SUPPLEMENT

Epidemiology of 40 blood biomarkers of one-carbon metabolism, vitamin status, inflammation, and renal and endothelial function among cancer-free older adults.

Hana Zahed¹, Mattias Johansson¹, Per M. Ueland², Øivind Midttun³, Roger L. Milne^{4,5,6}, Graham G. Giles^{4,5,6}, Jonas Manjer^{7,8}, Malte Sandsveden⁹, Arnulf Langhammer^{10,11}, Elin Pettersen Sørgjerd^{12,13}, Kjell Grankvist¹⁴, Mikael Johansson¹⁵, Neal D. Freedman¹⁶, Wen-Yi Huang¹⁶, Chu Chen¹⁷, Ross Prentice¹⁷, Victoria L. Stevens¹⁸, Ying Wang¹⁸, Loic Le Marchand¹⁹, Lynne R. Wilkens¹⁹, Stephanie J. Weinstein¹⁶, Demetrius Albanes¹⁶, Qiuyin Cai²⁰, William J. Blot²⁰, Alan A. Arslan^{21,22,23}, Anne Zeleniuch-Jacquotte^{22,23}, Xiao-Ou Shu²⁰, Wei Zheng²⁰, Jian-Min Yuan²⁴, Woon-Puay Koh²⁵, Kala Visvanathan²⁶, Howard D. Sesso^{27,28}, Xuehong Zhang^{27,28}, J Michael Gaziano^{29,28}, Anouar Fanidi³⁰, David Muller³¹, Paul Brennan¹, Florence Guida¹, Hilary A. Robbins¹

¹Genomic Epidemiology Branch, International Agency For Research on Cancer, Lyon, France, ²Department of Clinical Science, University of Bergen, Bergen, Norway, ³Bevital AS, Bergen, Norway, ⁴Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia, ⁵Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia, ⁶Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia, ⁷Department of Surgery, Skane University Hospital, Malmo, Sweden, ⁸Lund University, Malmo, Sweden, ⁹Department of Clinical Sciences Malmo, Lund University, Malmo, Sweden, ¹⁰Department of Public Health and Nursing, Hunt Research Centre, Norwegian University of Science and Technology, Levanger, Norway, ¹¹Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway, ¹²Department of Public Health and Nursing, NTNU, Hunt Research Centre, Norwegian University of Science and Technology, Levanger, Norway, ¹³Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Levanger, Norway, ¹⁴Department of Medical Biosciences, Umea University, Umea, Sweden, ¹⁵Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden, ¹⁶Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA, ¹⁷Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA, ¹⁸American Cancer Society, Atlanta, USA, ¹⁹University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, USA, ²⁰Vanderbilt University Medical Center, Nashville, USA, ²¹Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, USA, ²²Department of Population Health, NYU Langone Health, New York, NY, USA, ²³Perlmutter Comprehensive Cancer Center, NYU Langone Health, New York, NY, USA, ²⁴University of Pittsburgh Medical Center, Pittsburgh, USA, ²⁵Duke - NUS Medical School, Singapore, ²⁶Johns Hopkins Institute for Clinical and Translational Research, Baltimore, USA, ²⁷Brigham and Women's Hospital, Harvard Medical School, Boston, USA, ²⁸Harvard T.H. Chan School of Public Health, Boston, USA, ²⁹Brigham and Women's Hospital, Boston, USA, ³⁰Université Claude Bernard Lyon 1, Lyon, France, ³¹Imperial College London School of Public Health, London, UK

Biomarker abbreviations used in Supplement:

AA = Anthranilic acid ADMA = Asymmetric dimethylarginine ARG = Arginine ATOC = A-tocopherol BET = Betaine CHOL = Choline COB = CobalaminCREAT = Creatinine CRP = C reactive protein CYSTA = Cystathionine DMG = Dimethylglycine FOL or SPFOLATE= Folate GLY = GlycineGTOC = G-tocopherol HAA = 3-hydroxyanthranilic acid HARG = Homoarginine, HK = 3-Hydroxykynurenine KA = Kynurenic acid KYN = Kynurenine KYN/TRP = Kynurenine tryptophan ratio MET = Methionine METSO = Methionine sulfoxide MMA = Methylmalonic acid NAM = Nicotinamide NEOPT = Neopterin PA = 4-Pyridoxic acid Par = PAr index PL = Pyridoxal PLP = Pyridoxal 5'-phosphate QA = Quinolinic acid RIBO = Riboflavin SARC = Sarcosine SDMA = Symmetric dimethylarginine SER = Serine TCYS = Total cysteine THCY = Total homocysteine TRP = Tryptophan Vit A or VA = Vitamin A Vit D or VD = Vitamin D XA = Xanthurenic acid

Supplementary methods: Statistical analyses for the primary analysis (main model) and sensitivity analyses.

