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Hübschmann et al., Mutational mechanisms shaping the coding and non-coding 

genome of germinal center derived B-cell lymphomas  

Supplemental Methods  

Methods and procedures described herein were developed by the MMML and ICGC MMML-Seq 
consortia. They partially overlap with those described in a study on pediatric Burkitt lymphomas [1]. 
 
Study cohort 
The ICGC MMML-Seq cohort comprises pre-treatment tumor tissue and corresponding matched normal 
material (peripheral blood, buffy coats shown to be tumor free by clonality analyses) obtained with 
informed consent of the respective patients and/or their legal guardians in the case of minors. The ICGC 
MMML-Seq study was approved by the Institutional Review Board of the Medical Faculty of the 
University of Kiel (A150/10) and of the recruiting centers. In all tumor samples, basic characterization 
including histopathological panel review and immunohistochemical and FISH analyses was performed 
as described recently [2]. 
From the overall ICGC MMML-Seq cohort a total of 181 samples of gcBCL (DLBCL, FL, DLBCL-FL, 
DHL, and B-NOS) entered this study and passed quality control criteria. The inclusion criteria were 
based on diagnosis of gcBCL according to the WHO 2008 criteria [3] and age at diagnosis of ≥ 30 years. 
Corresponding matched normal tissues for WGS was available in 179 of the 181 patients while RNA-
Seq data was available for 176 patients (Suppl. Table 1).  
In addition, FACS-sorted germinal center (GC) B cells from non-neoplastic tonsils were analyzed. For 
the isolation of GC B cells, first, B cells were enriched from tonsillar specimens by magnetic-activated 
cell sorting (MACS) with anti-CD19-microbeads (Miltenyi Biotech, Bergisch Gladbach, Germany), 
followed by fluorescence-activated cell sorting of CD20highCD38+ GC B cells on an ARIA3 cell sorter 
(Becton Dickinson, Heidelberg, Germany). 
 
Sample processing 
The study was performed in accordance with the ICGC guidelines (www.icgc.org). The experimental 
procedures for DNA and RNA extraction and the detection of IG rearrangements have been published 
previously [2,4].  
 
Sequencing 
DNA libraries of the tumor and their matched control samples were prepared using the TruSeq DNA 
library Preparation kit Sets A and B (Illumina; estimated insert size of 343 bp) or the TruSeq Nano DNA 
library Preparation kit (Illumina; estimated insert size of 350 bp). Clusters were generated with cBot and 
the TruSeq PE Cluster kit v3 cBot HS (15023336_A, Illumina). Paired-end sequencing was performed 
on Illumina HiSeq2000 (2x 100 bp), HiSeq2500 (2x 100 bp) or Hiseq X (2x 150 bp) instruments using 
the TruSeq SBS kit, Version 2.5 (200 cycles). 
RNA libraries of the tumor samples and sorted GC B cells were generated using the TruSeq RNA library 
preparation Kit Set A and B, following manufacturer´s instructions at an insert size of ~300 bp. Two 
barcoded libraries were pooled per lane and sequenced on Illumina HiSeq2000, or HiSeq2500. 
 
