of frequent falls		х
Congestive heart failure		х
Mechanism of injury		х
Weight		х
GCS at time of physician assessment	x	
Vomiting (once / more than once)	x	
Signs of basal skull fracture	x	
Suspected open or depressed skull fracture	x	
Retrograde amnesia for >30 minutes	x	
Creatinine	4.	Х
International normalized ratio (INR)		Х
		I

We initially identified potential predictor variables by a systematic review of prior evidence. We then assessed the frequency among our population and the association between predictor and intracranial bleeding in a study of 1753 older ED patients who had fallen.²⁷ We selected 17 candidate predictor variables, which are considered to be biologically plausible and related to the outcome of intracranial bleeding, and are routinely collected in the ED: age; sex; head injury; loss of consciousness; amnesia; history of previous major bleed (International Society of Thrombosis and Haemostasis criteria²⁸); cirrhosis; prior ischemic stroke; chronic renal impairment; GCS reduced from baseline; bruise or laceration on the head; abnormal neurological examination; haemoglobin, platelet count; anticoagulant therapy; antiplatelet therapy; and, Clinical Frailty Score.²⁹ We did not include potential predictors such as suspected open or depressed skull fractures or retrograde amnesia because these features were extremely rare among our prior study.²⁷

2 3	102	Aussia
4	192	<u>Analysis</u>
5 6	193 104	Variables with large amounts of missing data will be excluded from the models as they would be missing
7 8	194	in clinical practice. Likewise, continuous variables whose distributions are too narrow will also be
9	195	excluded. We will perform binary recursive partitioning using Classification and Regression Trees to
10 11	196	develop a decision rule. A clinical decision rule for a life-threatening event like intracranial bleeding
12	197	requires very high sensitivity. The model with a sensitivity of > 99% and the highest specificity will be
13 14	198	selected. We will assess the derived decision rule by comparing the classification of each patient with his
15 16	199	or her actual status for the primary outcomes. In addition, 1000 bootstrap iterations will be performed
17	200	to assess the internal classification performance and overfitting of the selected decision rule.
18 19	201	
20 21	202	We will also develop a predictive risk model using multivariable logistic regression. Continuous variables
22	203	may be transformed and will be fit using restricted cubic splines to relax the linearity assumption. First, a
23 24	204	full model with all variables will be fit. To further reduce the model, backward selection without model
25	205	re-fitting with p <0.5, which has shown to have valid inference will be performed. ^{30,31} Clinically and
26 27	206	biologically plausible interactions will be tested within the model. Internal validation to obtain unbiased
28 29	207	and optimism corrected estimation of model performance will be done using 1000 bootstrap samples.
30	208	Model discrimination will be reported using the C-statistic and a calibration plot of observed versus
31 32	209	predicted probabilities.
33	0 10	
	210	
34 35	210 211	Sample size
34 35 36 37		Sample size The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We
34 35 36 37 38	211	
34 35 36 37 38 39 40	211 212	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We
34 35 36 37 38 39 40 41 42	211 212 213	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we
34 35 36 37 38 39 40 41 42 43	211 212 213 214	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample
34 35 36 37 38 39 40 41 42 43 44 45	 211 212 213 214 215 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample
34 35 36 37 38 39 40 41 42 43 44	 211 212 213 214 215 216 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 211 212 213 214 215 216 217 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	 211 212 213 214 215 216 217 218 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	 211 212 213 214 215 216 217 218 219 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is collected before the primary outcome data is collected. However, it is possible that we do not identify
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	 211 212 213 214 215 216 217 218 219 220 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is collected before the primary outcome data is collected. However, it is possible that we do not identify every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	 211 212 213 214 215 216 217 218 219 220 221 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is collected before the primary outcome data is collected. However, it is possible that we do not identify every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of patients had a head CT during the index ED visit. ²⁷ Although patients are advised to return if they
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	 211 212 213 214 215 216 217 218 219 220 221 222 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is collected before the primary outcome data is collected. However, it is possible that we do not identify every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of patients had a head CT during the index ED visit. ²⁷ Although patients are advised to return if they develop neurological symptoms, it is possible that a patient may die of an intracranial bleed before
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	 211 212 213 214 215 216 217 218 219 220 221 222 	The current guidelines suggest that we would require at least 10 events per included variable. ^{32,33} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ¹⁹ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable). Sources of bias Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is collected before the primary outcome data is collected. However, it is possible that we do not identify every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of patients had a head CT during the index ED visit. ²⁷ Although patients are advised to return if they develop neurological symptoms, it is possible that a patient may die of an intracranial bleed before

If a patient attended an unrelated hospital during follow up and was diagnosed with an intracranial

bleed, we might miss this diagnosis. To reduce the chance of this happening, we are restricting study

enrollment to patients who reside within the hospital catchment area and most sites have access to

records from regional neurosurgical centres. In our prior study where we performed in-person follow

up, no patient was diagnosed with an intracranial bleed at another hospital.

Study oversight

The coordinating centre is McMaster University. Electronic data and de-identified source documents are uploaded to a Research Electronic Data Capture (REDCap) database^{34,35} and stored on a secure server at McMaster University. The coordinating centre validates all data and supervises the adjudication committee activities. The study steering committee consists of the site investigators.

Ethics and dissemination

Research ethics approval has been obtained from each enrolling site local research ethics board. In our previous study on the same population,²⁷ we obtained patient consent. An interim analysis showed a number of patients were confused (144/890, 16%) or died before a researcher could ask for their consent (39/890, 4%). Family were often not available in the ED. In all, we were unable to obtain consent from 204/890 (23%) patients. To address this problem, we obtained research ethics board approval to include patients who were unable to give informed consent. It is essential we include patients who cannot consent since they are often the most frail patients who are challenging to evaluate in the ED and frequently excluded from studies. Excluding these patients could limit the generalizability of our clinical decision rule. The current study has research ethics approval at all sites to include patients without obtaining informed consent.

The study results will be submitted for publication in a peer reviewed journal and presented at national and international emergency medicine meetings.

1 2		
3	251	AUTHORS' CONTRIBUTIONS
4 5	252	The study was conceived by KdW, MM, CK, SS and AW. The protocol was designed with input from
6 7	253	all authors and has been endorsed by the Network of Canadian Emergency Researchers. The study is
8 9	254	being conducted by KdW, NC, EM, CV, DE, DB, RJ and JM. YK, AS, SS and PE are the study
10	255	adjudicators. SP will oversee the analysis.
11 12	256	
13 14	257	
15	258	FUNDING STATEMENT: This work was supported by the Canadian Institute of Health Research grant
16 17	259	number PJT-159545.
18 19	260	
20	261	
21 22	262	COMPETING INTERESTS : The authors have no competing interests.
23 24	263	
25 26	264	
27	265	
28 29	266	
30 31	267	
32	268	
33 34	269	
35 36	270	
37	271	
38 39	272	
40 41	273	
42	274	
43 44	275	
45 46	276	
47 48	277	
49		
50 51		
52 53		
54		
55 56		
57 58		
50 59 60		12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		· ·· peer rener enty inteps/ sinjepensinjeens/site/ about/ guidelines/and

2 3	278	REFER	ENCES
4 5 7 8 9 10	279		
	280	1.	Van den Brand CL, Karger LB, Nijman ST, Hunink MG, Patka P, Jellema K. Traumatic brain injury
	281		in the Netherlands, trends in emergency department visits, hospitalization and mortality
	282		between 1998 and 2012. Eur J Emerg Med. 2017;06:06.
11 12	283	2.	Haring RS, Narang K, Canner JK, et al. Traumatic brain injury in the elderly: morbidity and
13 14 15 16 17 18 19 20	284		mortality trends and risk factors. <i>J Surg Res.</i> 2015;195(1):1-9.
	285	3.	McIntyre A, Mehta S, Aubut J, Dijkers M, Teasell RW. Mortality among older adults after a
	286		traumatic brain injury: A meta-analysis. <i>Brain Injury</i> . 2013;27(1):31-40.
	287	4.	Chan V, Colantonio A, Chen A, Zagorski B, Parsons D, Vander Laan R. A population based
	288		perspective of acquired brain injury in older adults: How do they happen? Brain Injury. 2012;26
21 22	289		(4-5):548-549.
23 24	290	5.	Kerr ZY, Harmon KJ, Marshall SW, Proescholdbell SK, Waller AE. The epidemiology of traumatic
25	291		brain injuries treated in emergency departments in North Carolina, 2010-2011. N C Med J.
26 27 28 29 30	292		2014;75(1):8-14.
	293	6.	Albrecht JS, Hirshon JM, McCunn M, et al. Increased rates of mild traumatic brain injury among
	294		older adults in US Emergency Departments, 2009-2010. Journal of Head Trauma Rehabilitation.
31 32	295		2016;31(5):E1-E7.
33 34 35 36 37	296	7.	Fu WW, Fu TS, Jing R, McFaull SR, Cusimano MD. Predictors of falls and mortality among elderly
	297		adults with traumatic brain injury: A nationwide, population-based study. PLoS ONE. 2017;12 (4)
	298		(no pagination)(e0175868).
38 39	299	8.	Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe.
40	300		Acta Neurochirurgica. 2015;157(10):1683-1696.
41 42	301	9.	Hastings DL, Brieding M, Lee R. Falls and traumatic brain injuries in older adults: A worsening
43 44	302		trend. Journal of the American Geriatrics Society. 2017;65:S8.
45	303	10.	Sung KC, Liang FW, Cheng TJ, Lu TH, Kawachi I. Trends in Unintentional Fall-Related Traumatic
46 47 48 49 50 51 52 53 54 55	304		Brain Injury Death Rates in Older Adults in the United States, 1980-2010: A Joinpoint Analysis. J
	305		Neurotrauma. 2015;32(14):1078-1082.
	306	11.	Fletcher AE, Khalid S, Mallonee S. The epidemiology of severe traumatic brain injury among
	307		persons 65 years of age and older in Oklahoma, 1992-2003. Brain Injury. 2007;21(7):691-699.
	308	12.	Chisholm KM, Harruff RC. Elderly deaths due to ground-level falls. The American journal of
	309		forensic medicine and pathology. 2010;31(4):350-354.
56 57			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 15 of 15

1			
2 3	310	13.	Brazinova A, Mauritz W, Majdan M, Rehorcikova V, Leitgeb J. Fatal traumatic brain injury in
4 5	311		older adults in Austria 1980-2012: an analysis of 33 years. Age Ageing. 2015;44(3):502-506.
6 7	312	14.	Shankar KN, Liu SW, Ganz DA. Trends and Characteristics of Emergency Department Visits for
8	313		Fall-Related Injuries in Older Adults, 2003–2010. Western Journal of Emergency Medicine.
9 10	314		2017;18(5):785-793.
11 12	315	15.	Hartholt KA, Van Lieshout EM, Polinder S, Panneman MJ, Van der Cammen TJ, Patka P. Rapid
13 14	316		increase in hospitalizations resulting from fall-related traumatic head injury in older adults in
15	317		The Netherlands 1986-2008. J Neurotrauma. 2011;28(5):739-744.
16 17	318	16.	Korhonen N, Niemi S, Parkkari J, Sievanen H, Kannus P. Incidence of fall-related traumatic brain
18 19	319		injuries among older Finnish adults between 1970 and 2011. Jama. 2013;309(18):1891-1892.
20	320	17.	Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-
21 22	321		related injuries among community-dwelling adults in the United States. PLoS ONE. 2016;11 (3)
23 24	322		(no pagination)(e0150939).
25 26	323	18.	Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT Head Rule for patients with minor
27	324		head injury. The Lancet. 2001;357(9266):1391-1396.
28 29	325	19.	de Wit K, Merali Z, Kagoma YK, Mercier É. Incidence of intracranial bleeding in seniors
30 31	326		presenting to the emergency department after a fall: A systematic review. Injury.
32	327		2020;51(2):157-163.
33 34	328	20.	Kelen G, Peterson S, Pronovost P. In the Name of Patient Safety, Lets Burden the Emergency
35 36	329		Department More. Annals of Emergency Medicine.67(6):737-740.
37	330	21.	Émond M, Grenier D, Morin J, et al. Emergency Department Stay Associated Delirium in Older
38 39	331		Patients. Canadian Geriatrics Journal. 2017;20(1):10-14.
40 41	332	22.	Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and
42	333		stable trauma patients. <i>Jama</i> . 2001;286(15):1841-1848.
43 44	334	23.	Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without
45 46	335		diagnostic imaging: management of patients with suspected pulmonary embolism presenting to
47 48	336		the emergency department by using a simple clinical model and d-dimer. Ann Intern Med.
49	337		2001;135(2):98-107.
50 51	338	24.	Thiruganasambandamoorthy V, Stiell IG, Sivilotti MLA, et al. Risk stratification of adult
52 53	339		emergency department syncope patients to predict short-term serious outcomes after discharge
54	340		(RiSEDS) study. BMC Emergency Medicine. 2014;14:8-8.
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 15

