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Samples and cohorts 
The data shown in the main text of this manuscript is based on whole genome sequencing (WGS) data 
from 181 lymphomas, of which 179 had matched normal controls, of a cohort of adult patients from the 
ICGC MMML-seq consortium. Fig. S1 gives an overview of small variant statistics for this cohort, Suppl. 
Table 1 summarizes sample specific and QC data, and Suppl. Table 3 displays further statistics on 
mutational load. Another subgroup of the ICGC MMML-seq consortium consists of 39 pediatric Burkitt 
lymphomas (BLs) and one adult BL, of which also WGS with matched normal controls is available [1]. 
The BLs are further subgrouped into BL_solid (28 cases), BL_leukemia (9 cases) and BL_pleura (3 
cases). In order to increase statistical power, some of the discovery analyses presented in this 
manuscript were performed on a merged cohort containing all 219 samples enumerated above (Suppl. 
Table 2). 
In the following, we call the cohort presented in this manuscript the non-BL cohort. For the main figures 
of the manuscript, the results obtained from the merged cohort were then reduced to and displayed only 
for the non-BL cohort. Complementary and matching Suppl. Figures display the data for the merged 
original cohort of the ICGC MMML-seq. This applied to the following correspondences: 

- Fig. 2C – Fig. S3 
- Fig. 4A – Fig. S12A 

 
Definition of switch regions in the IGH locus 
In order to study enrichment and depletion patterns of mutational processes in gcBCL, a comprehensive 
annotation of the different parts of the IG loci is mandatory. Yet, to date, no genomic coordinates for the 
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switch regions in the constant part if IGH are available. Therefore, combining information from different 
sources (contigs stored in IMGT [2], annotated repeats) and genomic information extracted from our 
cohort (genomic coordinates of breakpoints of hallmark events, i.e. IG-MYC, IG-BCL2 or IG-BCL6 
translocations, recombinations inside the IG-loci, and Ka-ROIs as extracted from the analysis of SNV 
density), we derive and propose consensus coordinates for the switch regions (in the order of their 
genomic coordinates) in hg19: 

- IGHA2 (switch α2): chr14:106,055,531-106,057,734 
- IGHE (switch ε): chr14:106,069,016-106,072,047 
- IGHG4 (switch γ4): chr14:106,092,613-106,097,487 
- IGHG2 (switch γ2): chr14:106,111,338-106,115,104 
- IGHA1 (switch α1): chr14:106,175,034-106,178,629 
- IGHG1 (switch γ1): chr14:106,209,614-106,214,314 
- IGHG3 (switch γ3): chr14:106,237,954-106,241,354 
- IGHM (switch μ): chr14:106,322,324-106,326,978 

The genomic coordinates will also be provided as BED-file and GRanges objects at zenodo.org; the 
switch regions and their genomic context are displayed in Figs. S6 and S7. A definition of a switch region 
5’ of IGHD was not possible. No contig from IMGT aligned to the intergenic region between IGHD and 
IGHM and no hallmark translocations (i.e. involving IGH and either MYC, BCL2 or BCL6) nor any other 
translocation had a breakpoint in this genomic window. 
 
Definition of hypermutated cases 
We defined as hypermutated those cases whose SNV mutational load is more than two standard 
deviations above the mean SNV mutational load over the whole cohort. With this criterion, the cases 
4109808 (z = 9.06), 4145528 (z = 7.18), 4199714 (z = 3.82) and 4163639 (z = 2.55) were identified as 
hypermutated (z-scores indicated in parenthesis). All these cases were DLBCLs. 

Kataegis and psichales 
Using the same methodology as for our gcBCL cohort, we extracted kataegis and psichales clusters 
from SNV calls of eight data sets originating from different cancer entities (Fig. S4A and S4B). Across 
all entities, a highly significant enrichment of SNVs in the psichales clusters in late replicating regions 
was observed (Fig. S4A, S4B, Suppl. Table 4A). The link between increased mutation density and late 
replication timing prevails for mutation density in the range of psichales. The very focal phenomenon of 
kataegis, however, is not enriched in late replicating regions. 145/1,056 (13.7%) of all TSS-distant 
kataegis clusters and 28/39 (70.8%) of the recurrent TSS-distant kataegis clusters were in the vicinity 
of known fragile sites as compiled from different sources [3-5].  
 