Whole genome sequencing data processing 
Alignment 
Read pairs were mapped to the human reference genome (build 37, version hs37d5), using bwa mem 
[5] (version 0.7.8 with minimum base quality threshold set to zero [-T 0] and remaining settings left at 
default values), followed by coordinate-sorting with bamsort (with compression option set to fast (1)) and 
marking duplicate read pairs with bammarkduplicates (with compression option set to best (9)); both are 
part of biobambam package version 0.0.148.  
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SNV and indel calling 
Somatic SNVs and indels in matched tumor normal pairs were identified using the DKFZ core variant 
calling workflows of the ICGC PCAWG project 
(https://dockstore.org/containers/quay.io/pancancer/pcawg-dkfz-workflow) as follows. Somatic SNVs 
were identified with the DKFZ SAMtools-based calling pipeline [6,7]. Initial candidate variants for SNVs 
in the tumor were generated by samtools and bcftools (version 0.1.19), followed by a lookup of the 
corresponding positions in the control. To enable calling of variants with low allele frequency we disabled 
the Bayesian model (by setting -p 2). Thus, all positions containing at least one high quality non-
reference base are reported as candidate variant. The resulting raw calls were categorized into putative 
somatic variants and others (artifacts, germline) based on the presence of variant reads in the matched 
normal sample. The frequency of all putative somatic variants was then refined by checking for potential 
redundant information due to overlapping reads and precise base counts for each strand were 
determined. All variants were annotated with dbSNP141, 1000 Genomes (phase 1), Gencode Mapability 
track, UCSC High Seq Depth track, UCSC Simple-Tandem repeats, UCSC Repeat-Masker, DUKE-
Excluded, DAC-Blacklist, UCSC Selfchain. The confidence for each variant was then determined by a 
heuristic punishment scheme taking the aforementioned tracks into account. In addition, variants with 
strong read biases according to the strand bias filter were removed. High confidence variants were used 
for further analysis. 
Tumor and matched control samples were analyzed by Platypus (version 0.8.1) [8] to identify indel 
events. All variants indicating an indel were categorized into putative somatic and other based on the 
genotype likelihoods (matched genotype 0/0 for somatic indels). High confidence somatic variants were 
required to either have the Platypus filter flag PASS or pass custom filters allowing for low variant 
frequency using a scoring scheme. Candidates with the badReads flag, alleleBias, or strandBias were 
discarded if the variant allele frequency was <10%. Additionally, combinations of Platypus non-PASS 
filter flags, bad quality values, low genotype quality, very low variant counts in the tumor, and presence 
of variant reads in the control were not tolerated. In order to remove recurrent artifacts and misclassified 
germline events, somatic indels that were identified as germline in at least two patients in the ICGC 
MMML-seq cohort were excluded. 
Samples without matched control were processed with modified versions of both workflows as described 
in Jabs et al. [9]. In addition, variants exceeding an allele frequency of 0.0001 in ExAC v.0.3.1 (non-
TCGA variants) and variants showing indications for a base quality bias or a mapping quality bias 
(corresponding samtools mpileup PV4 p-value<0.01) were excluded from analysis. Finally, variants in 
artifact-prone regions were removed. These artifact-prone regions were identified in an in-house 
lymphoma exome cohort based on their mutation density. Regions with 2-4 variants with maximum 
intermutation distance of 100 bp were selected. Recurrently affected regions (>2 patients) were 
considered artifacts, unless these regions overlapped with recurrent kataegis regions defined by a 
cohort of 219 gcBCL (179 cases with matched normal from this study and additional 40 pediatric BLs, 
39 from ref. [1] and one adult BL) referred to as merged non-BL/BL cohort. 
For four samples (4117030, 4138464, 4177175, 4133863) tumors and their matched controls were 
sequenced on different Illumina instruments (Hiseq2500 and HiseqX). To prevent technology-specific 
artefacts, the standard SNV calling workflow was extended with filters from the no control workflow [9]. 
Somatic small variants were further filtered out if their respective position was covered insufficiently in 
the control sample (<20X) or if the fraction of variant reads in the control was too high (>1/30). 
For some samples increased artefact rates were detected which were related to higher base quality 
scores for wrongly called bases. For these samples the base quality threshold was increased from 13 
to 20 and low mutant allele frequency (MAF) penalty was switched off (i. MPILEUP_OPTS="-REI -Q 20 
-q 30 -ug"; CONFIDENCE_OPTS=" -c 0 -l 1") (4100314, 4100636, 4103434, 4103570, 4107990, 
4108588, 4116268, 4119463, 4121263, 4123945, 4124795, 4131738, 4144131, 4144366, 4146136, 
4148261, 4152036, 4158933, 4160069, 4162154, 4163741, 4166940, 4167381, 4169012, 4170577, 
4170844, 4177175, 4177639, 4178518, 4180106, 4190231, 4190316, 4192483, 4193435, 4193646, 
4197438, 4199848). One of these samples (4158268) additionally showed signs of strong guanine 
oxidation and was processed with base quality threshold 20 and low MAF penalty switched on 
(MPILEUP_OPTS="-REI -Q 20 -q 30 -ug"; CONFIDENCE_OPTS=" -c 0"). 
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SNVs and indels from all samples were annotated using ANNOVAR [10] according to GENCODE gene 
annotation (version 19) and overlapped with variants from dbSNP [11] (build 141) and the 1000 
Genomes Project database. 
Statistics over coding small variants were estimated based on all 181 cases while the two samples 
without matched control were excluded for non-coding variant and SV statistics, mutation density 
analysis, mutational signature analysis and driver identification. 
 
Detection of genomic structural rearrangements 
Genomic structural rearrangements were detected using SOPHIA v.34.0 (manuscript in preparation) as 
described in Sahm et al. [12] and DELLY [13] as described in Northcott et al. [14]. Briefly, SOPHIA uses 
supplementary alignments as produced by bwa-mem as indicators of a possible underlying SV. SV 
candidates are filtered by comparing them to a background control set of sequencing data obtained 
using normal blood samples from a background population database of 3261 patients from published 
TCGA and ICGC studies and both published and unpublished DKFZ studies, sequenced using Illumina 
HiSeq 2000, 2500 (100 bp) and HiSeq X (151 bp) platforms and aligned uniformly using the same 
workflow as in this study. An SV candidate is discarded if (i) it has more than 85% of read support from 
low quality reads; (ii) the second breakpoint of the SV was unmappable in the sample and the first 
breakpoint was detected in 10 or more background control samples; (iii) an SV with two identified 
breakpoints had one breakpoint present in at least 98 control samples (3% of the control samples); or 
(iv) both breakpoints have less than 5% read support. Statistics over SVs for 179 samples with matched 
control and integrated variant analysis over all samples were based on SOPHIA calls. 
 