BMJ Open

2 3 4	341	25.	Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in	
5	342		emergency medicine. Annals of Emergency Medicine. 1999;33(4):437-447.	
6 7	343	26.	Selvanayagam N, Soomro A, Varner C, McLeod S, Clayton N, de Wit K. LO59: Reliability of patient	
8 9	344		reported exposure and outcome data in a prospective cohort study of older adults presenting to	
10	345		the emergency department. CJEM. 2020;22(S1):S29-S29.	
11 12	346	27.	de Wit K, Parpia S, Varner C, et al. Clinical Predictors of Intracranial Bleeding in Older Adults	
13 14	347		Who Have Fallen: A Cohort Study. Journal of the American Geriatrics Society. 2020;68(5):970-	
15	348		976.	
16 17	349	28.	Schulman S, Kearon C, the SOCOAOTS, Standardization Committee Of The International Society	
18 19	350		On T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic	
20	351		medicinal products in non-surgical patients. Journal of Thrombosis and Haemostasis.	
21 22	352		2005;3(4):692-694.	
23 24	353	29.	Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly	
25	354		people. Canadian Medical Association Journal. 2005;173(5):489-495.	
26 27	355	30.	Lawless JF, Singhal K. Efficient Screening of Nonnormal Regression Models. Biometrics.	
28 29	356		1978;34(2):318-327.	
30	357	31.	Harrell F. Regression Modeling Strategies With Applications to Linear Models, Logistic	
31 32	358		Regression, and Survival Analysis. Springer New York; 2001.	
33 34	359	32.	Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing	
35	360		prognostic models in cancer: a review. BMC Medicine. 2010;8:20.	
36 37	361	33.	Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model	
38 39	362		when there are few events. BMJ (Clinical research ed). 2015;351:h3868.	
40 41	363	34.	PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde, Research electronic data capture	
42	364		(REDCap). A metadata-driven methodology and workflow process for providing translational	
43 44	365		research informatics support, Journal of Biomedical Informatics. 2009;42(2):377-81.	
45 46	366	35.	PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O'Neal, L McLeod, G Delacqua, F	
47	367		Delacqua, J Kirby, SN Duda, REDCap Consortium, The REDCap consortium: Building an	
48 49	368		international community of software partners, Journal of Biomedical Informormatics. 2019,	
50 51	369		May [doi: 10.1016/j.jbi.2019.103208].	
52	370			
53 54	371			
55 56	372			
57				
58 59			15	
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Which older emergency patients are at risk of intracranial bleeding after a fall? A protocol to derive a clinical decision rule for the emergency department.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044800.R1
Article Type:	Protocol
Date Submitted by the Author:	28-Jan-2021
Complete List of Authors:	de Wit, Kerstin; McMaster University Department of Medicine, Department of Medicine; Hamilton General Hospital Mercuri, Mathew; McMaster University, Medicine; University of Toronto Dalla Lana School of Public Health Clayton, Natasha; Hamilton Health Sciences, Emergency Worster, Andrew; McMaster University, Division of Emergency Medicine Mercier, Eric; Centre de recherche du CHU de Québec, Axe Santé des Populations et Pratiques Optimales en Santé Emond, Marcel; Université Laval, Department of Family and Emergency Medicine Varner, Catherine; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Family and community medicine McLeod, Shelley; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Department of Family and Community Medicine Eagles, Debra; Ottawa Hospital Research Institute, Emergency Medicine Stiell, Ian; Ottawa Hospital Research Institute, Emergency Medicine Barbic, David; University of British Columbia, Emergency Medicine; Morris, Judy; Université de Montréal Jeanmonod, Rebecca; St. Luke's University Health Network, Emergency Medicine Kagoma, Yoan; McMaster University, Radiology Shoamanesh, Ashkan; McMaster University, Medicine Engels, Paul; McMaster University, Surgery Sharma, Sunjay; McMaster University, Division of Neurosurgery Kearon, Clive; McMaster University, Ontario Clinical Oncology Group
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Geriatric medicine, Radiology and imaging
Keywords:	ACCIDENT & EMERGENCY MEDICINE, TRAUMA MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, GERIATRIC MEDICINE

1	
2	
3	
4 5	
5 6	SCHOLARONE [™]
7	Manuscripts
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Fo

1 2		
- 3 4	1	
5	2	Which older emergency patients are at risk of intracranial bleeding after a fall?
6 7 8	3	A protocol to derive a clinical decision rule for the emergency department.
9	4	
10 11	5	Kerstin de Wit ^{a,b} , Mathew Mercuri ^{a,c} , Natasha Clayton ^{a,d} , Andrew Worster ^{a,b} , Éric Mercier ^{e,f} , Marcel
12 13	6	Émond ^{e,f} , Catherine Varner ^{g,h} , Shelley McLeod ^{g,h} , Debra Eagles ^{i,j} , Ian Stiell ⁱ , David Barbic ^{k,I} , Judy Morris ^m ,
14 15	7	Rebecca Jeanmonod ⁿ , Yoan Kagoma ^o , Ashkan Shoamanesh ^a , Paul Engels ^p , Sunjay Sharma ^q , Clive Kearon ^a ,
16	8	Alexandra Papaioannou ^{a,b} , Sameer Parpia ^{b,r} , for the Network of Canadian Emergency Researchers.
17 18	9	
19 20	10	a. Orchid https://orcid.org/0000-0003-2763-6474 . Department of Medicine, McMaster University,
21	11	Canada
22 23	12	b. Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
24 25	13	c. Dalla Lana School of Public Health, University of Toronto, Canada
26	14	d. Emergency Department, Hamilton Health Sciences
27 28	15	e. Centre de recherche du CHU de Québec – Université Laval, Québec, Canada.
29 30	16	f. Centre de recherche sur les soins et les services de première ligne de l'Université Laval, Québec,
31 32	17	Canada
33	18	g. Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, Ontario, Canada
34 35	19	h. Department of Family and Community Medicine, Division of Emergency Medicine, University of
36 37	20	Toronto, Toronto, Ontario, Canada
38	21	i. Department of Emergency Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
39 40	22	j. School of Epidemiology and Public Heath, University of Ottawa, Ottawa, Ontario
41 42	23	k. Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
43	24	I. Centre for Health Evaluation Outcome Sciences, St Paul's Hospital, Vancouver, Canada
44 45	25	m. Department of Family Medicine and Emergency Medicine, Université de Montréal, Canada
46 47	26	n. St. Luke's University Health Network, Bethlehem, PA, USA
48	27	o. Department of Radiology, McMaster University, Canada
49 50	28	p. Department of Surgery, McMaster University, Canada
51 52	29	q. Department of Oncology, McMaster University, Canada
53	30	
54 55	31	Corresponding author Kerstin de Wit, <u>dewitk@mcmaster.ca</u>
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

32 Word count 2055

33 Key words Older adults, intracranial bleeding, diagnosis, emergency department, clinical decision rules

torpeet terier only

Page 5 of 16

1						
2 3	34	ABSTRACT				
4 5	35	Introduction				
6 7	36	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide.				
8	37	Older adults frequently present to the emergency department after falling. It can be challenging for				
9 10	38	clinicians to determine who requires brain imaging to rule out traumatic intracranial bleeding, and often				
11 12	39	head injury decision rules do not apply to older adults who fall. The goal of our study is to derive a				
13	40	clinical decision rule which will identify older adults who present to the emergency department after a				
14 15	41	fall who do not have clinically important intracranial bleeding.				
16 17	42					
18	43	Methods and analysis				
19 20	44	This is a prospective cohort study enrolling patients aged 65 years or older, who present to the				
21 22	45	emergency department of 11 hospitals in Canada and the United States within 48 hours of having a fall.				
23 24	46	Patients are included if they fall on level ground, off a chair, toilet seat or out of bed. The primary				
25	47	outcome is the diagnosis of clinically relevant intracranial bleeding within 42 days of the index				
26 27	48	emergency department visit. An independent adjudication committee will determine the primary				
28 29	49	outcome, blinded to all other data. We are collecting data on 17 potential predictor variables. The				
30	50	treating physician completes a study data form at the time of initial assessment, prior to brain imaging.				
31 32	51	Data extraction is supplemented by an independent, structured electronic medical record review. We				
33 34	52	will perform binary recursive partitioning using Classification and Regression Trees to derive a clinical				
35	53	decision rule.				
36 37	54					
38 39	55	Ethics and dissemination				
40 41	56	The study was initially approved by Hamilton Integrated Research Ethics Committee and subsequently				
42	57	approved by the research ethics boards governing all participating sites. We will disseminate our results				
43 44	58	by journal publication, presentation at international meetings and social media.				
45 46	59					
47	60	Registration details ClinicalTrials.gov NCT03745755				
48 49	61					
50 51	62					
52	63					
53 54						
55 56						
57 58						
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

2	64	ARTICLE SUMMARY
4 5	65	Strengths and limitations of this study
6 7	66	• This cohort study aims to derive a clinical decision rule which identifies older adults at risk of
8 9	67	intracranial bleeding after a fall.
10	68	• This is a large study enrolling patients from 11 hospitals in two countries.
11 12	69	• Potential predictor variables are recorded by emergency physicians prior to CT scanning.
13 14	70	• The primary outcome, clinically important intracranial bleeding, is determined by an
15 16	71	independent adjudication committee.
17	72	• The main limitation is that not all patients will have head CT imaging at their initial emergency
18 19	73	department visit.
20 21	74	
22 23	75	
24	76	
25 26		
27 28		
29 30		
31		
32 33		
34 35		 The main limitation is that not all patients will have head CT imaging at their initial emergency department visit.
36 37		
38		
39 40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58 59		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 16

BMJ Open

2 3	77	INTRODUCTION
4 5	78	In contrast to the younger population, the incidence of traumatic intracranial bleeding in older adults is
6 7	79	rising ¹ and has a worse prognosis. ^{2,3} Older adults are at higher risk of traumatic intracranial bleeding
8	80	because there can be loss of the elastic integrity of the cerebral bridging veins and brain atrophy,
9 10	81	allowing rapid movements of the brain within the cerebral spinal fluid with trauma. Older adults may be
11 12	82	less able to withstand intracranial bleeding because of pre-existing comorbidity, frailty and
13	83	polypharmacy.
14 15	84	
16 17	85	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide,
18	86	accounting for up to 80% of cases. ⁴⁻⁸ Fall-associated intracranial bleeding in older adults is increasing in
19 20	87	incidence. ^{9,10} The mortality rate for fall-associated intracranial bleeding is 15% ^{7,11} (accounting for half of
21 22	88	all fall-associated deaths ^{12,13}). Rather than seeing a decrease in these deaths, this mortality rate is
23	89	rising. ¹⁰ Emergency departments (EDs) are managing an increasing number of older adults who have
24 25	90	fallen ¹⁴ and ED visits for fall-related head injuries in older adults have increased year after year. ^{9,13,15-17}
26 27	91	There is a paucity of evidence to guide neuroimaging for intracranial bleeding in older adults.
28 29	92	
30	93	The Canadian CT Head Rule can determine the need for head computed tomography (CT) in head-
31 32	94	injured patients who experienced loss of consciousness, disorientation or amnesia after their injury. ¹⁸
33 34	95	However, older ED patients who present after a fall cannot always give a history of what happened, falls
35	96	are frequently unwitnessed and many older adults who fall do not sustain a head injury. Ordering a head
36 37	97	CT scan on every older adult who has fallen would be an inefficient and costly way to diagnose
38 39	98	intracranial bleeding when only approximately 5% have intracranial bleeding. ¹⁹ Patients awaiting a CT
40	99	scan will typically occupy an ED bed. CT overuse in this population not only causes prolonged ED visits,
41 42	100	but it also contributes to ED overcrowding, which may result in worse outcomes for other patients. ²⁰
43 44	101	Older adults are at greater risk of developing delirium the longer they stay in the ED. ²¹ There is a need
45 46	102	for a simple bedside tool which can rapidly stratify the risk of intracranial bleeding in older ED patients
47	103	who present after falling. Our aim is to derive a clinical decision rule which will identify older adults who
48 49	104	present to the ED after a fall who do not have clinically important intracranial bleeding and therefore do
50 51	105	not require a head CT.
52	106	
53 54		
55 56		
50		

ating older adults who have fallen. Clinical decision rules are a commonly applied method of

1 2		
3 4	107	METHODS AN
5	108	<u>Study design</u>
6 7	109	This is a prosp
8 9	110	evaluating old
10	111	standardized
11 12	112	collection and
13 14	113	examination a
15	114	decision rules
16 17	115	thoracic imag
18 19	116	methodologic
20	117	reporting of a
21 22	118	
23 24	119	Patient and p
25	120	Prior to the p
26 27	121	in the ED for h
28 29	122	participants, t
30	123	was designed
31 32	124	
33 34	125	Study popula
35	126	This study is c
36 37	127	years or older
38 39	128	level ground (
40	129	regardless of
41 42	130	height, were l
43 44	131	outside of the
45 46	132	transferred fr
47	133	are also exclu
48 49	134	seven days a v
50 51	135	
52	136	Patient assess
53 54	137	Each patient i
55 56	138	head CT based
57		
58		

HODS AND ANALYSIS

1

is a prospective cohort study designed to develop a unique clinical decision rule for ED physicians

dardized clinical diagnostic decision-making in the ED. The rules incorporate the standardized

ction and interpretation of multiple predictor variables from the patient's history, physical

nination and test results to optimize evidence-based clinical decision-making. For example, clinical

sion rules are used to determine which patients should have cervical spine imaging in trauma,²²

acic imaging for pulmonary embolism²³ and admission after syncope.²⁴ Our study follows the

odological standards for clinical decision rules in emergency medicine²⁵ and the Transparent

rting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines.²⁶

ent and public involvement

to the protocol development, we conducted a qualitative study with older adults who were waiting e ED for head CT after a fall. We found that diagnosing intracranial bleeding was important to the cipants, that they valued testing tailored to their personal risk and shorter ED visits. This protocol designed with feedback and input from our patient partners.

y population

study is conducted at 11 hospitals in Canada and the United States and enrolls patients aged 65 or older who present to the ED within 48 hours of having a fall. Patients are eligible if they fall on ground (either inside or outside), off a chair, toilet seat or out of bed. Patients are included dless of whether they hit their head. Patients are excluded if they fell down steps, fell from a nt, were knocked down by a car/bike/pedestrian or other mechanism of injury. Patients who live de of the hospital catchment area, who have previously been enrolled in this study, who are ferred from another hospital and who leave the ED prior to completion of their medical assessment lso excluded. Recruitment commenced on January 30, 2019. Patients are recruited 24 hours a day, n days a week.

ent assessment

59

60

patient is assessed at their index ED visit by an emergency physician who decides on the need for CT based on clinical history and examination. It would be impractical to perform a head CT on all