Non-protein coding genes recurrently affected by mutations in gcBCL 
Several non-protein coding genes of the genome were recurrently mutated (Fig. 5). Of these, the highest 
recurrence rates were observed for the long non-coding RNA (lncRNA) RP11-211G3.2, which is located 
within the first intron of BCL6 and affected by BCL6 hypermutation, the known target of aberrant 
hypermutation microRNA MIR142 [6] (44%), and the lncRNA genes MALAT1 (27%) and NEAT1 (24%). 
These lncRNAs are adjacent (less than 70 kb distance) on chromosome 11 and affected by HbP with 
MALAT1 being the subject and NEAT1 being the object. MALAT1 and NEAT1 are described to play a 
role in nuclear body organization [7] and both have been implicated with cancers [8-13]. MALAT1 has 
been identified as AID target [14]. 
 
Addendum hypermutation by proxy 
A pair of Kataegis-regions in a HbP relationship affects S1PR2 and DNMT1 (18 and 6 gcBCL with 
kataegis clusters, respectively), where S1PR2 hosts the subject and DNMT1 the object (Fig. 3B-D). 
Remarkably, these genes neigbouring head-to-tail in the genome have been reported to generate a 
chimeric transcript [15]. In line, we here detected various tandem RNA chimeras of these strongly 
coexpressed genes in both GC B cells and gcBCL (Fig. 3D) and confirmed the existence of various RNA 
chimeras in the DLBCL cell line SU-DHL-10 (Fig. S18). It is intriguing to speculate that the tight co-
expression of these genes is a means to link S1PR2-mediated homing of B cells in the GC with the 
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widespread DNA methylation changes occurring in GC B cells [16,17]. Given the observation of the 
S1PR2/DNMT1 RNA chimera we wondered whether there is an increased frequency of such transcript 
chimerism between genes prone to undergo kataegis. Remarkably, even after limiting the analysis to 
events affecting two different chromosomes, i.e., inter-chromosomal RNA chimera, we detected an 
increased number between pairs of kataegis regions as compared to a permutation of matched 
background regions (z-score 8.91, p = 2.67×10-19). A possible explanation for the enrichment of these 
kataegis-associated RNA chimeras might be that regions undergoing such kataegis are more closely 
positioned to each other in the nuclear space of a (malignant) B cell than the background distribution. 
Expression of the two genes S1PR2 and DNMT1 was lower compared to GC B cells, but the fraction of 
reads supporting tandem RNA chimeras was comparable (Fig. 3B-D). The one case violating the by 
proxy relationship (i.e. with kataegis in DNMT1 but not in S1PR2) had much less tandem RNA chimera 
abundance. In two cases bearing deletions of the intergenic region between the annotated transcripts 
of these two genes, the amount of tandem RNA chimeras was strongly increased. 
 
Differential usage of mutational mechanisms between ABC- and GCB-DLBCL 
Ongoing immunoglobulin somatic mutation has been observed in GCB-DLBCL but not in ABC-DLBCL 
[18]. Although most ABC-DLBCLs express IgM, and hence do not have undergone successful CSR, 
many show clonal as well as subclonal internal switch region deletions and point mutations in the switch 
regions [19]. This indicates repeated and prolonged CSR activity in ABC-DLBCL and their precursor 
cells, which is not seen in GCB-DLBCL, where ongoing SHM is more prominent. Thus, as there is 
apparently more and continued activity of the CSR machinery in ABC-DLBCL acting on the IGH locus, 
we wondered whether this also leads to more CSR-like events in ABC-DLBCL in general and analyzed 
distributions of kataegis clusters by one-sided tests. Strikingly, ABC-DLBCLs had higher counts (n.s.) 
and higher fractions of SNVs in CSR-like kataegis clusters, whereas GCB-DLBCLs had higher counts 
of SNVs in SHM-like kataegis clusters. The ratio of SNVs in CSR-like over SHM-like kataegis clusters 
showed a strong trend towards higher values in ABC-DLBCLs. Differential usage of mutational 
mechanisms thus has a correlate in the gene expression derived ABC/GCB-classification (Fig. S2E). 
 