Detection of copy number aberrations and allelic imbalances 
Allele-specific copy-number aberrations were detected using ACEseq (allele-specific copy-number 
estimation from whole genome sequencing) [15]. ACEseq determines absolute allele-specific copy 
numbers as well as tumor ploidy and tumor cell content based on coverage ratios of tumor and control 
as well as the B-allele frequency (BAF) of heterozygous single nucleotide polymorphisms (SNPs). SVs 
called by SOPHIA were incorporated to improve genome segmentation. Samples without matched 
control were processed using the ‘runWithoutControl=true’ option. 
Ploidies were manually checked and compared with FISH results. Adjustments were made if necessary. 
Accordingly, tumor cell content estimates were compared to the doubled median MAF and adjusted in 
case ACEseq and MAF-based estimates deviated by more than 10% from each other. 
To prevent biases due to oversegmentation, copy number profiles were further smoothed prior to 
calculating the total number of gains and losses. Neighboring segments were merged if they rounded 
to the same copy number and deviated by less than 0.5 copies in case of segments <20 kb or deviated 
by less than 0.3 copies otherwise. Remaining segments <500 kb were merged with their closer neighbor 
based on allele-specific and total copy number and once again segments smaller than 2 Mb deviating 
by less than 0.4 copies were merged. Based on the resulting segments the number of gains and losses 
was estimated. 
 
Cancer cell fractions (CCFs) 
To obtain clonality estimates of small variants, CCFs were computed. Even though the possibilities to 
analyze the allele frequency of single mutations are limited at a median coverage of 36.41 as reached 
in this study, the determination of an enrichment and depletion pattern in a stratified analysis of 
mutational signatures is a technique based on ensembles or large sets of mutations in the different 
strata (Suppl. Table 10). The analyzed signal which then provides the enrichment and depletion pattern 
stems from the entirety of the signals of all mutations in the respective stratum. The uncertainty of a 
value averaged over a whole ensemble is much smaller than the uncertainty of a value assigned to one 
specific mutation. 
 First, we estimated the corrected MAF for each SNV and indel based on the tumor cell content (tcc) 
and the copy number of the corresponding segment: 
𝑀𝐴𝐹!"##$!%$& =	
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Reads indicates the number of reads, while TCN is the total copy number in the tumor and TCNnormal the 
copy number in the control sample, i.e. 2 and in case of male patients 1 for chromosome X and Y. 
Second, we estimated the CCF for all SNVs and indels on segments with one or two copies, excluding 
segments with higher or subclonal copy numbers. For SNVs and indels in heterozygous diploid 
segments the corrected MAF was multiplied by two to obtain the CCFs. A binomial test was performed 
for mutations mapping to diploid segments with loss of heterozygosity to determine whether the event 
most likely occurred before or after the duplication of the remaining allele. We tested under the null 
hypothesis that the event occurred after the duplication and therefore used an event probability of 
0.5*tcc. The corrected MAF was multiplied by two if the null hypothesis was not rejected (p-value <0.05). 
Otherwise, we assumed that the corrected MAF represented the CCF already, as was done for 
mutations on segments with a single copy. 
 
Repli-Seq scores as a measure of replication timing 
Repli-Seq scores [16] were used to assess the replication timing of mutations. Replication timing of 
lymphoblastoid cell lines was calculated as median Repli-Seq score of the lymphoblastoid ENCODE cell 
lines GM12801, GM06990, GM12812, GM12813, and GM12878. Replication timing of “other” cell lines 
was the median score from the ENCODE cell lines HeLa-S3, HUVEC, K562, NHEK, MCF-7, IMR-90, 
and HepG2.  
 
ChIP-seq of normal GC B cells 
Data. The raw sequencing read data is publicly available from the Blueprint DCC portal 
(http://dcc.blueprint-epigenome.eu/#/home). The identifiers are listed in Table 1 below: 
 
Table 1: ChIP-seq of normal GC B cells 

Sample ID S00W0DH1 S00Y9OH1 S013ARH1 

Cell Type gcBC gcBC gcBC 

Donor ID T14_5 T14_10 T14_11 

Donor Age (yrs)  3-10  5-10  0-5 

Sex F F M 

Tissue tonsil tonsil tonsil 

Input ERX941037 ERX943225 ERX1007400 

H3K27ac ERX712687 ERX712724 ERX1007385 

H3K27me3 ERX712690 ERX712727 ERX1007399 

H3K36me3 ERX712688 ERX712725 ERX1007386 

H3K4me1 ERX712694 ERX712723 ERX1007405 

H3K4me3 ERX712686 ERX712722 ERX1007384 

H3K9me3 ERX712691 ERX712726 ERX1007398 

 
A complete list of the raw files available from the ftp is listed together with associated meta data in the 
data index file (indexed with secondary sample ERS accession; 
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20140811/homo_sapiens/20140811.data.index). 
 
Mapping. Reads were mapped to a gender matched reference (GRCh37) with BWA 0.5.9, with the read 
trimming parameter (-q) set to 15. The alignments were sorted and duplicates marked with Picard. 
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Mappings with a MAPQ below 15 were filtered out with samtools 
(http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/current_release/homo_sapiens). 
 