Page 9 of 16

1 2		
3	139	older adults who have fallen, for example, after a simple trip, because there is not always an indication
4 5	140	for CT, hospitals have limited resources and ordering a CT delays discharge home. However, if
6 7	141	participants return to the ED within 42 days of enrolment with new confusion, headache, loss of
8 9	142	balance, repeat falls, change in behaviour, reduced Glasgow Coma Score (GCS) or other neurological
10	143	symptoms, they will undergo head CT.
11 12	144	
13 14	145	Outcome definition and measurement
15	146	The primary outcome is ' <i>clinically important intracranial bleeding</i> ' diagnosed within 42 days of the
16 17	147	index ED presentation. Our definition was derived after surveying specialists (including neurosurgeons,
18 19	148	neurologists, trauma physicians, geriatricians, thrombosis and emergency physicians) who determined
20	149	that symptoms from intracranial bleeding might develop as late as six weeks after a fall. 'Clinically
21 22	150	important intracranial bleeding' is defined as bleeding within the cranial vault (including subdural,
23 24	151	intracerebral, intraventricular, subarachnoid, epidural blood and cerebral contusion), which requires
25	152	medical or surgical treatment. Medical treatment is defined as any of the following: temporary or
26 27	153	permanent discontinuation of anticoagulant or antiplatelet medication; administration of an
28 29	154	antifibrinolytic drug; reversal of anticoagulation; or admission to hospital for neurological observation.
30	155	Clinically important intracranial bleeding will be determined by independent adjudication of head CT
31 32	156	scans by the centralized outcome adjudication committee consisting of a study neurologist,
33 34	157	neurosurgeon, trauma surgeon and radiologist. The adjudicators will be blinded to all ED baseline data.
35	158	Secondary outcomes relate to the 'severity' of the intracranial bleeding: 1) neurosurgical intervention; 2)
36 37	159	intensive care admission; 3) hospital length of stay; 4) in-hospital death as determined by medical record
38 39	160	review.
40	161	
41 42	162	We found poor sensitivity (37%, 95% confidence interval: 21 to 56%) for patient-reported diagnosis of
43 44	163	intracranial bleeding. ²⁷ Furthermore, our experience of personal follow up in this population ²⁸ is that it is
45	164	frequently not feasible because of residence in nursing homes or baseline cognitive impairment.
46 47	165	Therefore, the current study follow up is restricted to systematic medical record review with
48 49	166	independent validation and enrollment is restricted to patients who reside within the hospital
50	167	catchment area.
51 52	168	
53 54	169	
55	170	
56 57		
58 59		7
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Predictor variables

Demographic and predictor variables are collected in two ways: 1) the treating physician completes a standardized data collection form at the time of initial patient assessment, and before the results of the head CT are available (therefore blinded to outcome); 2) data is collected by trained on-site research assistants using standardized medical record review protocols, following detailed data definitions and instructions for systematic medical record review. We follow standardized validation procedures for all medical record review data points: de-identified source documentation is uploaded for validation by the coordinating centre. A query is sent to the site research assistant to resolve each discrepancy. The study site investigator resolves discrepancies which persist after research assistant review. Table 1 details the demographic and predictor variables collected.

Table 1: Description of collected demographic and predictor variables

	Data collected by treating physician at initial assessment	Data collected by medical record review	Comment on predictor choice for rule derivation
Predictor variables			
Age	2.	x	No association found* but will be included
Sex	C2	×	Trend towards association with male sex*
Head injury (as reported by patient or carer)	x	0	Plausible higher risk
Loss of consciousness	x	2/	Marker for head injury severity
New amnesia about events of fall	x	1	Marker for head injury severity
History of previous major bleed ²⁸		x	Trend towards association* and biologically plausible
Cirrhosis		х	Biologically plausible
Previous diagnosis of ischemic stroke		x	Biologically plausible
Chronic renal impairment	x	x	Association demonstrated*
Reduced Glasgow Coma Score from normal (as indicated by caregiver or family)	x		Association demonstrated*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Bruise or laceration on the head (any size)	x		Association demonstrated*
New abnormality on neurological	x		Association
examination	^		demonstrated *
Haemoglobin		x	Biologically
паетновновни		X	plausible
Platelet count		x	Biologically
			plausible
Anticoagulation medication	x	x	Commonly held
			dogma
Antiplatelet medication	x	x	Commonly held
			dogma
Clinical Frailty Score ³⁰	x		Biologically
			plausible
Descriptive variables	-	1	
Living circumstances		x	No association
			found*
Diabetes		x	No association
			found*
Hypertension		x	No association
			found*
Active cancer within past 2 years		x	No association
			found*
Dementia		x	No association
			found*
History of frequent falls		x	Not previously
			assessed*
Congestive heart failure		x	No association
-			found*
Mechanism of injury		x	No association
			found*
Weight		x	No association
C C C C C C C C C C C C C C C C C C C			found*
Glasgow coma score at time of physician	x		Reduced Glasgov
assessment			Coma Score fron
			normal has a
			stronger
			association*
Vomiting (once / more than once)	x		No association
			found*
Signs of basal skull fracture	x		Too rare to
.			assess*
Suspected open or depressed skull fracture	x		Too rare to
			assess*
Retrograde amnesia for >30 minutes	x		Not previously
			assessed*
			a3563560

	Creatinine	x	No associatior found*	
	International normalized ratio (INR)	X	Anticipated missing data	
2	* According to the results of our prior study, ²⁸ N=1753	·	·	
33				
34				
35	We initially identified potential predictor variables by a	a systematic review of prior	evidence. We then	
86	assessed the frequency among our population and the	association between predi	ctor and intracrania	
7	bleeding in a study of 1753 older ED patients who had fallen. ²⁸ We selected 17 candidate predictor			
88	variables, which are considered to be biologically plausible and related to the outcome of intracranial			
9	bleeding, and are routinely collected in the ED: age; sex; head injury; loss of consciousness; amnesia;			
0	history of previous major bleed (International Society	of Thrombosis and Haemos	tasis criteria ²⁹);	
91	cirrhosis; prior ischemic stroke; chronic renal impairment; GCS reduced from baseline; bruise or			
2	laceration on the head; abnormal neurological examin	ation; haemoglobin, platele	et count; anticoagul	
3	therapy; antiplatelet therapy; and, Clinical Frailty Score	e. ³⁰		
4				
95	Analysis			
6	Variables with large amounts of missing data will be ex	cluded from the models as	they would be miss	
97	in clinical practice. Likewise, continuous variables who	ose distributions are too na	rrow will also be	
8	excluded. We will perform binary recursive partitionin	g using Classification and Re	egression Trees to	
9	develop a decision rule. A clinical decision rule for a life-threatening event like intracranial bleeding			
0	requires very high sensitivity. The model with a sensitivity of > 99% and the highest specificity will be			
1	selected. We will assess the derived decision rule by co	omparing the classification	of each patient with	
2	or her actual status for the primary outcomes. In addit	ion, 1000 bootstrap iteratio	ons will be perform	
3	to assess the internal classification performance and o	verfitting of the selected de	ecision rule.	
4				
5	We will also develop a predictive risk model using mul	tivariable logistic regressior	n. Continuous varial	
6	may be transformed and will be fit using restricted cub	bic splines to relax the linea	rity assumption. Fir	
7	full model with all variables will be fit. To further reduc	ce the model, we will perfo	rm backward	
8	elimination without model re-fitting with p <0.5, which	n has shown to have valid ir	iference. ^{31,32} Clinica	
	and biologically plausible interactions will be tested wi	thin the model. Internal va	lidation to obtain	
9				

1 2			
2 3 4 5	211	samples. Model discrimination will be reported using the C-statistic and a calibration plot of observed	
	212	versus predicted probabilities.	
6 7	213		
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	214	Sample size	
	215	The current guidelines suggest that we would require at least 10 events per included variable. ^{33,34} We	
	216	expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ²⁰ and we	
	217	assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample	е
	218	size of 4000 should include 200 cases of intracranial bleeding (12 events per variable).	
	219		
	220	Sources of bias	
	221	Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is	
	222	collected before the primary outcome data is collected. However, it is possible that we do not identify	
	223	every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of	
25	224	patients had a head CT during the index ED visit. ²⁸ Although patients are advised to return if they	
26 27	225	develop neurological symptoms, it is possible that a patient may die of an intracranial bleed before	
28 29	226	being diagnosed. Furthermore, 42-day follow-up involves institutional electronic medical record review	v.
30	227	If a patient attended an unrelated hospital during follow up and was diagnosed with an intracranial	
31 32	228	bleed, we might miss this diagnosis. To reduce the chance of this happening, we are restricting study	
33 34	229	enrollment to patients who reside within the hospital catchment area and most sites have access to	
35 36	230	records from regional neurosurgical centres. In our prior study where we performed in-person follow	
30 37	231	up, no patient was diagnosed with an intracranial bleed at another hospital.	
38 39	232		
40 41 42 43 44 45 46 47 48 49 50 51 50 51 52 53 54 55 56	233	Study oversight	
	234	The coordinating centre is McMaster University. Electronic data and de-identified source documents a	re
	235	uploaded to a Research Electronic Data Capture (REDCap) database ^{35,36} and stored on a secure server a	ət
	236	McMaster University. The coordinating centre validates all data and supervises the adjudication	
	237	committee activities. The study steering committee consists of the site investigators.	
	238		
	239	Ethics and dissemination	
	240	Research ethics approval has been obtained from each enrolling site local research ethics board. In our	٢
	241	previous study on the same population, ²⁸ we obtained patient consent. An interim analysis showed a	
	242	number of patients were confused (144/890, 16%) or died before a researcher could ask for their	
57 58 59			1 -
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	11

consent (39/890, 4%). Family were often not available in the ED. In all, we were unable to obtain consent from 204/890 (23%) patients. To address this problem, we obtained research ethics board approval to include patients who were unable to give informed consent. It is essential we include patients who cannot consent since they are often the most frail patients who are challenging to evaluate in the ED and frequently excluded from studies. Excluding these patients could limit the generalizability of our clinical decision rule. The current study has research ethics approval at all sites to include patients without obtaining informed consent. The study results will be submitted for publication in a peer reviewed journal and presented at national and international emergency medicine meetings. ore terior only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	254	AUTHORS' CONTRIBUTIONS
5	255	The study was conceived by KdW, MM, CK, SP and AW. The protocol was designed with input from
6 7	256	all authors (KdW, MM, CK, SP, AW, NC, EM, ME, IS, DE, DB, RJ, JM, CV, SM, AP, YK, AS, SS and PE) has
8 9	257	been endorsed by the Network of Canadian Emergency Researchers. The study is being conducted
10	258	by KdW, NC, EM, CV, DE, DB, RJ and JM. YK, AS, SS and PE are the study adjudicators. SP will oversee
11 12	259	the analysis.
13 14	260	
15	261	FUNDING STATEMENT: This work was supported by the Canadian Institute of Health Research grant
16 17	262	number PJT-159545.
18 19	263	
20	264	
21 22	265	COMPETING INTERESTS : The authors have no competing interests.
23 24	266	
25	267	
26 27	268	COMPETING INTERESTS: The authors have no competing interests.
28 29	269	
30	270	
31 32	271	
33 34	272	
35 36	273	
37	274	
38 39	275	
40 41	276	
42	277	
43 44	278	
45 46	279	
47	280	
48 49		
50 51		
52 53		
54		
55 56		
57 58		
59		For poor review only http://brienen.http://cite/about/guidelines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	281	REFER	ENCES
4 5	282		
6 7	283	1.	Van den Brand CL, Karger LB, Nijman ST, Hunink MG, Patka P, Jellema K. Traumatic brain injury
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	284		in the Netherlands, trends in emergency department visits, hospitalization and mortality
	285		between 1998 and 2012. Eur J Emerg Med. 2017;06:06.
	286	2.	Haring RS, Narang K, Canner JK, et al. Traumatic brain injury in the elderly: morbidity and
	287		mortality trends and risk factors. J Surg Res. 2015;195(1):1-9.
	288	3.	McIntyre A, Mehta S, Aubut J, Dijkers M, Teasell RW. Mortality among older adults after a
	289		traumatic brain injury: A meta-analysis. Brain Injury. 2013;27(1):31-40.
	290	4.	Chan V, Colantonio A, Chen A, Zagorski B, Parsons D, Vander Laan R. A population based
	291		perspective of acquired brain injury in older adults: How do they happen? Brain Injury. 2012;26
	292		(4-5):548-549.
23 24	293	5.	Kerr ZY, Harmon KJ, Marshall SW, Proescholdbell SK, Waller AE. The epidemiology of traumatic
25 26 27 28 29 30 31 32 33 34 35	294		brain injuries treated in emergency departments in North Carolina, 2010-2011. N C Med J.
	295		2014;75(1):8-14.
	296	6.	Albrecht JS, Hirshon JM, McCunn M, et al. Increased rates of mild traumatic brain injury among
	297		older adults in US Emergency Departments, 2009-2010. Journal of Head Trauma Rehabilitation.
	298		2016;31(5):E1-E7.
	299	7.	Fu WW, Fu TS, Jing R, McFaull SR, Cusimano MD. Predictors of falls and mortality among elderly
	300		adults with traumatic brain injury: A nationwide, population-based study. PLoS ONE. 2017;12 (4)
36 37	301		(no pagination)(e0175868).
38 39	302	8.	Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe.
40	303		Acta Neurochirurgica. 2015;157(10):1683-1696.
41 42	304	9.	Hastings DL, Brieding M, Lee R. Falls and traumatic brain injuries in older adults: A worsening
43 44 45 46 47 48 49 50 51 52 53 54	305		trend. Journal of the American Geriatrics Society. 2017;65:S8.
	306	10.	Sung KC, Liang FW, Cheng TJ, Lu TH, Kawachi I. Trends in Unintentional Fall-Related Traumatic
	307		Brain Injury Death Rates in Older Adults in the United States, 1980-2010: A Joinpoint Analysis. J
	308		Neurotrauma. 2015;32(14):1078-1082.
	309	11.	Fletcher AE, Khalid S, Mallonee S. The epidemiology of severe traumatic brain injury among
	310		persons 65 years of age and older in Oklahoma, 1992-2003. Brain Injury. 2007;21(7):691-699.
	311	12.	Chisholm KM, Harruff RC. Elderly deaths due to ground-level falls. The American journal of
55 56	312		forensic medicine and pathology. 2010;31(4):350-354.
57 58			
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 16