Main model: linear mixed model with a fixed effect for cohort and random effect for batch

$$\begin{split} C_{biomarker} &= \beta_{0} + \beta_{1} \times age + \beta_{2} \times sex + \beta_{3} \times BMI + \beta_{4} \times I[formersmoker] \\ &+ \beta_{5} \times I[currentsmoker] + \beta_{6_i} \times race_{i} + \beta_{7_i} \times cohort_{i} + \beta_{8} \times years of storage \\ &+ b_{Batch_i} + \varepsilon \end{split}$$

Sensitivity model 1: linear mixed model without cohort and a random effect for batch

$$\begin{split} C_{biomarker} &= \beta_0 + \beta_1 \times age + \beta_2 \times sex + \beta_3 \times BMI + \beta_4 \times I[formersmoker] \\ &+ \beta_5 \times I[currentsmoker] + \beta_{6_i} \times race_i + \beta_7 \times years of storage + b_{Batch_i} + \varepsilon \end{split}$$

Sensitivity model 2: linear mixed model with a fixed effect for cohort and without batch

$$\begin{split} C_{biomarker} &= \beta_{0} + \beta_{1} \times age + \beta_{2} \times sex + \beta_{3} \times BMI + \beta_{4} \times I[formersmoker] \\ &+ \beta_{5} \times I[currentsmoker] + \beta_{6_{i}} \times race_{i} + \beta_{7_{i}} \times cohort_{i} + \beta_{8} \times years of storage \\ &+ \varepsilon \end{split}$$

Sensitivity model 3: linear mixed model with a fixed effect for cohort and random effect for batch, without the adjustment for storage time

 $C_{biomarker} = \beta_0 + \beta_1 \times age + \beta_2 \times sex + \beta_3 \times BMI + \beta_4 \times I[formersmoker] + \beta_5 \times I[currentsmoker] + \beta_{6_i} \times race_i + \beta_{7_i} \times cohort_i + b_{Batch_i} + \varepsilon$

Supplementary Table 1: Laboratory methods used for biomarker measurements

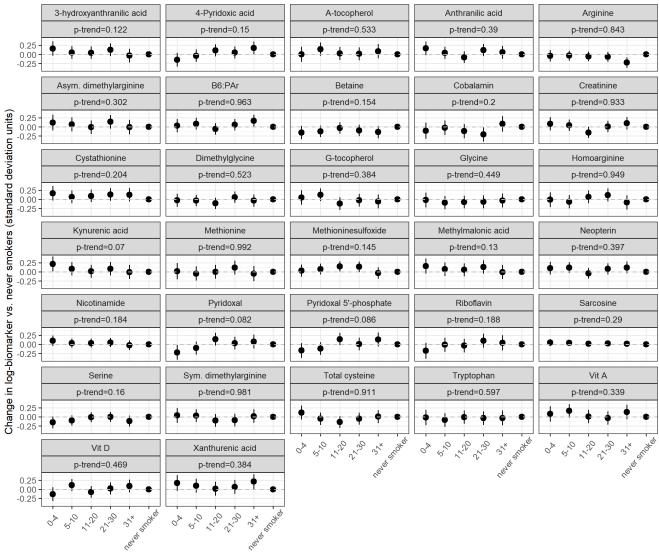
Method used	Biomarkers measured
Liquid chromatography (LC)-MS/MS	RIBO, PLP, PL, PA, KA, AA, HK, XA, HAA,
	NEOPT, CHOL, BET, DMG, CREAT, METSO,
	ARG, ADMA, SDMA, VIT A (all trans retinol), VIT
	D, ATOC, GTOC, QA, NAM, HARG
Gas chromatography (GC)-MS/MS	MMA, THCY, TCYS, MET, SER, GLY, CYSTA,
	SARC, TRP, KYN
MALDI-TOF MS	CRP
Microbiologic methods	COB, FOL