Segmentation. We segmented the GC B cell genomes with ChIP-seq data for the 6 histone 
modifications described above using ChromHmm (v1.03) [17]. The input data were the ChIP-Seq bed 
files with the genomic coordinates and strand orientation of mapped sequences (after removal of 
duplicate reads). The genome was divided in consecutive 200 bp non-overlapping intervals and 
independently assigned present (1) or absent (0) for each of the 6 chromatin modifications. The 
assignment was based on the count of tags mapping to the interval and on the basis of a Poisson 
background model using a threshold of 10-4, as explained in Ernst et al [17]. After binarization and for 
segmentation we used the eleven states model established by the Blueprint Consortium 
(http://ftp.ebi.ac.uk/pub/databases/blueprint/paper_data_sets/monocyte_neutrophil_2014/chromatin_st
ates/full_histone_panel/model_11_Blueprint_11.txt). Further, we computed the probability that each 
location is in a given chromatin state, and then assigned each 200-bp interval to its most likely state for 
each sample. Lastly, consecutive intervals within the same chromatin state were joined [18].  
Finally, the 11 chromatin states were collapsed into the 5 functional chromatin states: promoter, poised 
promoter, enhancer, transcription and heterochromatin [19]. 
 
GC B cell consensus state. The chromatin state segmentations derived from GC B cells were 
combined (bedtools v2.25.0) and for each segment the consensus chromatin state was defined based 
on a majority voting. In case of an ambiguous result the artificial state “0” was assigned. 
 
Identification of hallmarks events  
Fluorescence in situ hybridization (FISH) on interphase nuclei was performed on frozen tissue using 
specific probes for the hallmark events in gcBCL obtained from Abbott Molecular: LSI BCL6, LSI MYC, 
LSI IGH/MYC, CEP8 Tri-color, LSI IGH and LSI BCL2. Digital image acquisition, processing, and 
evaluation was performed using ISIS digital image analysis version 5.0 (MetaSystems). At least 100 
nuclei were examined by two independent observers for each probe whenever possible. FISH and WGS 
data were combined to determine a consensus state for the hallmark events. For the detection of 
aberrations by WGS two independent tools, SOPHIA and DELLY, were applied. The aberrations were 
classified as positive when FISH and at least one WGS-based caller identified the rearrangement, as 
discrepant in case FISH results were negative but both WGS-based methods detected a rearrangement 
or vice versa, and as negative otherwise. Discrepant cases were re-classified as positive if fusion 
transcripts affecting the hallmark genes could be identified by RNA-Seq data and remained discrepant 
otherwise (Suppl. Table 1). 
 
Transcriptome analysis 
Transcriptome data were mapped with segemehl 0.2.0 [20], allowing for spliced alignments and using a 
minimum accuracy of 90%. Gene expression values were counted using RNAcounter 1.5.2 
(https://pypi.python.org/pypi/rnacounter), using the “--nh” option and counting only exonic reads (-t 
exon).  
 
Gene expression based gcBCL classification 
No reliable classification of ABC- and GCB-DLBCL based on histology or immunohistochemistry is 
available thus far. Previous studies relied on microarray expression data [21,22]. A set of 23 differentially 
expressed genes to distinguish between DLBCL of type ABC and GCB has been established previously 
[23]. We used these genes to classify our cohort based on RNA-Seq data. 
For an initial set of 38 lymphomas, classified as DLBCL by histopathological review, RNA-seq data for 
all 23 gene regions was available on the average reads per million (RPM) scale. Expression values were 
log transformed and we applied unsupervised hierarchical clustering on both, genes and lymphoma 
samples. 
The clustering of the genes resulted in a perfect separation of genes up- and downregulated in ABC-
DLBCL. Based on the hierarchical clustering and the expression pattern of high expression in ABC-
DLBCL upregulated genes and low expression in ABC-DLBCL downregulated genes and vice versa we 
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defined 3 clusters. 13 samples were termed ABC-like, 17 GCB-like and 8 samples in between ABC-like 
and GCB-like were termed unclassified. 
We estimated the density of expression values separately for ABC-like and GCB-like DLBCL samples 
assuming normal distribution of expression values. For each sample, the observed expression value 
was compared with estimated distributions and the conditional probability for ABC-DLBCL was 
estimated based on the observed expression. The evaluation of a sample resulted in 23 estimated ABC-
DLBCL probabilities, one for each gene included in the classifier. We applied the median of the 
estimated ABC-DLBCL probabilities as an overall classification score for ABC- vs GCB-DLBCL. Given 
the results of the test set with 38 DLBCL we applied the thresholds of <0.25 for GCB-DLBCL and >=0.66 
for ABC-DLBCL. Samples in between were labelled as unclassified lymphoma. The classifier was 
applied to all samples with available RNA-Seq data included in the analysis (n=176). 
 