1 2			
3	313	13.	Brazinova A, Mauritz W, Majdan M, Rehorcikova V, Leitgeb J. Fatal traumatic brain injury in
4 5	314		older adults in Austria 1980-2012: an analysis of 33 years. Age Ageing. 2015;44(3):502-506.
6 7	315	14.	Shankar KN, Liu SW, Ganz DA. Trends and Characteristics of Emergency Department Visits for
8	316		Fall-Related Injuries in Older Adults, 2003–2010. Western Journal of Emergency Medicine.
9 10	317		2017;18(5):785-793.
11 12	318	15.	Hartholt KA, Van Lieshout EM, Polinder S, Panneman MJ, Van der Cammen TJ, Patka P. Rapid
13	319		increase in hospitalizations resulting from fall-related traumatic head injury in older adults in
14 15	320		The Netherlands 1986-2008. J Neurotrauma. 2011;28(5):739-744.
16 17	321	16.	Korhonen N, Niemi S, Parkkari J, Sievanen H, Kannus P. Incidence of fall-related traumatic brain
18 19	322		injuries among older Finnish adults between 1970 and 2011. Jama. 2013;309(18):1891-1892.
20	323	17.	Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-
21 22	324		related injuries among community-dwelling adults in the United States. PLoS ONE. 2016;11 (3)
23 24	325		(no pagination)(e0150939).
25	326	18.	Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT Head Rule for patients with minor
26 27	327		head injury. The Lancet. 2001;357(9266):1391-1396.
28 29	328	19.	de Wit K, Merali Z, Kagoma YK, Mercier É. Incidence of intracranial bleeding in seniors
30 31	329		presenting to the emergency department after a fall: A systematic review. Injury.
32	330		2020;51(2):157-163.
33 34	331	20.	Kelen G, Peterson S, Pronovost P. In the Name of Patient Safety, Lets Burden the Emergency
35 36	332		Department More. Annals of Emergency Medicine.67(6):737-740.
37	333	21.	Émond M, Grenier D, Morin J, et al. Emergency Department Stay Associated Delirium in Older
38 39	334		Patients. Canadian Geriatrics Journal. 2017;20(1):10-14.
40 41	335	22.	Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and
42	336		stable trauma patients. <i>Jama</i> . 2001;286(15):1841-1848.
43 44	337	23.	Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without
45 46	338		diagnostic imaging: management of patients with suspected pulmonary embolism presenting to
47	339		the emergency department by using a simple clinical model and d-dimer. Ann Intern Med.
48 49	340		2001;135(2):98-107.
50 51	341	24.	Thiruganasambandamoorthy V, Stiell IG, Sivilotti MLA, et al. Risk stratification of adult
52 53	342		emergency department syncope patients to predict short-term serious outcomes after discharge
54	343		(RiSEDS) study. BMC Emergency Medicine. 2014;14:8-8.
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 16

BMJ Open

1 2

2				
3 4	344	25.	Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in	
5	345		emergency medicine. Annals of Emergency Medicine. 1999;33(4):437-447.	
6 7	346	26.	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable	
8 9	347		prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Anna	ls
10	348		of Internal Medicine 2015;162(1):55-63.	
11 12	349	27.	Selvanayagam N, Soomro A, Varner C, McLeod S, Clayton N, de Wit K. LO59: Reliability of patie	ent
13 14	350		reported exposure and outcome data in a prospective cohort study of older adults presenting	to
15	351		the emergency department. CJEM. 2020;22(S1):S29-S29.	
16 17	352	28.	de Wit K, Parpia S, Varner C, et al. Clinical Predictors of Intracranial Bleeding in Older Adults	
18 19	353		Who Have Fallen: A Cohort Study. Journal of the American Geriatrics Society. 2020;68(5):970-	
20	354		976.	
21 22	355	29.	Schulman S, Kearon C, the SOCOAOTS, Standardization Committee Of The International Societ	ty
23 24	356		On T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic	
25	357		medicinal products in non-surgical patients. Journal of Thrombosis and Haemostasis.	
26 27	358		2005;3(4):692-694.	
28 29	359	30.	Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elder	rly
30 31	360		people. Canadian Medical Association Journal. 2005;173(5):489-495.	
32	361	31.	Lawless JF, Singhal K. Efficient Screening of Nonnormal Regression Models. Biometrics.	
33 34	362		1978;34(2):318-327.	
35 36	363	32.	Harrell F. Regression Modeling Strategies With Applications to Linear Models, Logistic	
37	364		Regression, and Survival Analysis. Springer New York; 2001.	
38 39	365	33.	Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing	g
40 41	366		prognostic models in cancer: a review. BMC Medicine. 2010;8:20.	
42	367	34.	Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model	
43 44	368		when there are few events. BMJ (Clinical research ed). 2015;351:h3868.	
45 46	369	35.	PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde, Research electronic data captur	re
47	370		(REDCap). A metadata-driven methodology and workflow process for providing translational	
48 49	371		research informatics support, Journal of Biomedical Informatics. 2009;42(2):377-81.	
50 51	372	36.	PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O'Neal, L McLeod, G Delacqua, F	
52	373		Delacqua, J Kirby, SN Duda, REDCap Consortium, The REDCap consortium: Building an	
53 54	374		international community of software partners, Journal of Biomedical Informormatics. 2019,	
55 56	375		May [doi: 10.1016/j.jbi.2019.103208].	
57				
58 59				16
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Which older emergency patients are at risk of intracranial bleeding after a fall? A protocol to derive a clinical decision rule for the emergency department.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044800.R2
Article Type:	Protocol
Date Submitted by the Author:	17-Apr-2021
Complete List of Authors:	de Wit, Kerstin; Queen's University, Department of Emergency Medicine; McMaster University, Department of Medicine Mercuri, Mathew; McMaster University, Medicine; University of Toronto Dalla Lana School of Public Health Clayton, Natasha; Hamilton Health Sciences, Emergency Worster, Andrew; McMaster University, Division of Emergency Medicine Mercier, Eric; Centre de recherche du CHU de Québec, Axe Santé des Populations et Pratiques Optimales en Santé Emond, Marcel; Université Laval, Department of Family and Emergency Medicine Varner, Catherine; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Family and community medicine McLeod, Shelley; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Department of Family and Community Medicine Eagles, Debra; Ottawa Hospital Research Institute, Emergency Medicine Stiell, Ian; Ottawa Hospital Research Institute, Emergency Medicine Stiell, Ian; Ottawa Hospital Research Institute, Emergency Medicine Barbic, David; University of British Columbia, Emergency Medicine Kagoma, Yoan; McMaster University, Radiology Shoamanesh, Ashkan; McMaster University, Medicine Engels, Paul; McMaster University, Surgery Sharma, Sunjay; McMaster University, Division of Neurosurgery Kearon, Clive; McMaster University, Ontario Clinical Oncology Group
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Geriatric medicine, Radiology and imaging
Keywords:	ACCIDENT & EMERGENCY MEDICINE, TRAUMA MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, GERIATRIC MEDICINE

1	
2	
3	
4 5	
5 6	SCHOLARONE [™]
7	Manuscripts
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Fo

1 2		
- 3 4	1	
5	2	Which older emergency patients are at risk of intracranial bleeding after a fall?
6 7 8	3	A protocol to derive a clinical decision rule for the emergency department.
9	4	
10 11	5	Kerstin de Wit ^{a,b} , Mathew Mercuri ^{a,c} , Natasha Clayton ^{a,d} , Andrew Worster ^{a,b} , Éric Mercier ^{e,f} , Marcel
12 13	6	Émond ^{e,f} , Catherine Varner ^{g,h} , Shelley McLeod ^{g,h} , Debra Eagles ^{i,j} , Ian Stiell ⁱ , David Barbic ^{k,I} , Judy Morris ^m ,
14 15	7	Rebecca Jeanmonod ⁿ , Yoan Kagoma ^o , Ashkan Shoamanesh ^a , Paul Engels ^p , Sunjay Sharma ^q , Clive Kearon ^a ,
16	8	Alexandra Papaioannou ^{a,b} , Sameer Parpia ^{b,r} , for the Network of Canadian Emergency Researchers.
17 18	9	
19 20	10	a. Orchid https://orcid.org/0000-0003-2763-6474 . Department of Medicine, McMaster University,
21	11	Canada
22 23	12	b. Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
24 25	13	c. Dalla Lana School of Public Health, University of Toronto, Canada
26	14	d. Emergency Department, Hamilton Health Sciences
27 28	15	e. Centre de recherche du CHU de Québec – Université Laval, Québec, Canada.
29 30	16	f. Centre de recherche sur les soins et les services de première ligne de l'Université Laval, Québec,
31 32	17	Canada
33	18	g. Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, Ontario, Canada
34 35	19	h. Department of Family and Community Medicine, Division of Emergency Medicine, University of
36 37	20	Toronto, Toronto, Ontario, Canada
38	21	i. Department of Emergency Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
39 40	22	j. School of Epidemiology and Public Heath, University of Ottawa, Ottawa, Ontario
41 42	23	k. Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
43	24	I. Centre for Health Evaluation Outcome Sciences, St Paul's Hospital, Vancouver, Canada
44 45	25	m. Department of Family Medicine and Emergency Medicine, Université de Montréal, Canada
46 47	26	n. St. Luke's University Health Network, Bethlehem, PA, USA
48	27	o. Department of Radiology, McMaster University, Canada
49 50	28	p. Department of Surgery, McMaster University, Canada
51 52	29	q. Department of Oncology, McMaster University, Canada
53	30	
54 55	31	Corresponding author Kerstin de Wit, <u>dewitk@mcmaster.ca</u>
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

32 Word count 2055

33 Key words Older adults, intracranial bleeding, diagnosis, emergency department, clinical decision rules

torpeet terier only

Page 5 of 16

1		
2 3	34	ABSTRACT
4 5	35	Introduction
6 7	36	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide.
8	37	Older adults frequently present to the emergency department after falling. It can be challenging for
9 10	38	clinicians to determine who requires brain imaging to rule out traumatic intracranial bleeding, and often
11 12	39	head injury decision rules do not apply to older adults who fall. The goal of our study is to derive a
13	40	clinical decision rule which will identify older adults who present to the emergency department after a
14 15	41	fall who do not have clinically important intracranial bleeding.
16 17	42	
18	43	Methods and analysis
19 20	44	This is a prospective cohort study enrolling patients aged 65 years or older, who present to the
21 22	45	emergency department of 11 hospitals in Canada and the United States within 48 hours of having a fall.
23 24	46	Patients are included if they fall on level ground, off a chair, toilet seat or out of bed. The primary
25	47	outcome is the diagnosis of clinically relevant intracranial bleeding within 42 days of the index
26 27	48	emergency department visit. An independent adjudication committee will determine the primary
28 29	49	outcome, blinded to all other data. We are collecting data on 17 potential predictor variables. The
30	50	treating physician completes a study data form at the time of initial assessment, prior to brain imaging.
31 32	51	Data extraction is supplemented by an independent, structured electronic medical record review. We
33 34	52	will perform binary recursive partitioning using Classification and Regression Trees to derive a clinical
35	53	decision rule.
36 37	54	
38 39	55	Ethics and dissemination
40 41	56	The study was initially approved by Hamilton Integrated Research Ethics Committee and subsequently
42	57	approved by the research ethics boards governing all participating sites. We will disseminate our results
43 44	58	by journal publication, presentation at international meetings and social media.
45 46	59	
47	60	Registration details ClinicalTrials.gov NCT03745755
48 49	61	
50 51	62	
52	63	
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	64	ARTICLE SUMMARY
4 5	65	Strengths and limitations of this study
6 7	66	• This cohort study aims to derive a clinical decision rule which identifies older adults at risk of
8 9	67	intracranial bleeding after a fall.
10	68	• This is a large study enrolling patients from 11 hospitals in two countries.
11 12	69	• Potential predictor variables are recorded by emergency physicians prior to CT scanning.
13 14	70	• The primary outcome, clinically important intracranial bleeding, is determined by an
15 16	71	independent adjudication committee.
17	72	• The main limitation is that not all patients will have head CT imaging at their initial emergency
18 19	73	department visit.
20 21	74	
22 23	75	
24	76	
25 26		
27 28		
29 30		
31		
32 33		
34 35		 The main limitation is that not all patients will have head CT imaging at their initial emergency department visit.
36 37		
38		
39 40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58 59		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 16

BMJ Open

2 3	77	INTRODUCTION
4 5	78	In contrast to the younger population, the incidence of traumatic intracranial bleeding in older adults is
6 7	79	rising ¹ and has a worse prognosis. ^{2,3} Older adults are at higher risk of traumatic intracranial bleeding
8	80	because there can be loss of the elastic integrity of the cerebral bridging veins and brain atrophy,
9 10	81	allowing rapid movements of the brain within the cerebral spinal fluid with trauma. Older adults may be
11 12	82	less able to withstand intracranial bleeding because of pre-existing comorbidity, frailty and
13	83	polypharmacy.
14 15	84	
16 17	85	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide,
18	86	accounting for up to 80% of cases. ⁴⁻⁸ Fall-associated intracranial bleeding in older adults is increasing in
19 20	87	incidence. ^{9,10} The mortality rate for fall-associated intracranial bleeding is 15% ^{7,11} (accounting for half of
21 22	88	all fall-associated deaths ^{12,13}). Rather than seeing a decrease in these deaths, this mortality rate is
23	89	rising. ¹⁰ Emergency departments (EDs) are managing an increasing number of older adults who have
24 25	90	fallen ¹⁴ and ED visits for fall-related head injuries in older adults have increased year after year. ^{9,13,15-17}
26 27	91	There is a paucity of evidence to guide neuroimaging for intracranial bleeding in older adults.
28 29	92	
30	93	The Canadian CT Head Rule can determine the need for head computed tomography (CT) in head-
31 32	94	injured patients who experienced loss of consciousness, disorientation or amnesia after their injury. ¹⁸
33 34	95	However, older ED patients who present after a fall cannot always give a history of what happened, falls
35	96	are frequently unwitnessed and many older adults who fall do not sustain a head injury. Ordering a head
36 37	97	CT scan on every older adult who has fallen would be an inefficient and costly way to diagnose
38 39	98	intracranial bleeding when only approximately 5% have intracranial bleeding. ¹⁹ Patients awaiting a CT
40	99	scan will typically occupy an ED bed. CT overuse in this population not only causes prolonged ED visits,
41 42	100	but it also contributes to ED overcrowding, which may result in worse outcomes for other patients. ²⁰
43 44	101	Older adults are at greater risk of developing delirium the longer they stay in the ED. ²¹ There is a need
45 46	102	for a simple bedside tool which can rapidly stratify the risk of intracranial bleeding in older ED patients
47	103	who present after falling. Our aim is to derive a clinical decision rule which will identify older adults who
48 49	104	present to the ED after a fall who do not have clinically important intracranial bleeding and therefore do
50 51	105	not require a head CT.
52	106	
53 54		
55 56		
50		

ating older adults who have fallen. Clinical decision rules are a commonly applied method of