Addendum mutational signatures 
In an unsupervised analysis of mutational signatures with NMF, the optimal factorization rank was found 
to be 11, corresponding to 11 mutational signatures. Eight of those were described before [20] (labeled 
“AC” for “Alexandrov COSMIC”), including four of six signatures previously identified in gcBCL (Suppl. 
Table 9). In addition to known signatures, 3 new mutational signatures were discovered in this 
unsupervised analysis, termed L1, L2 and L3 (Fig. 4A-B). Fig. S11A visualizes the signatures extracted 
at varying factorization ranks and their similarities in a Sankey diagram. Fig. S11B illustrates the quality 
criteria for the determination of the optimal factorization rank. 
Following the unsupervised analysis, a supervised analysis with signature specific cutoffs using the 
software package YAPSA was performed (similar to the analysis as described in Sahm et al. [21]) [22]. 
Making use of the signature-specific cutoffs, which were trained on the same dataset as the initial 
discovery of the mutational signatures by Alexandrov et al. [20], adds sensitivity to the analysis and 
offers the potential to analyze smaller cohorts or single samples. In the supervised analysis, additional 
mutational signatures were identified, increasing the total number to 14 signatures. This fixed set of 14 
mutational signatures and the exposures determined by the supervised analysis were used throughout 
all subsequent analyses presented here. 
 