Extraction of clusters of SNVs at high and intermediate mutation density 
At per sample level, SNVs were defined to belong to kataegis clusters [24,25] if at least five consecutive 
SNVs had a maximum intermutation distance of 1000 bp. Recurrence across the cohort was assessed 
by investigating pairwise overlaps between kataegis clusters by the functions coverage() and 
reduce() from the R-package GenomicRanges [26]. Whenever overlap of kataegis clusters from at 
least three samples was observed, the minimal region of overlap of these clusters was termed kataegis 
region. 
We introduce the term psichales (ψιχάλεϛ, ancient greek for “drizzling rain”) for clusters of SNVs at 
intermediate mutation density. Identification of psichales clusters in a sample is defined depending on 
total mutational load of this sample. The minimum number of SNVs required to be present in a psichales 
cluster, min_count, and the maximum intermutation distance, δ, were defined according to the following 
empirically determined formulae: 
𝛿 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚;400𝑘𝑏𝑝, 3.5 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑖𝑛𝑡𝑒𝑟𝑚𝑢𝑡_𝑑𝑖𝑠𝑡(𝑆𝑁𝑉_𝑐𝑜𝑜𝑟𝑑𝑠))J    (2) 
𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(7, 0.0011 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑆𝑁𝑉𝑠)     (3) 
where intermut_dist(SNV_coords) represents the vector of intermutational distances of the SNVs of a 
sample. Recurrence across the cohort was evaluated as described above for kataegis. Kataegis and 
psichales clusters and regions were annotated by aggregating the respective information from all 
member SNVs (categorical information by tabulation, continuous information by computing mean and 
standard deviation). 
In order to investigate the presence of clusters at high and intermediate mutation density also in other 
entities, we extracted kataegis and psichales clusters from SNV calls of eight different data sets 
originating from different entities and different tissues of origin (three breast cancer cohorts, one cohort 
of chronic lymphocytic leukemia (CLL), one external DLBCL cohort, two cohorts of ovarian cancer and 
one sarcoma cohort [25,27-29] (the analyses are in part based upon data generated by the TCGA 
research network: http://cancergenome.nih.gov/)). Data analysis was done with the same methodology 
as performed in our manuscript for gcBCL. 
 
Determination of IG switch regions 
Multiple layers of information were integrated in order to define genomic coordinates for the switch 
regions in the constant part of the IGH locus. Many V, D, and J genes and the genes IGHA2, IGHE, 
IGHG4, IGHG2, IGHA1, IGHG1, IGHG3, IGHM and IGHD (called IGHconst genes) inside the IGH locus 
are annotated in hg19 and thus the overall genomic boundaries of IGH are known. The data layers for 
each IGHconst gene are depicted in Figs. S6 and S7. 
Coordinates of the intergenic regions telomeric of the IGH constant genes were extracted. We call these 
regions pre-IGHconst (pre-IGHA2, pre-IGHE, ..., pre-IGHM) regions. Further analysis was based on 
these regions and their flanking genes. We retrieved 106 contigs from IMGT/LIGM-DB [30] (as of March 
03, 2017, query parameters SPECIES=homo sapiens (human) and OTHER_KEYWORDS=switch). The 
names of the contigs were parsed and categorical information was annotated: (a) contig known to 
originate from one single switch region; (b) contig known to originate from a recombination, i.e. deletion 
and fusion of the breakpoints. Pairwise alignments of these contigs and the pre-IGHconst regions were 
performed with the function pairwiseAlignment() from the Bioconductor package Biostrings [31]. Contigs 
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of type (a) and (b) were aligned globally with regards to IGMT contigs and locally with regards to the 
pre-IGHconst regions (type=”global-local”) and termed oGL (original glocal-local) and jL (junction local), 
respectively, while contigs of type (a) were additionally aligned with a purely local alignment 
(type=”local”), termed oL (original local). Furthermore, kataegis regions and repeat regions defined by 
repeat masker (track Simple Repeats from ENSEMBL) overlapping with pre-IGHconst regions were 
extracted. Strandedness of the repeats was omitted and directly adjacent repeats were merged 
(visualized in the track redRep). Finally, breakpoints of SV events detected in the merged non-BL/BL 
cohort were categorized: 

1. Hallmark translocations of IGH: one breakpoint located in IGH and the other breakpoint located 
in MYC, BCL2 or BCL6. 

2. Translocations involving IGH and other genomic loci. 
3. Recombination events inside the IGH locus (including CSR). 

For visualization, breakpoints of class (1) were furthermore split into 5 groups, reflecting the subgroups 
of gcBCLs. Events were plotted as separate tracks. Breakpoints of class (2) were plotted as a common 
track regardless of subgroup attribution. Recombination events (class 3) were plotted as the topmost 
track. 
Consensus switch regions were extracted (highlighted as red rectangles in the subplots of Fig. S6 and 
S7) as maximal regions of overlap of a subset of the features described above. First, regions from all 
alignment tracks from IMGT/LIGM-DB (oGL, oL, jL) were merged, allowing a maximum gap of 1 kbp. 
Then, regions from the redRep track were merged to these consensus regions, allowing a maximum 
gap of 200 bp. Other tracks were used to ensure plausibility of the extracted switch regions (location 5’ 
of an IGHconst gene, overlap with a kataegis region). 
 