1 2		
3 4	107	METHODS AN
5	108	<u>Study design</u>
6 7	109	This is a prosp
8 9	110	evaluating old
10	111	standardized
11 12	112	collection and
13 14	113	examination a
15	114	decision rules
16 17	115	thoracic imag
18 19	116	methodologic
20	117	reporting of a
21 22	118	
23 24	119	Patient and p
25	120	Prior to the p
26 27	121	in the ED for h
28 29	122	participants, t
30	123	was designed
31 32	124	
33 34	125	Study popula
35	126	This study is c
36 37	127	years or older
38 39	128	level ground (
40	129	regardless of
41 42	130	height, were l
43 44	131	outside of the
45 46	132	transferred fr
47	133	are also exclu
48 49	134	seven days a v
50 51	135	
52	136	Patient assess
53 54	137	Each patient i
55 56	138	head CT based
57		
58		

HODS AND ANALYSIS

1

is a prospective cohort study designed to develop a unique clinical decision rule for ED physicians

dardized clinical diagnostic decision-making in the ED. The rules incorporate the standardized

ction and interpretation of multiple predictor variables from the patient's history, physical

nination and test results to optimize evidence-based clinical decision-making. For example, clinical

sion rules are used to determine which patients should have cervical spine imaging in trauma,²²

acic imaging for pulmonary embolism²³ and admission after syncope.²⁴ Our study follows the

odological standards for clinical decision rules in emergency medicine²⁵ and the Transparent

rting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines.²⁶

ent and public involvement

to the protocol development, we conducted a qualitative study with older adults who were waiting e ED for head CT after a fall. We found that diagnosing intracranial bleeding was important to the cipants, that they valued testing tailored to their personal risk and shorter ED visits. This protocol designed with feedback and input from our patient partners.

y population

study is conducted at 11 hospitals in Canada and the United States and enrolls patients aged 65 or older who present to the ED within 48 hours of having a fall. Patients are eligible if they fall on ground (either inside or outside), off a chair, toilet seat or out of bed. Patients are included dless of whether they hit their head. Patients are excluded if they fell down steps, fell from a nt, were knocked down by a car/bike/pedestrian or other mechanism of injury. Patients who live de of the hospital catchment area, who have previously been enrolled in this study, who are ferred from another hospital and who leave the ED prior to completion of their medical assessment lso excluded. Recruitment commenced on January 30, 2019. Patients are recruited 24 hours a day, n days a week.

ent assessment

59

60

patient is assessed at their index ED visit by an emergency physician who decides on the need for CT based on clinical history and examination. It would be impractical to perform a head CT on all

Page 9 of 16

1 2		
3	139	older adults who have fallen, for example, after a simple trip, because there is not always an indication
4 5	140	for CT, hospitals have limited resources and ordering a CT delays discharge home. However, if
6 7	141	participants return to the ED within 42 days of enrolment with new confusion, headache, loss of
8 9	142	balance, repeat falls, change in behaviour, reduced Glasgow Coma Score (GCS) or other neurological
10	143	symptoms, they will undergo head CT.
11 12	144	
13 14	145	Outcome definition and measurement
15	146	The primary outcome is ' <i>clinically important intracranial bleeding</i> ' diagnosed within 42 days of the
16 17	147	index ED presentation. Our definition was derived after surveying specialists (including neurosurgeons,
18 19	148	neurologists, trauma physicians, geriatricians, thrombosis and emergency physicians) who determined
20	149	that symptoms from intracranial bleeding might develop as late as six weeks after a fall. 'Clinically
21 22	150	important intracranial bleeding' is defined as bleeding within the cranial vault (including subdural,
23 24	151	intracerebral, intraventricular, subarachnoid, epidural blood and cerebral contusion), which requires
25	152	medical or surgical treatment. Medical treatment is defined as any of the following: temporary or
26 27	153	permanent discontinuation of anticoagulant or antiplatelet medication; administration of an
28 29	154	antifibrinolytic drug; reversal of anticoagulation; or admission to hospital for neurological observation.
30	155	Clinically important intracranial bleeding will be determined by independent adjudication of head CT
31 32	156	scans by the centralized outcome adjudication committee consisting of a study neurologist,
33 34	157	neurosurgeon, trauma surgeon and radiologist. The adjudicators will be blinded to all ED baseline data.
35	158	Secondary outcomes relate to the 'severity' of the intracranial bleeding: 1) neurosurgical intervention; 2)
36 37	159	intensive care admission; 3) hospital length of stay; 4) in-hospital death as determined by medical record
38 39	160	review.
40	161	
41 42	162	We found poor sensitivity (37%, 95% confidence interval: 21 to 56%) for patient-reported diagnosis of
43 44	163	intracranial bleeding. ²⁷ Furthermore, our experience of personal follow up in this population ²⁸ is that it is
45	164	frequently not feasible because of residence in nursing homes or baseline cognitive impairment.
46 47	165	Therefore, the current study follow up is restricted to systematic medical record review with
48 49	166	independent validation and enrollment is restricted to patients who reside within the hospital
50	167	catchment area.
51 52	168	
53 54	169	
55	170	
56 57		
58 59		7
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Predictor variables

Demographic and predictor variables are collected in two ways: 1) the treating physician completes a standardized data collection form at the time of initial patient assessment, and before the results of the head CT are available (therefore blinded to outcome); 2) data is collected by trained on-site research assistants using standardized medical record review protocols, following detailed data definitions and instructions for systematic medical record review. We follow standardized validation procedures for all medical record review data points: de-identified source documentation is uploaded for validation by the coordinating centre. A query is sent to the site research assistant to resolve each discrepancy. The study site investigator resolves discrepancies which persist after research assistant review. Table 1 details the demographic and predictor variables collected.

Table 1: Description of collected demographic and predictor variables

	Data collected by treating physician at initial assessment	Data collected by medical record review	Comment on predictor choice for rule derivation
Predictor variables			
Age	2.	x	No association found* but will be included
Sex	C2	×	Trend towards association with male sex*
Head injury (as reported by patient or carer)	x	0	Plausible higher risk
Loss of consciousness	x	2/	Marker for head injury severity
New amnesia about events of fall	x	1	Marker for head injury severity
History of previous major bleed ²⁸		x	Trend towards association* and biologically plausible
Cirrhosis		х	Biologically plausible
Previous diagnosis of ischemic stroke		x	Biologically plausible
Chronic renal impairment	x	x	Association demonstrated*
Reduced Glasgow Coma Score from normal (as indicated by caregiver or family)	x		Association demonstrated*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Bruise or laceration on the head (any size)	x		Association demonstrated*
New abnormality on neurological	x		Association
examination	^		demonstrated *
Haemoglobin		x	Biologically
паетновновни		X	plausible
Platelet count		x	Biologically
			plausible
Anticoagulation medication	x	x	Commonly held
			dogma
Antiplatelet medication	x	x	Commonly held
			dogma
Clinical Frailty Score ³⁰	x		Biologically
			plausible
Descriptive variables	-	1	
Living circumstances		x	No association
			found*
Diabetes		x	No association
			found*
Hypertension		x	No association
			found*
Active cancer within past 2 years		x	No association
			found*
Dementia		x	No association
			found*
History of frequent falls		x	Not previously
			assessed*
Congestive heart failure		x	No association
-			found*
Mechanism of injury		x	No association
			found*
Weight		x	No association
C C C C C C C C C C C C C C C C C C C			found*
Glasgow coma score at time of physician	x		Reduced Glasgov
assessment			Coma Score fron
			normal has a
			stronger
			association*
Vomiting (once / more than once)	x		No association
			found*
Signs of basal skull fracture	x		Too rare to
-			assess*
Suspected open or depressed skull fracture	x		Too rare to
			assess*
Retrograde amnesia for >30 minutes	x		Not previously
			assessed*
			a3563560

	Creatinine	x	No associatior found*	
	International normalized ratio (INR)	X	Anticipated missing data	
32	* According to the results of our prior study, ²⁸ N=1753		·	
33				
34				
35	We initially identified potential predictor variables by a	a systematic review of prior	evidence. We then	
86	assessed the frequency among our population and the	association between predi	ctor and intracrania	
7	bleeding in a study of 1753 older ED patients who had	fallen. ²⁸ We selected 17 ca	ndidate predictor	
88	variables, which are considered to be biologically plaus	sible and related to the out	come of intracrania	
9	bleeding, and are routinely collected in the ED: age; se	x; head injury; loss of conso	ciousness; amnesia;	
0	history of previous major bleed (International Society of	of Thrombosis and Haemos	tasis criteria ²⁹);	
)1	cirrhosis; prior ischemic stroke; chronic renal impairme	ent; GCS reduced from base	eline; bruise or	
2	laceration on the head; abnormal neurological examin	ation; haemoglobin, platele	et count; anticoagul	
3	therapy; antiplatelet therapy; and, Clinical Frailty Score	e. ³⁰		
4				
5	Analysis			
6	Variables with large amounts of missing data will be ex	cluded from the models as	they would be mis	
7	in clinical practice. Likewise, continuous variables who	ose distributions are too na	rrow will also be	
8	excluded. We will perform binary recursive partitioning	g using Classification and Re	egression Trees to	
9	develop a decision rule. A clinical decision rule for a life-threatening event like intracranial bleeding			
0	requires very high sensitivity. The model with a sensitivity of > 99% and the highest specificity will be			
1	selected. We will assess the derived decision rule by comparing the classification of each patient with hi			
2	or her actual status for the primary outcomes. In addition, 1000 bootstrap iterations will be performed			
3	to assess the internal classification performance and o	verfitting of the selected de	ecision rule.	
4				
5	We will also develop a predictive risk model using mult	tivariable logistic regressior	n. Continuous varial	
6	may be transformed and will be fit using restricted cubic splines to relax the linearity assumption. First			
7	full model with all variables will be fit. To further reduce the model, we will perform backward			
8	elimination without model re-fitting with p <0.5, which	n has shown to have valid ir	nference. ^{31,32} Clinica	
	and biologically plausible interactions will be tested wi	thin the model. Internal va	lidation to obtain	
9				

1 2			
- 3 4 5	211	samples. Model discrimination will be reported using the C-statistic and a calibration plot of observed	
	212	versus predicted probabilities.	
6 7	213		
8 9	214	Sample size	
10	215	The current guidelines suggest that we would require at least 10 events per included variable. ^{33,34} We	
11 12	216	expect that 5% of patients will be diagnosed with clinically important intracranial bleeding, ²⁰ and we	
13 14	217	assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample	е
15 16 17 18 19 20	218	size of 4000 should include 200 cases of intracranial bleeding (12 events per variable).	
	219		
	220	Sources of bias	
	221	Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is	
21 22	222	collected before the primary outcome data is collected. However, it is possible that we do not identify	
23 24	223	every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of	
25	224	patients had a head CT during the index ED visit. ²⁸ Although patients are advised to return if they	
26 27	225	develop neurological symptoms, it is possible that a patient may die of an intracranial bleed before	
28 29 30 31 32	226	being diagnosed. Furthermore, 42-day follow-up involves institutional electronic medical record review	v.
	227	If a patient attended an unrelated hospital during follow up and was diagnosed with an intracranial	
	228	bleed, we might miss this diagnosis. To reduce the chance of this happening, we are restricting study	
33 34	229	enrollment to patients who reside within the hospital catchment area and most sites have access to	
35 36	230	records from regional neurosurgical centres. In our prior study where we performed in-person follow	
30 37	231	up, no patient was diagnosed with an intracranial bleed at another hospital.	
38 39	232		
40 41	233	Study oversight	
42	234	The coordinating centre is McMaster University. Electronic data and de-identified source documents a	re
43 44	235	uploaded to a Research Electronic Data Capture (REDCap) database ^{35,36} and stored on a secure server a	ət
45 46	236	McMaster University. The coordinating centre validates all data and supervises the adjudication	
47	237	committee activities. The study steering committee consists of the site investigators.	
48 49	238		
50 51	239	Ethics and dissemination	
52	240	Research ethics approval has been obtained from each enrolling site local research ethics board. In our	٢
53 54 55 56	241	previous study on the same population, ²⁸ we obtained patient consent. An interim analysis showed a	
	242	number of patients were confused (144/890, 16%) or died before a researcher could ask for their	
57 58 59			1 -
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	11