This information can be found on the official website of BEVITAL AS Laboratory at: <u>https://folk.uib.no/mfapu/Pages/BV/BVSite/platf.html</u>

Cohort	Years of blood collection	Number of years of blood collection	Median storage time
NSHDS	1989 to 2010	21	13
HUNT	1995 to 2008	13	14
PLCO	1994 to 2006	12	9
SCHS	1994 to 2005	11	8
MEC	1996 to 2006	10	7
SCCS	2002 to 2008	6	6
MDCS	1991 to 1996	5	16
NYU	1985 to 1990	5	24
PHS	1995 to 2000	5	14
WHI*	1993 to 1998	5	15
MCCS	1990 to 1994	4	17.5
SMHS	2002 to 2006	4	6
ATBC	1985 to 1988	3	23
CPS	1998 to 2001	3	10
SCS	1986 to 1989	3	22
SWHS	1997 to 2000	3	12
HPFS	1993 to 1995	2	17
WHS	1993 to 1995	2	17
NHS	1989 to 1990	1	20
CLUE	1989 to 1989	0	21

Supplementary Table 2: Years of blood collection in each participating cohort

*Individual years of blood draw were not provided for WHI. We imputed 1995 for the year of blood draw for all WHI participants in the regression models. Storage time for WHI was imputed to 15 years.


Supplementary Table 3: Descriptive characteristics of control participants in the Lung Cancer Cohort Consortium, stratified by cohort

		Ger	nder	Race			Smoking Status			
Cohort	N	Female	Male	White	Black	Asian	Other	Current	Former	Never
ATBC	200	0 (0%)	200 (100%)	200 (100%)	0 (0%)	0 (0%)	0 (0%)	200 (100%)	0 (0%)	0 (0%)
CLUE	171	70 (40.9%)	101 (59.1%)	170 (99.4%)	1 (0.6%)	0 (0%)	0 (0%)	85 (49.7%)	69 (40.4%)	17 (9.9%)
CPS	179	98 (54.7%)	81 (45.3%)	176 (98.3%)	1 (0.6%)	2 (1.1%)	0 (0%)	35 (19.6%)	105 (58.7%)	39 (21.8%)
HPFS	130	0 (0%)	130 (100%)	130 (100%)	0 (0%)	0 (0%)	0 (0%)	37 (28.5%)	77 (59.2%)	16 (12.3%)
HUNT	174	118 (67.8%)	56 (32.2%)	174 (100%)	0 (0%)	0 (0%)	0 (0%)	113 (64.9%)	40 (23%)	21 (12.1%)
MCCS	358	140 (39.1%)	218 (60.9%)	358 (100%)	0 (0%)	0 (0%)	0 (0%)	163 (45.5%)	149 (41.6%)	46 (12.8%)
MDCS	199	109 (54.8%)	90 (45.2%)	199 (100%)	0 (0%)	0 (0%)	0 (0%)	78 (39.2%)	71 (35.7%)	50 (25.1%)
MEC	148	57 (38.5%)	91 (61.5%)	99 (66.9%)	0 (0%)	49 (33.1%)	0 (0%)	43 (29.1%)	74 (50%)	31 (20.9%)
NHS	328	328 (100%)	0 (0%)	284 (86.6%)	0 (0%)	0 (0%)	44 (13.4%)	166 (50.6%)	122 (37.2%)	40 (12.2%)
NSHDS	230	115 (50%)	115 (50%)	129 (56.1%)	0 (0%)	0 (0%)	101 (43.9%)	128 (55.7%)	74 (32.2%)	28 (12.2%)
NYU	167	167 (100%)	0 (0%)	145 (86.8%)	10 (6%)	0 (0%)	12 (7.2%)	69 (41.3%)	69 (41.3%)	29 (17.4%)
PHS	76	0 (0%)	76 (100%)	76 (100%)	0 (0%)	0 (0%)	0 (0%)	8 (10.5%)	43 (56.6%)	25 (32.9%)
PLCO	440	134 (30.5%)	306 (69.5%)	414 (94.1%)	26 (5.9%)	0 (0%)	0 (0%)	107 (24.3%)	284 (64.5%)	49 (11.1%)
SCCS	209	68 (32.5%)	141 (67.5%)	0 (0%)	209 (100%)	0 (0%)	0 (0%)	155 (74.2%)	40 (19.1%)	14 (6.7%)
SCHS	409	125 (30.6%)	284 (69.4%)	0 (0%)	0 (0%)	409 (100%)	0 (0%)	210 (51.3%)	83 (20.3%)	116 (28.4%)
SCS	502	0 (0%)	502 (100%)	0 (0%)	0 (0%)	502 (100%)	0 (0%)	440 (87.6%)	11 (2.2%)	51 (10.2%)
SMHS	419	0 (0%)	419 (100%)	0 (0%)	0 (0%)	419 (100%)	0 (0%)	300 (71.6%)	70 (16.7%)	49 (11.7%)
SWHS	417	417 (100%)	0 (0%)	0 (0%)	0 (0%)	417 (100%)	0 (0%)	30 (7.2%)	5 (1.2%)	382 (91.6%)
WHI	228	228 (100%)	0 (0%)	215 (94.3%)	0 (0%)	13 (5.7%)	0 (0%)	0 (0%)	0 (0%)	228 (100%)
WHS	183	183 (100%)	0 (0%)	178 (97.3%)	0 (0%)	1 (0.5%)	4 (2.2%)	83 (45.4%)	67 (36.6%)	33 (18%)