Classification of hypermutation clusters into SHM-like and CSR-like 
For all samples in the merged non-BL/BL cohort, profiles of SNVs in their triplet contexts (corresponding 
to mutational catalogs in the Alexandrov et al. [24] nomenclature) were extracted for the switch regions 
(all merged together) as well as for the VDJ genes and pseudogenes (all merged together) by counting 
SNVs in their triplet context. 
Accordingly, profiles of SNVs in their triplet contexts were extracted for all kataegis clusters. Supervised 
decomposition of these profiles by non-negative least squares (NNLS) with the two basis profiles 
mentioned above was computed. Finally, kmeans clustering (k=3) was carried out on the NNLS 
contributions to yield three categories of kataegis clusters: i) SHM-like (high contributions of the VDJ 
profile); ii) CSR-like (high contributions of the switch region profile); and iii) other (low contributions of 
both VDJ and switch region profiles). 
 
Hypermutation by proxy 
Pairwise co-occurrence of hypermutation in different kataegis regions was investigated by calculating a 
custom score for the subject-object relationship. First, for all pairs of kataegis regions, the number of 
samples with hypermutation in both regions was counted. In each given pair, the kataegis region in 
which more samples were affected was called the current subject, the kataegis region in which less 
samples were affected was called the current object. Second, the count arguing against the given 
subject/object relationship, i.e., the number of samples in which only the object was affected by 
hypermutation and not the subject was subtracted from the number of samples with hypermutation in 
both regions. In a third step, the scores obtained were normalized by division by the maximum score 
across all pairwise combinations, and finally negative values replaced by zero. Co-occurrence was 
defined to be present if this normalized score was greater than zero. Note that this normalized score is 
not symmetric with regards to exchanging subject and object. As one kataegis region can be subject to 
several objects and/or object to several subjects, integrated region-wise subject scores (as opposed to 
the current subject score as defined above) were evaluated as the sum of current subject scores over 
all possible objects, and integrated region-wise object scores were evaluated as the sum of current 
object scores over all possible subjects. Kataegis regions outside the IG loci with integrated subject 
scores ≥ 0.6 or integrated object scores ≥ 0.6 were selected for display in Fig. 3A. 
For some subject-object pairs of interest, including DNMT1/S1PR2, co-expression of the involved genes 
was investigated separately for the different gcBCL subgroups.  
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In order to test for an enrichment of RNA chimeras between pairs of kataegis regions, a multi-step 
procedure was implemented. First, all splice-mapped reads where one part mapped into a kataegis 
region and the flanking 20 kB and the other to a different chromosome were extracted at per-sample 
level. Kataegis regions which overlapped with IG-loci as well as BCL6 and BCL2 were filtered out, as 
trans-splicing from these loci is frequent and might distort the signal. Using an in-house perl script calling 
samtools, splice events supported by at least 3 reads were selected. Beyond counting these splice 
events, we recorded how many of these splice events had a kataegis region on both ends of a spliced 
read (in trans, cf. above) and computed the fraction of reads connecting kataegis regions. 
In order to generate a background distribution, bedtools shuffle was applied to all genes that showed an 
expression level comparable to the kataegis region genes (log2 expression of 7 or above in edgeR). We 
performed 100 shufflings and computed the z-scores of the number of interchromosomal trans-splice 
events as well as the relative number of pairwise inter-kataegis region splicing. 
Chromatin conformation in naive B cells, total B cells from peripheral blood (comprising naive and 
memory B cells) and CLL cells was assessed in the framework of the BLUEPRINT consortium [32,33]. 
The kataegis regions extracted from our cohort (as described in the manuscript and in the methods part) 
were intersected with restriction fragments used in the chromatin conformation experiment. The links 
between the restriction fragments from chromatin conformation were then used to infer co-localization 
of the kataegis regions. We would like to state that the promoter capture HiC data is limited; two kataegis 
regions that both do not represent a bait in the analysis will not be found to interact as the analysis limits 
itself to detect interactions between baits and other ends. 
 
Unsupervised analysis of mutational signatures  
An unsupervised analysis of mutational signatures [24] was performed with non-negative matrix 
factorization (NMF). As detectability of signatures using NMF strongly depends on statistical power, this 
analysis was performed on the merged non-BL/BL cohort. The function runNmfGpu()from the software 
package Bratwurst [34,35] was used for NMF analyses. It provides a wrapper functions for one NMF 
solver [36] on graphical processing units (GPUs) using the Compute Unified Device Architecture (CUDA) 
8 framework. The factorization rank was varied over the range 2 to 15. For every factorization rank, 500 
iterations over random initial conditions were performed. For every initial condition, iteration over update 
equations was performed until convergence was reached, but interrupted if convergence was not 
reached after 10,000 iterations. The optimal factorization rank was obtained by simultaneously 
minimizing the Frobenius error, maximizing the cophenetic correlation coefficient and minimizing the 
Amari distance. Relationships between signatures extracted at different factorization ranks k were be 
visualized as a Sankey diagrams or riverplot, in which nodes are signatures and edge weights are 
encoded by coefficients of NNLS decompositions of signatures at factorization rank i by those at rank i-
1. 
 