consent (39/890, 4%). Family were often not available in the ED. In all, we were unable to obtain consent from 204/890 (23%) patients. To address this problem, we obtained research ethics board approval to include patients who were unable to give informed consent. It is essential we include patients who cannot consent since they are often the most frail patients who are challenging to evaluate in the ED and frequently excluded from studies. Excluding these patients could limit the generalizability of our clinical decision rule. The current study has research ethics approval at all sites to include patients without obtaining informed consent. The study results will be submitted for publication in a peer reviewed journal and presented at national and international emergency medicine meetings. ore terior only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	254	AUTHORS' CONTRIBUTIONS
5	255	The study was conceived by KdW, MM, CK, SP and AW. The protocol was designed with input from
6 7	256	all authors (KdW, MM, CK, SP, AW, NC, EM, ME, IS, DE, DB, RJ, JM, CV, SM, AP, YK, AS, SS and PE) has
8 9	257	been endorsed by the Network of Canadian Emergency Researchers. The study is being conducted
10	258	by KdW, NC, EM, CV, DE, DB, RJ and JM. YK, AS, SS and PE are the study adjudicators. SP will oversee
11 12	259	the analysis.
13 14	260	
15	261	FUNDING STATEMENT: This work was supported by the Canadian Institute of Health Research grant
16 17	262	number PJT-159545.
18 19	263	
20	264	
21 22	265	COMPETING INTERESTS : The authors have no competing interests.
23 24	266	COMPETING INTERESTS: The authors have no competing interests.
25	267	
26 27	268	
28 29	269	
30	270	
31 32	271	
33 34	272	
35	273	
36 37	274	
38 39	275	
40	276	
41 42	277	
43 44	278	
45 46	279	
47	280	
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	281	REFERENCES		
4 5	282			
6 7 8 9 10	283	1.	Van den Brand CL, Karger LB, Nijman ST, Hunink MG, Patka P, Jellema K. Traumatic brain injury	
	284		in the Netherlands, trends in emergency department visits, hospitalization and mortality	
	285		between 1998 and 2012. Eur J Emerg Med. 2017;06:06.	
11 12	286	2.	Haring RS, Narang K, Canner JK, et al. Traumatic brain injury in the elderly: morbidity and	
13 14	287		mortality trends and risk factors. J Surg Res. 2015;195(1):1-9.	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	288	3.	McIntyre A, Mehta S, Aubut J, Dijkers M, Teasell RW. Mortality among older adults after a	
	289		traumatic brain injury: A meta-analysis. Brain Injury. 2013;27(1):31-40.	
	290	4.	Chan V, Colantonio A, Chen A, Zagorski B, Parsons D, Vander Laan R. A population based	
	291		perspective of acquired brain injury in older adults: How do they happen? Brain Injury. 2012;26	
	292		(4-5):548-549.	
	293	5.	Kerr ZY, Harmon KJ, Marshall SW, Proescholdbell SK, Waller AE. The epidemiology of traumatic	
	294		brain injuries treated in emergency departments in North Carolina, 2010-2011. N C Med J.	
	295		2014;75(1):8-14.	
	296	6.	Albrecht JS, Hirshon JM, McCunn M, et al. Increased rates of mild traumatic brain injury among	
	297		older adults in US Emergency Departments, 2009-2010. Journal of Head Trauma Rehabilitation.	
	298		2016;31(5):E1-E7.	
	299	7.	Fu WW, Fu TS, Jing R, McFaull SR, Cusimano MD. Predictors of falls and mortality among elderly	
	300		adults with traumatic brain injury: A nationwide, population-based study. PLoS ONE. 2017;12 (4)	
	301		(no pagination)(e0175868).	
	302	8.	Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe.	
	303		Acta Neurochirurgica. 2015;157(10):1683-1696.	
	304	9.	Hastings DL, Brieding M, Lee R. Falls and traumatic brain injuries in older adults: A worsening	
43 44	305		trend. Journal of the American Geriatrics Society. 2017;65:S8.	
45 46	306	10.	Sung KC, Liang FW, Cheng TJ, Lu TH, Kawachi I. Trends in Unintentional Fall-Related Traumatic	
47	307		Brain Injury Death Rates in Older Adults in the United States, 1980-2010: A Joinpoint Analysis. J	
48 49	308		Neurotrauma. 2015;32(14):1078-1082.	
50 51	309	11.	Fletcher AE, Khalid S, Mallonee S. The epidemiology of severe traumatic brain injury among	
52	310		persons 65 years of age and older in Oklahoma, 1992-2003. Brain Injury. 2007;21(7):691-699.	
53 54 55 56	311	12.	Chisholm KM, Harruff RC. Elderly deaths due to ground-level falls. The American journal of	
	312		forensic medicine and pathology. 2010;31(4):350-354.	
57 58				
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 17 of 16

1 2			
3	313	13.	Brazinova A, Mauritz W, Majdan M, Rehorcikova V, Leitgeb J. Fatal traumatic brain injury in
4 5	314		older adults in Austria 1980-2012: an analysis of 33 years. Age Ageing. 2015;44(3):502-506.
6 7	315	14.	Shankar KN, Liu SW, Ganz DA. Trends and Characteristics of Emergency Department Visits for
8	316		Fall-Related Injuries in Older Adults, 2003–2010. Western Journal of Emergency Medicine.
9 10	317		2017;18(5):785-793.
11 12	318	15.	Hartholt KA, Van Lieshout EM, Polinder S, Panneman MJ, Van der Cammen TJ, Patka P. Rapid
13 14	319		increase in hospitalizations resulting from fall-related traumatic head injury in older adults in
15	320		The Netherlands 1986-2008. J Neurotrauma. 2011;28(5):739-744.
16 17	321	16.	Korhonen N, Niemi S, Parkkari J, Sievanen H, Kannus P. Incidence of fall-related traumatic brain
18 19	322		injuries among older Finnish adults between 1970 and 2011. Jama. 2013;309(18):1891-1892.
20	323	17.	Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-
21 22	324		related injuries among community-dwelling adults in the United States. PLoS ONE. 2016;11 (3)
23 24	325		(no pagination)(e0150939).
25	326	18.	Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT Head Rule for patients with minor
26 27	327		head injury. The Lancet. 2001;357(9266):1391-1396.
28 29	328	19.	de Wit K, Merali Z, Kagoma YK, Mercier É. Incidence of intracranial bleeding in seniors
30 31	329		presenting to the emergency department after a fall: A systematic review. Injury.
32	330		2020;51(2):157-163.
33 34	331	20.	Kelen G, Peterson S, Pronovost P. In the Name of Patient Safety, Lets Burden the Emergency
35 36	332		Department More. Annals of Emergency Medicine.67(6):737-740.
37	333	21.	Émond M, Grenier D, Morin J, et al. Emergency Department Stay Associated Delirium in Older
38 39	334		Patients. Canadian Geriatrics Journal. 2017;20(1):10-14.
40 41	335	22.	Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and
42	336		stable trauma patients. <i>Jama</i> . 2001;286(15):1841-1848.
43 44	337	23.	Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without
45 46	338		diagnostic imaging: management of patients with suspected pulmonary embolism presenting to
47	339		the emergency department by using a simple clinical model and d-dimer. Ann Intern Med.
48 49	340		2001;135(2):98-107.
50 51	341	24.	Thiruganasambandamoorthy V, Stiell IG, Sivilotti MLA, et al. Risk stratification of adult
52 53	342		emergency department syncope patients to predict short-term serious outcomes after discharge
54	343		(RiSEDS) study. BMC Emergency Medicine. 2014;14:8-8.
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 16

BMJ Open

1 2

2				
3 4	344	25.	Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in	
5	345		emergency medicine. Annals of Emergency Medicine. 1999;33(4):437-447.	
6 7	346	26.	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable	
8 9	347		prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Anna	ls
10	348		of Internal Medicine 2015;162(1):55-63.	
11 12	349	27.	Selvanayagam N, Soomro A, Varner C, McLeod S, Clayton N, de Wit K. LO59: Reliability of patie	ent
13 14	350		reported exposure and outcome data in a prospective cohort study of older adults presenting	to
15	351		the emergency department. CJEM. 2020;22(S1):S29-S29.	
16 17	352	28.	de Wit K, Parpia S, Varner C, et al. Clinical Predictors of Intracranial Bleeding in Older Adults	
18 19	353		Who Have Fallen: A Cohort Study. Journal of the American Geriatrics Society. 2020;68(5):970-	
20	354		976.	
21 22	355	29.	Schulman S, Kearon C, the SOCOAOTS, Standardization Committee Of The International Societ	ty
23 24	356		On T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic	
25	357		medicinal products in non-surgical patients. Journal of Thrombosis and Haemostasis.	
26 27	358		2005;3(4):692-694.	
28 29	359	30.	Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elder	rly
30 31	360		people. Canadian Medical Association Journal. 2005;173(5):489-495.	
32	361	31.	Lawless JF, Singhal K. Efficient Screening of Nonnormal Regression Models. Biometrics.	
33 34	362		1978;34(2):318-327.	
35 36	363	32.	Harrell F. Regression Modeling Strategies With Applications to Linear Models, Logistic	
37	364		Regression, and Survival Analysis. Springer New York; 2001.	
38 39	365	33.	Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing	g
40 41	366		prognostic models in cancer: a review. BMC Medicine. 2010;8:20.	
42	367	34.	Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model	
43 44	368		when there are few events. BMJ (Clinical research ed). 2015;351:h3868.	
45 46	369	35.	PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde, Research electronic data captur	re
47	370		(REDCap). A metadata-driven methodology and workflow process for providing translational	
48 49	371		research informatics support, Journal of Biomedical Informatics. 2009;42(2):377-81.	
50 51	372	36.	PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O'Neal, L McLeod, G Delacqua, F	
52	373		Delacqua, J Kirby, SN Duda, REDCap Consortium, The REDCap consortium: Building an	
53 54	374		international community of software partners, Journal of Biomedical Informormatics. 2019,	
55 56	375		May [doi: 10.1016/j.jbi.2019.103208].	
57				
58 59				16
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Which older emergency patients are at risk of intracranial bleeding after a fall? A protocol to derive a clinical decision rule for the emergency department.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044800.R3
· ·	
Article Type:	
Date Submitted by the Author:	03-Jun-2021
Complete List of Authors:	de Wit, Kerstin; Queen's University, Department of Emergency Medicine; McMaster University, Department of Medicine Mercuri, Mathew; McMaster University, Medicine; University of Toronto Dalla Lana School of Public Health Clayton, Natasha; Hamilton Health Sciences, Emergency Worster, Andrew; McMaster University, Division of Emergency Medicine Mercier, Eric; Centre de recherche du CHU de Québec, Axe Santé des Populations et Pratiques Optimales en Santé Emond, Marcel; Université Laval, Department of Family and Emergency Medicine Varner, Catherine; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Family and community medicine McLeod, Shelley; Sinai Health System, Schwartz/Reisman Emergency Medicine Institute; University of Toronto, Department of Family and Community Medicine Eagles, Debra; Ottawa Hospital Research Institute, Emergency Medicine Stiell, Ian; Ottawa Hospital Research Institute, Emergency Medicine Barbic, David; University of British Columbia, Emergency Medicine; Morris, Judy; Université de Montréal Jeanmonod, Rebecca; St. Luke's University Health Network, Emergency Medicine Kagoma, Yoan; McMaster University, Radiology Shoamanesh, Ashkan; McMaster University, Medicine Engels, Paul; McMaster University, Surgery Sharma, Sunjay; McMaster University, Division of Neurosurgery Kearon, Clive; McMaster University, Ontario Clinical Oncology Group
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Geriatric medicine, Radiology and imaging
Keywords:	ACCIDENT & EMERGENCY MEDICINE, TRAUMA MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, GERIATRIC MEDICINE

1	
2	
3	
4 5	
5 6	SCHOLARONE [™]
7	Manuscripts
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Fo

1 2		
- 3 4	1	
5	2	Which older emergency patients are at risk of intracranial bleeding after a fall?
6 7 8	3	A protocol to derive a clinical decision rule for the emergency department.
9	4	
10 11	5	Kerstin de Wit ^{a,b} , Mathew Mercuri ^{a,c} , Natasha Clayton ^{a,d} , Andrew Worster ^{a,b} , Éric Mercier ^{e,f} , Marcel
12 13 14 15	6	Émond ^{e,f} , Catherine Varner ^{g,h} , Shelley McLeod ^{g,h} , Debra Eagles ^{i,j} , Ian Stiell ⁱ , David Barbic ^{k,I} , Judy Morris ^m ,
	7	Rebecca Jeanmonod ⁿ , Yoan Kagoma ^o , Ashkan Shoamanesh ^a , Paul Engels ^p , Sunjay Sharma ^q , Clive Kearon ^a ,
16	8	Alexandra Papaioannou ^{a,b} , Sameer Parpia ^{b,r} , for the Network of Canadian Emergency Researchers.
17 18	9	
19 20	10	a. Orchid https://orcid.org/0000-0003-2763-6474 . Department of Medicine, McMaster University,
21	11	Canada
22 23	12	b. Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
24 25	13	c. Dalla Lana School of Public Health, University of Toronto, Canada
26	14	d. Emergency Department, Hamilton Health Sciences
27 28	15	e. Centre de recherche du CHU de Québec – Université Laval, Québec, Canada.
29 30	16	f. Centre de recherche sur les soins et les services de première ligne de l'Université Laval, Québec,
31 32	17	Canada
33	18	g. Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, Ontario, Canada
34 35	19	h. Department of Family and Community Medicine, Division of Emergency Medicine, University of
36 37	20	Toronto, Toronto, Ontario, Canada
38	21	i. Department of Emergency Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
39 40	22	j. School of Epidemiology and Public Heath, University of Ottawa, Ottawa, Ontario
41 42	23	k. Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
43	24	I. Centre for Health Evaluation Outcome Sciences, St Paul's Hospital, Vancouver, Canada
44 45	25	m. Department of Family Medicine and Emergency Medicine, Université de Montréal, Canada
46 47	26	n. St. Luke's University Health Network, Bethlehem, PA, USA
48	27	o. Department of Radiology, McMaster University, Canada
49 50	28	p. Department of Surgery, McMaster University, Canada
51 52	29	q. Department of Oncology, McMaster University, Canada
53	30	
54 55	31	Corresponding author Kerstin de Wit, <u>dewitk@mcmaster.ca</u>
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