NMF consensus clustering 
Recently, Chapuy et al. [23] performed non-negative matrix factorization (NMF) on merged binarized 
data from different sources in order to achieve a consensus clustering, which identified five robust 
clusters. Their analysis was based on 158 genetic driver alterations identified from 304 DLBCL cases 
by Whole Exome Sequencing (WES). In another analysis, Schmitz et al. [24] found four different 
prominent genetic subtypes of DLBCL were identified using a custom algorithm. Even though there 
exists some overlap between the genomic classifications described in the two publications, there are 
discrepancies between both reports as groups C2 and C4 by Chapuy et al. do not have a counterpart 
in the classification by Schmitz et al. Additionally, roughly half of the cases are not genomically classified 
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in the latter article. 
In order to compare our data to these results, we also binarized the different classes of mutations (SNVs, 
small Indels, SVs and CNAs) identified in driver genes and recurrently mutated genes and ran an NMF 
analysis. In a first step, this analysis was restricted to the DLBCL cases of our gcBCL cohort (initially 76 
cases but 72 after excluding four hypermutated cases, defined by mutational load more than two 
standard deviations above mean SNV mutational load). The results of this analysis are shown in Fig. 
S15. Based on the criteria for the determination of the optimal factorization rank described in the 
methods section of our manuscript, the optimal number of clusters was determined to be four in our 
analysis of DLBCL cases. In analogy to Chapuy et al. and Schmitz et al., these clusters were labelled 
by the most informative representative of the genes recurrently affected in the respective clusters (Fig. 
S15A). Our first cluster was thus labelled “MYD88-like”, it is dominated by ABC-DLBCL and corresponds 
to Cluster 5 in Chapuy et al. and the “MCD” subtype in Schmitz et al. (of note, CD79B is also part of the 
genes characterizing this cluster); our second cluster is labelled “BCL2-like”, samples belonging to this 
cluster are mainly GCB-DLBCL and this cluster corresponds to Cluster 3 in Chapuy et al. and the “EZB” 
subtype in Schmitz et al. (of note, EZH2 is also among the genes mutated in this cluster); our third 
cluster is labelled “BCL6-like”, samples belonging to this cluster are mixed between the ABC and GCB 
subtypes with a slight dominance of ABC, this cluster potentially corresponds to Cluster 1 in Chapuy et 
al. and the “BN2” subtype in Schmitz et al.; and finally a “TP53-like” cluster, dominated by the GCB 
subtype, overlapping with Clusters 4 and 2 in Chapuy et al. Of note, the genetic subtype termed “N1” in 
Schmitz et al. was retrieved neither in in the analysis by Chapuy et al., nor in our analysis. 
Chapuy et al. also investigated overall mutational density and found that Cluster 4 (corresponding to a 
subcluster of our “TP53-like” cluster) had the highest mutational density. In our analysis, the “TP53-like” 
and the “BCL6-like” clusters do not have a significantly different mutational density, but both have a 
significantly higher mutational density than the “MYD88-like” cluster (Fig. S15B). The WGS data (in 
contrast to the WES data obtained by Chapuy et al. and Schmitz et al.) additionally allows to compare 
the fraction of aberrant copy number states across the whole genome (see Fig. S15C). By this approach 
we can show that the “MYD88-like cluster” also has the lowest fraction of genomic imbalances. 
In contrast to Chapuy et al. and Schmitz et al., our cohort offers the potential to analyze the merged 
cohort of different gcBCL entities (other than BL). In our view this adds important information because 
– as also discussed by Chapuy et al. – some DLBCL genomic subgroups resemble genomic features 
of e.g. follicular lymphoma. We thus performed an NMF-based consensus clustering on binarized data 
also on our merged cohort. Results of this analysis are shown in Fig. S16. 
In this merged analysis the optimal number of clusters was determined to be nine, thereby revealing a 
more detailed substructure of gcBCL entities. Again, clusters were labelled by the most informative 
representative of the recurrently affected genes inside the cluster. The “MYD88-like”, “BCL2-like”, 
“BCL6-like” and “TP53-like” clusters identified in only DLBCL were also retrieved in this larger and more 
heterogeneous cohort.  
In addition, new clusters, which were either completely or at least in their majority driven by FLs, were 
identified: a “CSMD1-like” cluster, a “PAX5-like” and a “SOCS1-like” cluster. Furthermore, as expected, 
the “BCL2-like” cluster already discovered in DLBCL was populated by a majority of FLs in this pooled 
analysis. However, also additional mixed clusters were discovered: a “B2M-like” cluster and a “PIM1-
like” cluster, the latter being populated by a high fraction of FL-DLBCL cases. 
In order to link these clusters to the mutational mechanisms identified in our manuscript, we performed 
enrichment and depletion analyses. Results are shown in Fig. 4G-H. This analysis revealed that L1 
(CSR) was enriched in the “PIM1-like”, “BCL2-like” and “MYD88-like” clusters, whereas L2 (SHM) was 
enriched in “B2M-like” and “BCL2-like” clusters. Of note, AC9 was depleted in “BCL2-like”, “PAX5-like”, 
“BCL6-like” and “PIM1-like” clusters but had high contributions in the “B2M-like”, “SOCS1-like” and 
“MYD88-like” clusters. The ageing signature AC1 was enriched in the “BCL2-like” consensus cluster. 
Significant differences in total SNV load were found among the different consensus clusters (Kruskal-
Wallis discovery test p = 4.56 ×10-8), with pairwise post-hoc tests (Wilcoxon rank sum tests) revealing 
significantly lower SNV load in the “BCL2-like” consensus cluster than in all others except “CSMD1-like” 
and “MYD88-like” (Suppl. Table S12A). Furthermore, the “MYD88-like” consensus cluster had 
significantly less SNV load than the “PIM1-like” and “PAX5-like” clusters and a trend towards less SNV 
load than the “TP53-like” and the “B2M-like” consensus clusters (p-values are shown in Suppl. Table 
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S12A). Similarly, significant differences in the aberrant fraction of the genome were found among the 
different consensus clusters (Kruskal-Wallis discovery test p = 1.50×10-3), with pairwise post-hoc tests 
(Wilcoxon rank sum tests) revealing significantly lower aberrant fractions in the “BCL2-like” consensus 
cluster than in the “PIM1-like” and the “SOCS1-like” consensus clusters (Fig S16C and Suppl. Table 
S12B). Furthermore, the “BCL2-like” consensus cluster had a trend towards lower aberrant fraction than 
the “TP53-like” consensus cluster. We furthermore investigated congruence and cross-over of the 
DLBCL cases in our gcBCL cohort between the consensus clusters extracted only among the DLBCLs 
(Fig. S15) and those consensus clusters extracted among all gcBCL cases (Fig. S16). Numbers are 
displayed in Suppl. S12C. 
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