Supervised analysis of mutational signatures  
The supervised analysis of mutational signatures was performed with the R package YAPSA [37,38]. 
The function LCD_complex_cutoff() in YAPSA computes an NNLS decomposition of the mutational 
catalogue with known signatures (L1, L2, and L3 resulting from NMF analysis and 30 signatures from 
COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures)). In order to increase specificity, 
LCD_complex_cutoff() applies the NNLS algorithm twice. A first NNLS is run proposing all supplied 
signatures to the decomposition, then a second NNLS is run again with a reduced set of signatures 
consisting only of those signatures whose exposures, i.e. contributions in the linear combination in the 
first decomposition, were higher than a certain signature-specific cutoff. The signature-specific cutoffs 
were determined in a random operator characteristic (ROC) analysis using publicly available data on 
mutational catalogues of 7,042 cancer samples (507 from whole genome sequencing and 6,535 from 
whole exome sequencing) [24] and mutational signatures 
(http://cancer.sanger.ac.uk/cosmic/signatures, downloaded on January 15th, 2016). The following cut-
offs were employed - AC1: 0; AC2: 0.01045942; AC3: 0.08194056; AC4: 0.01753969; AC5: 0; AC6: 
0.001548535; AC7: 0.04013304; AC8: 0.242755; AC9: 0.1151714; AC10: 0.01008376; AC11: 
0.09924884; AC12: 0.2106201; AC13: 0.007876626; AC14: 0.1443059; AC15: 0.03796027; AC16: 
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0.3674349; AC17: 0.002647962; AC18: 0.3325386; AC19: 0.1167454; AC20: 0.1235028; AC21: 
0.1640255; AC22: 0.03102216; AC23: 0.03338659; AC24: 0.03240176; AC25: 0.01611908; AC26: 
0.09335221; AC27: 0.009320062; AC28: 0.05616434; AC29: 0.05936213; AC30: 0.05915355; L1: 0; 
L2: 0; L3: 0. 
 
Synthetic SHM signature 
Yaari et al [39] have extracted synonymous mutations from V and J genes of the IGH locus from normal 
B cells in their 5-mer sequence context to obtain the fingerprint of physiologic SHM. They provide 
separate files encoding the mutation probability per motif 
(http://clip.med.yale.edu/shm/distribution/Mutability.csv) and the probabilities for the different nucleotide 
exchanges (http://clip.med.yale.edu/shm/distribution/Substitution.csv). Multiplication of corresponding 
values from these two tables yields the probability for a given nucleotide exchange in its 5-mer context. 
We aggregated this information into a format comparable to mutational signatures of SNVs in their triplet 
context and termed the resulting pattern synthetic SHM signature. 
 
Stratified analyses of mutational signatures 
In order to identify enrichment and depletion patterns, YAPSA was used to stratify the analysis of 
mutational signatures. Stratification was performed along different stratification axes. Using the function 
run_SMC() from YAPSA, the stratified analysis was performed as a multistep procedure [40]: (1) a 
supervised analysis of mutational signatures was run without any stratification; (2) for every SNV in a 
sample, the stratum it belonged to was annotated; (3) for every stratum, a stratum-specific mutational 
catalog was built; and (4) a supervised NNLS (using lsei) with the constraint that the sum of exposures 
per stratum equals the exposures computed by the unstratified analysis was performed. Thereafter, 
enrichment and depletion patterns for all mutational signatures detected in step 1 were computed from 
the exposures in all strata with the help of the function stat_test_SMC(). Kruskal Wallis tests were 
used as discovery tests and corrected for multiple testing according to Benjamini and Hochberg (BH); 
only if the discovery test after correction for multiple testing was significant, pairwise posthoc Nemenyi 
tests were performed.  
 
Detection of oncodrivers 
IntOGen [41] (version 3.0.5) was run with default settings on all SNVs and indels detected in samples 
with matched control to identify driver genes. Additionally, IntOGen was run separately on all FL and all 
DLBCL cases with matched control. The union of the full cohort as well as the FL- and DLBCL-specific 
gene sets was used as driver gene set. 
 