32 Word count 2055

33 Key words Older adults, intracranial bleeding, diagnosis, emergency department, clinical decision rules

torpeet terier only

Page 5 of 16

1		
2 3	34	ABSTRACT
4 5	35	Introduction
6 7	36	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide.
8	37	Older adults frequently present to the emergency department after falling. It can be challenging for
9 10	38	clinicians to determine who requires brain imaging to rule out traumatic intracranial bleeding, and often
11 12	39	head injury decision rules do not apply to older adults who fall. The goal of our study is to derive a
13	40	clinical decision rule which will identify older adults who present to the emergency department after a
14 15	41	fall who do not have clinically important intracranial bleeding.
16 17	42	
18	43	Methods and analysis
19 20	44	This is a prospective cohort study enrolling patients aged 65 years or older, who present to the
21 22	45	emergency department of 11 hospitals in Canada and the United States within 48 hours of having a fall.
23 24	46	Patients are included if they fall on level ground, off a chair, toilet seat or out of bed. The primary
25	47	outcome is the diagnosis of clinically relevant intracranial bleeding within 42 days of the index
26 27	48	emergency department visit. An independent adjudication committee will determine the primary
28 29	49	outcome, blinded to all other data. We are collecting data on 17 potential predictor variables. The
30	50	treating physician completes a study data form at the time of initial assessment, prior to brain imaging.
31 32	51	Data extraction is supplemented by an independent, structured electronic medical record review. We
33 34	52	will perform binary recursive partitioning using Classification and Regression Trees to derive a clinical
35	53	decision rule.
36 37	54	
38 39	55	Ethics and dissemination
40 41	56	The study was initially approved by Hamilton Integrated Research Ethics Committee and subsequently
42	57	approved by the research ethics boards governing all participating sites. We will disseminate our results
43 44	58	by journal publication, presentation at international meetings and social media.
45 46	59	
47	60	Registration details ClinicalTrials.gov NCT03745755
48 49	61	
50 51	62	
52	63	
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	64	ARTICLE SUMMARY
4 5	65	Strengths and limitations of this study
6 7	66	• This cohort study aims to derive a clinical decision rule which identifies older adults at risk of
8 9	67	intracranial bleeding after a fall.
10	68	• This is a large study enrolling patients from 11 hospitals in two countries.
11 12	69	• Potential predictor variables are recorded by emergency physicians prior to CT scanning.
13 14	70	• The primary outcome, clinically important intracranial bleeding, is determined by an
15 16	71	independent adjudication committee.
17	72	• The main limitation is that not all patients will have head CT imaging at their initial emergency
18 19	73	department visit.
20 21	74	
22 23	75	
24	76	
25 26		
27 28		
29 30		
31		
32 33		
34 35		 The main limitation is that not all patients will have head CT imaging at their initial emergency department visit.
36 37		
38		
39 40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53 54		
55		
56 57		
58 59		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 16

BMJ Open

2 3	77	INTRODUCTION
4 5	78	In contrast to the younger population, the incidence of traumatic intracranial bleeding in older adults is
6 7	79	rising ¹ and has a worse prognosis. ^{2,3} Older adults are at higher risk of traumatic intracranial bleeding
8	80	because there can be loss of the elastic integrity of the cerebral bridging veins and brain atrophy,
9 10	81	allowing rapid movements of the brain within the cerebral spinal fluid with trauma. Older adults may be
11 12	82	less able to withstand intracranial bleeding because of pre-existing comorbidity, frailty and
13	83	polypharmacy.
14 15	84	
16 17	85	Falling on level ground is now the most common cause of traumatic intracranial bleeding world-wide,
18	86	accounting for up to 80% of cases. ⁴⁻⁸ Fall-associated intracranial bleeding in older adults is increasing in
19 20	87	incidence. ^{9,10} The mortality rate for fall-associated intracranial bleeding is 15% ^{7,11} (accounting for half of
21 22	88	all fall-associated deaths ^{12,13}). Rather than seeing a decrease in these deaths, this mortality rate is
23	89	rising. ¹⁰ Emergency departments (EDs) are managing an increasing number of older adults who have
24 25	90	fallen ¹⁴ and ED visits for fall-related head injuries in older adults have increased year after year. ^{9,13,15-17}
26 27	91	There is a paucity of evidence to guide neuroimaging for intracranial bleeding in older adults.
28 29	92	
30	93	The Canadian CT Head Rule can determine the need for head computed tomography (CT) in head-
31 32	94	injured patients who experienced loss of consciousness, disorientation or amnesia after their injury. ¹⁸
33 34	95	However, older ED patients who present after a fall cannot always give a history of what happened, falls
35	96	are frequently unwitnessed and many older adults who fall do not sustain a head injury. Ordering a head
36 37	97	CT scan on every older adult who has fallen would be an inefficient and costly way to diagnose
38 39	98	intracranial bleeding when only approximately 5% have intracranial bleeding. ¹⁹ Patients awaiting a CT
40	99	scan will typically occupy an ED bed. CT overuse in this population not only causes prolonged ED visits,
41 42	100	but it also contributes to ED overcrowding, which may result in worse outcomes for other patients. ²⁰
43 44	101	Older adults are at greater risk of developing delirium the longer they stay in the ED. ²¹ There is a need
45 46	102	for a simple bedside tool which can rapidly stratify the risk of intracranial bleeding in older ED patients
47	103	who present after falling. Our aim is to derive a clinical decision rule which will identify older adults who
48 49	104	present to the ED after a fall who do not have clinically important intracranial bleeding and therefore do
50 51	105	not require a head CT.
52	106	
53 54		
55 56		
50		

107 METHODS AND ANALYSIS

108 <u>Study design</u>

> This is a prospective cohort study designed to develop a unique clinical decision rule for ED physicians evaluating older adults who have fallen. Clinical decision rules are a commonly applied method of standardized clinical diagnostic decision-making in the ED. The rules incorporate the standardized collection and interpretation of multiple predictor variables from the patient's history, physical examination and test results to optimize evidence-based clinical decision-making. For example, clinical decision rules are used to determine which patients should have cervical spine imaging in trauma,²² thoracic imaging for pulmonary embolism²³ and admission after syncope.²⁴ Our study follows the methodological standards for clinical decision rules in emergency medicine²⁵ and the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines.²⁶ The study was approved by the Hamilton Integrated Research Ethics Board, Ottawa Health Science Network Research Ethics Board, Mount Sinai Hospital Research Ethics Board, Comité d'éthique du CHU de Québec-Université Laval, Providence Health Care Research Ethics Board and the Institutional Review Board of St. Luke's University Health Network.

2 124 Patient and public involvement

Prior to the protocol development, we conducted a qualitative study with older adults who were waiting in the ED for head CT after a fall. We found that diagnosing intracranial bleeding was important to the participants, that they valued testing tailored to their personal risk and shorter ED visits. This protocol was designed with feedback and input from our patient partners.

<u>2</u> 130 <u>Study population</u>

This study is conducted at 11 hospitals in Canada and the United States and enrolls patients aged 65 years or older who present to the ED within 48 hours of having a fall. Patients are eligible if they fall on level ground (either inside or outside), off a chair, toilet seat or out of bed. Patients are included regardless of whether they hit their head. Patients are excluded if they fell down steps, fell from a height, were knocked down by a car/bike/pedestrian or other mechanism of injury. Patients who live outside of the hospital catchment area, who have previously been enrolled in this study, who are transferred from another hospital and who leave the ED prior to completion of their medical assessment

1 2		
3 4 5	138	are also excluded. Recruitment commenced on January 30, 2019. Patients are recruited 24 hours a day,
	139	seven days a week.
6 7	140	
8 9	141	Patient assessment
10	142	Each patient is assessed at their index ED visit by an emergency physician who decides on the need for
11 12	143	head CT based on clinical history and examination. It would be impractical to perform a head CT on all
13 14	144	older adults who have fallen, for example, after a simple trip, because there is not always an indication
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	145	for CT, hospitals have limited resources and ordering a CT delays discharge home. However, if
	146	participants return to the ED within 42 days of enrolment with new confusion, headache, loss of
	147	balance, repeat falls, change in behaviour, reduced Glasgow Coma Score (GCS) or other neurological
	148	symptoms, they will undergo head CT.
	149	
	150	Outcome definition and measurement
	151	The primary outcome is ' <i>clinically important intracranial bleeding</i> ' diagnosed within 42 days of the
	152	index ED presentation. Our definition was derived after surveying specialists (including neurosurgeons,
	153	neurologists, trauma physicians, geriatricians, thrombosis and emergency physicians) who determined
	154	that symptoms from intracranial bleeding might develop as late as six weeks after a fall. 'Clinically
	155	important intracranial bleeding' is defined as bleeding within the cranial vault (including subdural,
	156	intracerebral, intraventricular, subarachnoid, epidural blood and cerebral contusion), which requires
35 36	157	medical or surgical treatment. Medical treatment is defined as any of the following: temporary or
36 37	158	permanent discontinuation of anticoagulant or antiplatelet medication; administration of an
38 39	159	antifibrinolytic drug; reversal of anticoagulation; or admission to hospital for neurological observation.
40 41	160	Clinically important intracranial bleeding will be determined by independent adjudication of head CT
42	161	scans by the centralized outcome adjudication committee consisting of a study neurologist,
43 44	162	neurosurgeon, trauma surgeon and radiologist. The adjudicators will be blinded to all ED baseline data.
45 46	163	Each scan will be adjudicated independently by two reviewers. In the case of a disagreement, a third
47	164	adjudicator, blinded to the prior reviews, will determine the classification. Agreement between the
48 49	165	adjudicators will be reported. Secondary outcomes relate to the 'severity' of the intracranial bleeding: 1)
50 51	166	neurosurgical intervention; 2) intensive care admission; 3) hospital length of stay; 4) in-hospital death as
52	167	determined by medical record review.
53 54	168	
55 56		
57		
58 59		7
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

We found poor sensitivity (37%, 95% confidence interval: 21 to 56%) for patient-reported diagnosis of intracranial bleeding.²⁷ Furthermore, our experience of personal follow up in this population²⁸ is that it is frequently not feasible because of residence in nursing homes or baseline cognitive impairment. Therefore, the current study follow up is restricted to systematic medical record review with independent validation and enrollment is restricted to patients who reside within the hospital catchment area.

Predictor variables

Demographic and predictor variables are collected in two ways: 1) the treating physician completes a standardized data collection form at the time of initial patient assessment, and before the results of the head CT are available (therefore blinded to outcome); 2) data is collected by trained on-site research assistants using standardized medical record review protocols, following detailed data definitions and instructions for systematic medical record review. We follow standardized validation procedures for all medical record review data points: de-identified source documentation is uploaded for validation by the coordinating centre. A query is sent to the site research assistant to resolve each discrepancy. The study site investigator resolves discrepancies which persist after research assistant review. Table 1 details the demographic and predictor variables collected.

We initially identified potential predictor variables by a systematic review of prior evidence. We then assessed the frequency among our population and the association between predictor and intracranial bleeding in a study of 1753 older ED patients who had fallen.²⁸ We selected 17 candidate predictor variables, which are considered to be biologically plausible and related to the outcome of intracranial bleeding, and are routinely collected in the ED: age; sex; head injury; loss of consciousness; amnesia; history of previous major bleed (International Society of Thrombosis and Haemostasis criteria²⁹); cirrhosis; prior ischemic stroke; chronic renal impairment; GCS reduced from baseline; bruise or laceration on the head; abnormal neurological examination; haemoglobin, platelet count; anticoagulant therapy; antiplatelet therapy; and, Clinical Frailty Score.³⁰

Analysis

Variables with large amounts of missing data will be excluded from the models as they would be missing in clinical practice. Likewise, continuous variables whose distributions are too narrow will also be excluded. We will perform binary recursive partitioning using Classification and Regression Trees to

Page 11 of 16

BMJ Open

1	
2 3	201
4	
5 6	202
7	203
8 9	204
10	205
11 12	206
13	207
14 15	208
16	
17	209
18 19	210
20	211
21 22	212
23 24	213
25	214
26 27	215
28 29	216
30	217
31 32	218
33 34	219
35	220
36 37	221
38 39	222
40	223
41 42	224
43 44	225
45	226
46 47	227
48 49	228
50	229
51 52	230
53 54	231
55	232
56 57	
58	
FO	

60

develop a decision rule. A clinical decision rule for a life-threatening event like intracranial bleeding
requires very high sensitivity. The model with a sensitivity of > 99% and the highest specificity will be
selected. We will assess the derived decision rule by comparing the classification of each patient with his
or her actual status for the primary outcomes. In addition, 1000 bootstrap iterations will be performed
to assess the internal classification performance and overfitting of the selected decision rule.

We will also develop a predictive risk model using multivariable logistic regression. Continuous variables may be transformed and will be fit using restricted cubic splines to relax the linearity assumption. First, a full model with all variables will be fit. To further reduce the model, we will perform backward elimination without model re-fitting with p < 0.5, which has shown to have valid inference.^{31,32} Clinically and biologically plausible interactions will be tested within the model. Internal validation to obtain unbiased and optimism corrected estimation of model performance will be done using 1000 bootstrap samples. Model discrimination will be reported using the C-statistic and a calibration plot of observed versus predicted probabilities.

216 Sample size

The current guidelines suggest that we would require at least 10 events per included variable.^{33,34} We expect that 5% of patients will be diagnosed with clinically important intracranial bleeding,²⁰ and we assume that our initial model will consist of 17 candidate variables. Based on this assumption, a sample size of 4000 should include 200 cases of intracranial bleeding (12 events per variable).