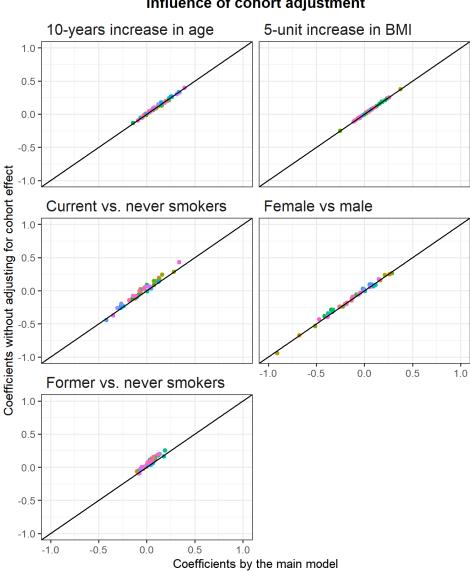
Supplementary Table 4: Effects of storage time on log biomarker concentrations, per 1 year of storage.

Change in log-biomarker (standard deviation unit)	Beta (95%CI or IQR)	Biomarker
Minimum	-0.001 (-0.015; 0.012)	Neopterin
Maximum	0.038 (0.024; 0.051)	Vitamin E- gamma tocopherol
Median	0.014 (0.006; 0.021)	NA

Effects of storage time on biomarker concentrations were extracted after fitting a linear regression model for each biomarker against storage time, adjusted for cohort. To determine the minimum, maximum, mean, and median, the absolute value of the coefficient estimates was considered, but the coefficient is listed as-is (without taking the absolute value). Biomarker samples were stored and frozen for up to 25 years after blood draw. Median storage time was 14 years for all biomarkers among all cohorts with an IQR of 9 years to 20 years.

Supplementary Figure 1: Trends in biomarker measurements by years of smoking cessation, for biomarkers without statistically significant trends