Integration of different variant types  
SNVs, indels, SVs and CNAs were integrated in order to account for all variant types in the recurrence 
analysis. Whilst all genes with SNVs or indels in coding regions (nonsynonymous, splicing, frameshift 
event) and ncRNA were included, SVs and CNAs were handled differently. Any genes between the 
breakpoints of focal SVs (<1 Mbp) were considered affected. However, duplications and deletions in the 
range of 10 kbp to 1 Mbp had to be verified by ACEseq, and subclonal events with a deviation of less 
than 0.7 copy numbers from the average ploidy were discarded. For larger SVs only genes that were 
directly hit by a breakpoint were considered. Only focal CNA events (<1 Mbp) were taken into account 
for variant integration, as these are more likely to target specific genes within the affected region than 
large events such as whole chromosome arm events. To capture the precise target, focal SVs and CNAs 
were combined and the minimal regions of interest (ROIs), i.e. local maxima of overlapping regions with 
more than one event, were identified. Finally, genes affected by SNVs, indels, focal and large SVs or 
genes within the CNA ROIs were considered for the recurrence analysis. Any gene affected ≥19 times 
was further looked up in focal CNA regions outside of ROIs and added to the oncoprints. Variants in 
ncRNAs were only considered for cases with matched control. 
 
AID enrichment and signature analysis of driver and recurrently mutated genes 
The CSR profile consists of C>T SNVs in DGC/GCH motifs and C>G SNVs in GCT motifs. In order to 
test enrichments, occurrences of these specific base exchanges in the motifs were counted along with 
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other base exchanges within and any base exchanges outside of these motifs and used for computation 
of odds ratios. This was done for all recurrently mutated genes (≥19 samples affected) and recurrently 
mutated driver genes (≥11 samples affected). 
Additionally, we determined the most likely signature per gene. To this end, we compiled a catalogue of 
cohort-wide SNVs for each gene in their triplet context. These were compared to the mutational 
signatures extracted for our cohort by cosine similarity, and the most similar mutational signature was 
annotated to the respective gene. The cosine similarity of two vectors is defined as the cosine of the 
angle between these two vectors, yielding a maximum similarity of 1 for parallel vectors and 0 for 
orthogonal vectors; equivalent to Pearson correlation. 
 
NMF Consensus Clustering 
We binarized the different classes of mutations (SNVs, small Indels, SVs and CNAs) identified in driver 
genes and recurrent genes and ran an NMF analysis. As SVs and CNAs cannot be attributed to genes 
unambiguously, some neighbouring genes which were recurrently coaffected by the same event were 
grouped: a BRD2_cluster containing BRD2, XXbac-BPG181M17.5, BRD2-IT1, HLA-DMA, XXbac-
BPG181M17.6 and HLA-DMB; an S1PR2_cluster containing S1PR2 and DNMT1; a MEF2B_cluster 
containing MEF2B, MEF2BNB-MEF2B; a CDKN2_cluster containing CDKN2B-AS1, CDKN2B, RP11-
149I2.4, RP11-145E5.5, CDKN2A, MTAP, RP11-70L8.4 and C9orf53; a CIITA_cluster containing CIITA 
and RP11-876N24.2; and finally a BCL6_cluster containing RP11-211G3.2 and BCL6. In order to rule 
out false positive findings, the four hypermutated samples 4109808, 4145528, 4199714 and 4163639 
were excluded from this analysis. 
In a first step, this analysis was restricted to the 76 non-hypermutated DLBCL cases of our gcBCL 
cohort. Recurrence thresholds for genes to enter this analysis were 12 in our whole gcBCL cohort and 
6 in the non-hypermutated DLBCL cohort. The optimal factorization rank was determined as described 
above in the section “Unsupervised analysis of mutational signatures”. If these criteria did not yield an 
unambiguous optimal factorization rank, the coefficient of variation and the average silhouette width 
were used as additional quality criteria. Clusters were labelled by the most informative representative of 
the recurrently affected genes inside the cluster 
In a second step we also analyzed the merged cohort of different gcBCL entities (other than BL). 
Recurrence thresholds for genes to enter this analysis were 12 across our whole gcBCL cohort and 10 
in the remaining non-hypermutated cohort. The optimal factorization rank was determined as described 
above for the DLBCL subcohort. Again, clusters were labelled by the most informative representative of 
the recurrently affected genes inside the cluster. 
 
Data Availability 
Sequencing data has been deposited in the European Genome-Phenome Archive (EGA) under 
accession number EGAS00001002199. WGS data for samples that were part of the ICGC PCAWG are 
available under https://www.ebi.ac.uk/ega/studies/EGAS00001001692. A list of samples available from 
the PCAWG repository can be found under 
http://pancancer.info/gnos_metadata/latest/reports/donors_alignment_summary/MALY-
DE.both_aligned.donors.txt. 
 
Code Availability 
All code used within the manuscript is available from the corresponding authors upon reasonable 
request. 
 
Plotting conventions 
All boxplots in this work use the following standard convention of the function geom_boxplot() from 
the R package ggplot2: The upper and lower ends of the box correspond to the first and third quartiles 
(the 25th and 75th percentiles). The line in between represents the median of the distribution. The upper 
whisker extends from the hinge to the highest value that is within 1.5 * IQR of the hinge, where IQR is 
the inter-quartile range, or distance between the first and third quartiles. The lower whisker extends from 
the hinge to the lowest value within 1.5 * IQR of the hinge. Data beyond the end of the whiskers are 
outliers and plotted as points. 
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In several figures, boxplots with the conventions described above and violin plots are overlayed. 
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