Sources of bias

Intracranial bleeding will be adjudicated blind to all baseline and predictor data. Predictor data is
collected before the primary outcome data is collected. However, it is possible that we do not identify
every case of intracranial bleeding during the 42-day follow up period. In our prior study, only 60% of
patients had a head CT during the index ED visit and 6/738 participants without a head CT (0.8%) were
subsequently diagnosed with intracranial bleeding within 42 days.²⁸ In comparison, 6/939 (0.6%) with a
negative head CT were diagnosed with intracranial bleeding within 42 days, suggesting emergency
physicians may correctly identify lower risk patients who do not require a scan. However, this evidence
is indirect and hypothesis generating only. Given that not all participants in this study will have a head
CT scan at baseline, we may underdiagnose intracranial bleeding in this subpopulation which will
comprise around 40% of the cohort. Although patients are advised to return if they develop

neurological symptoms, it is possible that a patient may die of an intracranial bleed or else fully recover without testing for intracranial bleeding. Furthermore, 42-day follow-up involves institutional electronic medical record review. If a patient attended an unrelated hospital during follow up and was diagnosed with an intracranial bleed, we might miss this diagnosis. To reduce the chance of this happening, we are restricting study enrollment to patients who reside within the hospital catchment area and most sites have access to records from regional neurosurgical centres. In our prior study where we performed in-person follow up, no patient was diagnosed with an intracranial bleed at another hospital. The imperfect reference standard bias introduced with differential testing depending on the emergency physician CT request, might inflate the strength of association between predictor variables which are commonly utilized to determine the need for head CT in this population (such as a history of loss of consciousness and anticoagulation use). Study oversight The coordinating centre is McMaster University. Electronic data and de-identified source documents are uploaded to a Research Electronic Data Capture (REDCap) database^{35,36} and stored on a secure server at McMaster University. The coordinating centre validates all data and supervises the adjudication committee activities. The study steering committee consists of the site investigators. **Ethics and dissemination** Research ethics approval has been obtained from each enrolling site local research ethics board. In our previous study on the same population,²⁸ we obtained patient consent. An interim analysis showed a number of patients were confused (144/890, 16%) or died before a researcher could ask for their consent (39/890, 4%). Family were often not available in the ED. In all, we were unable to obtain consent from 204/890 (23%) patients. To address this problem, we obtained research ethics board approval to include patients who were unable to give informed consent. It is essential we include patients who cannot consent since they are often the most frail patients who are challenging to evaluate in the ED and frequently excluded from studies. Excluding these patients could limit the generalizability of our clinical decision rule. The current study has research ethics approval at all sites to include patients without obtaining informed consent. The study results will be submitted for publication in a peer reviewed journal and presented at national and international emergency medicine meetings.

2		
3 4	265	AUTHORS' CONTRIBUTIONS
5	266	The study was conceived by KdW, MM, CK, SP and AW. The protocol was designed with input from
6 7	267	all authors (KdW, MM, CK, SP, AW, NC, EM, ME, IS, DE, DB, RJ, JM, CV, SM, AP, YK, AS, SS and PE) has
8 9	268	been endorsed by the Network of Canadian Emergency Researchers. The study is being conducted
10	269	by KdW, NC, EM, CV, DE, DB, RJ and JM. YK, AS, SS and PE are the study adjudicators. SP will oversee
11 12	270	the analysis.
13 14	271	
15	272	FUNDING STATEMENT: This work was supported by the Canadian Institute of Health Research grant
16 17	273	number PJT-159545.
18 19	274	
20	275	
21 22	276	COMPETING INTERESTS : The authors have no competing interests.
23 24	277	COMPETING INTERESTS: The authors have no competing interests.
25	278	
26 27	279	
28 29	280	
30	281	
31 32	282	
33 34	283	
35	284	
36 37	285	
38 39	286	
40	287	
41 42	288	
43 44	289	
45 46	290	
47	291	
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		For recorrection, only, letter (/henigmen lengingers /site /shout/suidelingers/html 11
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	292	REFER	ERENCES			
4 5	293					
6 7	294	1.	Van den Brand CL, Karger LB, Nijman ST, Hunink MG, Patka P, Jellema K. Traumatic brain injury			
8 9	295		in the Netherlands, trends in emergency department visits, hospitalization and mortality			
10 11 12	296		between 1998 and 2012. Eur J Emerg Med. 2017;06:06.			
	297	2.	Haring RS, Narang K, Canner JK, et al. Traumatic brain injury in the elderly: morbidity and			
13 14	298		mortality trends and risk factors. J Surg Res. 2015;195(1):1-9.			
15 16 17	299	3.	McIntyre A, Mehta S, Aubut J, Dijkers M, Teasell RW. Mortality among older adults after a			
	300		traumatic brain injury: A meta-analysis. Brain Injury. 2013;27(1):31-40.			
18 19	301	4.	Chan V, Colantonio A, Chen A, Zagorski B, Parsons D, Vander Laan R. A population based			
20	302		perspective of acquired brain injury in older adults: How do they happen? Brain Injury. 2012;26			
21 22	303		(4-5):548-549.			
23 24	304	5.	Kerr ZY, Harmon KJ, Marshall SW, Proescholdbell SK, Waller AE. The epidemiology of traumatic			
25	305		brain injuries treated in emergency departments in North Carolina, 2010-2011. N C Med J.			
26 27 28 29 30 31 32 33 34	306		2014;75(1):8-14.			
	307	6.	Albrecht JS, Hirshon JM, McCunn M, et al. Increased rates of mild traumatic brain injury among			
	308		older adults in US Emergency Departments, 2009-2010. Journal of Head Trauma Rehabilitation.			
	309		2016;31(5):E1-E7.			
	310	7.	Fu WW, Fu TS, Jing R, McFaull SR, Cusimano MD. Predictors of falls and mortality among elderly			
35	311		adults with traumatic brain injury: A nationwide, population-based study. PLoS ONE. 2017;12 (4)			
36 37	312		(no pagination)(e0175868).			
38 39	313	8.	Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe.			
40	314		Acta Neurochirurgica. 2015;157(10):1683-1696.			
41 42	315	9.	Hastings DL, Brieding M, Lee R. Falls and traumatic brain injuries in older adults: A worsening			
43 44	316		trend. Journal of the American Geriatrics Society. 2017;65:S8.			
45	317	10.	Sung KC, Liang FW, Cheng TJ, Lu TH, Kawachi I. Trends in Unintentional Fall-Related Traumatic			
46 47	318		Brain Injury Death Rates in Older Adults in the United States, 1980-2010: A Joinpoint Analysis. J			
48 49	319		Neurotrauma. 2015;32(14):1078-1082.			
50	320	11.	Fletcher AE, Khalid S, Mallonee S. The epidemiology of severe traumatic brain injury among			
51 52	321		persons 65 years of age and older in Oklahoma, 1992-2003. Brain Injury. 2007;21(7):691-699.			
53 54	322	12.	Chisholm KM, Harruff RC. Elderly deaths due to ground-level falls. The American journal of			
55	323		forensic medicine and pathology. 2010;31(4):350-354.			
56 57						
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Page 15 of 16

1			
2 3	324	13.	Brazinova A, Mauritz W, Majdan M, Rehorcikova V, Leitgeb J. Fatal traumatic brain injury in
4 5	325		older adults in Austria 1980-2012: an analysis of 33 years. Age Ageing. 2015;44(3):502-506.
6 7	326	14.	Shankar KN, Liu SW, Ganz DA. Trends and Characteristics of Emergency Department Visits for
8	327		Fall-Related Injuries in Older Adults, 2003–2010. Western Journal of Emergency Medicine.
9 10	328		2017;18(5):785-793.
11 12	329	15.	Hartholt KA, Van Lieshout EM, Polinder S, Panneman MJ, Van der Cammen TJ, Patka P. Rapid
13 14	330		increase in hospitalizations resulting from fall-related traumatic head injury in older adults in
15	331		The Netherlands 1986-2008. J Neurotrauma. 2011;28(5):739-744.
16 17	332	16.	Korhonen N, Niemi S, Parkkari J, Sievanen H, Kannus P. Incidence of fall-related traumatic brain
18 19	333		injuries among older Finnish adults between 1970 and 2011. Jama. 2013;309(18):1891-1892.
20	334	17.	Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-
21 22	335		related injuries among community-dwelling adults in the United States. PLoS ONE. 2016;11 (3)
23 24	336		(no pagination)(e0150939).
25 26	337	18.	Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT Head Rule for patients with minor
27	338		head injury. The Lancet. 2001;357(9266):1391-1396.
28 29	339	19.	de Wit K, Merali Z, Kagoma YK, Mercier É. Incidence of intracranial bleeding in seniors
30 31	340		presenting to the emergency department after a fall: A systematic review. Injury.
32	341		2020;51(2):157-163.
33 34	342	20.	Kelen G, Peterson S, Pronovost P. In the Name of Patient Safety, Lets Burden the Emergency
35 36	343		Department More. Annals of Emergency Medicine.67(6):737-740.
37	344	21.	Émond M, Grenier D, Morin J, et al. Emergency Department Stay Associated Delirium in Older
38 39	345		Patients. Canadian Geriatrics Journal. 2017;20(1):10-14.
40 41	346	22.	Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and
42	347		stable trauma patients. <i>Jama</i> . 2001;286(15):1841-1848.
43 44	348	23.	Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without
45 46	349		diagnostic imaging: management of patients with suspected pulmonary embolism presenting to
47 48	350		the emergency department by using a simple clinical model and d-dimer. Ann Intern Med.
49	351		2001;135(2):98-107.
50 51	352	24.	Thiruganasambandamoorthy V, Stiell IG, Sivilotti MLA, et al. Risk stratification of adult
52 53	353		emergency department syncope patients to predict short-term serious outcomes after discharge
54	354		(RiSEDS) study. BMC Emergency Medicine. 2014;14:8-8.
55 56			
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 16

BMJ Open

2 3	355	25.	Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in
4 5	356	201	emergency medicine. Annals of Emergency Medicine. 1999;33(4):437-447.
6 7	357	26.	Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable
8	358		prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Annals
9 10	359		of Internal Medicine 2015;162(1):55-63.
11 12	360	27.	Selvanayagam N, Mowbray F, Clayton N, Soomro A, Varner C, McLeod S, de Wit K.
13	361		Reliability of patient-reported outcome measures: Hemorrhage, anticoagulant, antiplatelet
14 15	362		medication use. 2021:5(4): e12501.
16 17	363	28.	de Wit K, Parpia S, Varner C, et al. Clinical Predictors of Intracranial Bleeding in Older Adults
18	364		Who Have Fallen: A Cohort Study. Journal of the American Geriatrics Society. 2020;68(5):970-
19 20	365		976.
21 22	366	29.	Schulman S, Kearon C, the SOCOAOTS, Standardization Committee Of The International Society
23 24	367		On T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic
25	368		medicinal products in non-surgical patients. Journal of Thrombosis and Haemostasis.
26 27	369		2005;3(4):692-694.
28 29	370	30.	Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly
30	371		people. Canadian Medical Association Journal. 2005;173(5):489-495.
31 32	372	31.	Lawless JF, Singhal K. Efficient Screening of Nonnormal Regression Models. Biometrics.
33 34	373		1978;34(2):318-327.
35	374	32.	Harrell F. Regression Modeling Strategies With Applications to Linear Models, Logistic
36 37	375		Regression, and Survival Analysis. Springer New York; 2001.
38 39	376	33.	Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing
40 41	377		prognostic models in cancer: a review. BMC Medicine. 2010;8:20.
42	378	34.	Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model
43 44	379		when there are few events. BMJ (Clinical research ed). 2015;351:h3868.
45 46	380	35.	PA Harris, R Taylor, R Thielke, J Payne, N Gonzalez, JG. Conde, Research electronic data capture
47	381		(REDCap). A metadata-driven methodology and workflow process for providing translational
48 49	382		research informatics support, Journal of Biomedical Informatics. 2009;42(2):377-81.
50 51	383	36.	PA Harris, R Taylor, BL Minor, V Elliott, M Fernandez, L O'Neal, L McLeod, G Delacqua, F
52	384		Delacqua, J Kirby, SN Duda, REDCap Consortium, The REDCap consortium: Building an
53 54	385		international community of software partners, Journal of Biomedical Informormatics. 2019,
55 56	386		May [doi: 10.1016/j.jbi.2019.103208].
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	c and predictor var Data collected by treating physician at initial assessment	Data collected by medical record review	Comment on predictor choice for rule derivatio
Predictor variables			
Age		x	No association found* but will b included
Sex		x	Trend towards association with male sex*
Head injury (as reported by patient or carer)	x		Plausible higher risk
Loss of consciousness	x		Marker for head injury severity
New amnesia about events of fall	x		Marker for head injury severity
History of previous major bleed ²⁸	(C)	x	Trend towards association* and biologically plausible
Cirrhosis	10	x	Biologically plausible
Previous diagnosis of ischemic stroke	2	x	Biologically plausible
Chronic renal impairment	x	x	Association demonstrated*
Reduced Glasgow Coma Score from normal (as indicated by caregiver or family)	x	0	Association demonstrated*
Bruise or laceration on the head (any size)	х		Association demonstrated*
New abnormality on neurological examination	х		Association demonstrated *
Haemoglobin		x	Biologically plausible
Platelet count		x	Biologically plausible
Anticoagulation medication	x	x	Commonly held dogma
Antiplatelet medication	x	x	Commonly held dogma
Clinical Frailty Score ³⁰	х		Biologically plausible

Descriptive variables			
Living circumstances		x	No association
Diabetes		x	found* No association
			found*
Hypertension		х	No association found*
Active cancer within past 2 years		х	No association found*
Dementia		х	No association found*
History of frequent falls		х	Not previously assessed*
Congestive heart failure		х	No association found*
Mechanism of injury		х	No association found*
Weight		x	No association found*
Glasgow coma score at time of physician ssessment	x		Reduced Glasgov Coma Score from normal has a
	1		stronger association*
Vomiting (once / more than once)	×		No association found*
Signs of basal skull fracture	x		Too rare to assess*
Suspected open or depressed skull fracture	x	0	Too rare to assess*
Retrograde amnesia for >30 minutes	x	5	Not previously assessed*
Creatinine		x	No association found*
International normalized ratio (INR)		х	Anticipated missing data