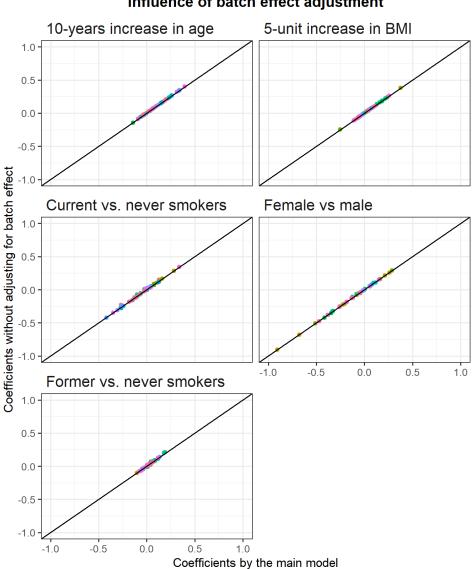
Years of smoking cessation


This analysis restricts to 1,427 never and former smokers from cohorts that provided data on years of smoking cessation, including CPS-II (n=144), MCCS (n=193), MEC (n=105), NHS (n=115), PLCO (n=326), SCCS (n=54), SMHS (n=104) and SWHS (n=386). It includes never smokers (n=650) and former smokers with 0-4 quit-years (n=113), 5-10 quit-years (n=174), 11-20 quit-years (n=172), 21-30 quit-years (n=168) and more than 30 quit-years (n=150).

		Prevalence of deficiency, N (%)							
Characteristic	N	Riboflavin	PLP	Folate	Cobalamin	Vitamin A	Vitamin E (α -tocopherol)	Vitamin D	
		5 nmol/L*	20 nmol/L*	5 nmol/L*	150 pmol/L*	0.7 μmol/L*	12 $\mu mol/L^{\star}$	30 nmol/L*	
Total	5167	174 (3.4)	826 (16.0)	98 (1.9)	41 (0.8)	9 (0.2)	14 (0.3)	462 (9.0)	
Age									
40-49	473	28 (5.9)	62 (13.1)	16 (3.4)	2 (0.4)	2 (0.4)	3 (0.6)	53 (11.2)	
50-59	1448	61 (4.2)	302 (20.9)	41 (2.8)	9 (0.6)	2 (0.1)	4 (0.3)	155 (10.7)	
60-69	2324	62 (2.7)	362 (15.6)	27 (1.2)	19 (0.8)	3 (0.1)	3 (0.1)	209 (9.0)	
70-80	922	23 (2.5)	100 (10.8)	14 (1.5)	11(1.2)	2 (0.2)	4 (0.4)	45 (4.9)	
p-het		0.001	<0.001	<0.001	0.39	0.39	0.11	<0.001	
Gender									
Male	2810	104 (3.7)	562 (20.0)	49 (1.7)	24 (0.9)	5 (0.2)	8 (0.3)	265 (9.4)	
Female	2357	70 (3)	264 (11.2)	49 (2.1)	17 (0.7)	4 (0.2)	6 (0.3)	197 (8.4)	
p-het		0.16	<0.001	0.41	0.64	0.99	0.99	<0.001	
BMI									
Underweight	121	3 (2.5)	47 (38.8)	2 (1.7)	1 (0.8)	1 (0.8)	1 (0.8)	22 (18.2)	
Normal	2608	85 (3.3)	477 (18.3)	52 (2.0)	17 (0.7)	4 (0.2)	11 (0.4)	241 (9.2)	
Overweight	1802	68 (3.8)	214 (11.9)	34 (1.9)	17 (0.9)	3 (0.2)	2 (0.1)	128 (7.1)	
Obese	636	18 (2.8)	88 (13.8)	10 (1.6)	6 (0.9)	1 (0.2)	0 (0.0)	71 (11.2)	
p-het		0.67	<0.001	0.95	0.58	0.36	0.05	<0.001	
Smoking status									
Never	1264	44 (3.5)	92 (7.3)	12 (0.9)	11 (0.9)	2 (0.2)	3 (0.2)	117 (9.3)	
Former	1453	24 (1.7)	122 (8.4)	15 (1.0)	13 (0.9)	2 (0.1)	2 (0.1)	66 (4.5)	
Current	2450	106 (4.3)	612 (25.0)	71 (2.9)	17 (0.7)	5 (0.2)	9 (0.4)	279 (11.4)	
p-het		<0.001	<0.001	<0.001	0.71	0.99	0.44	<0.001	
Race (USA)									
White	1887	15 (0.8)	170 (9.0)	8 (0.4)	14 (0.7)	1 (0.1)	0 (0.0)	77 (4.1)	
Black	247	16 (6.5)	27 (10.9)	1 (0.4)	3 (1.2)	3 (1.2)	3 (1.2)	78 (31.6)	
p-het		<0.001	0.005	0.07	0.41	0.03	0.006	<0.001	

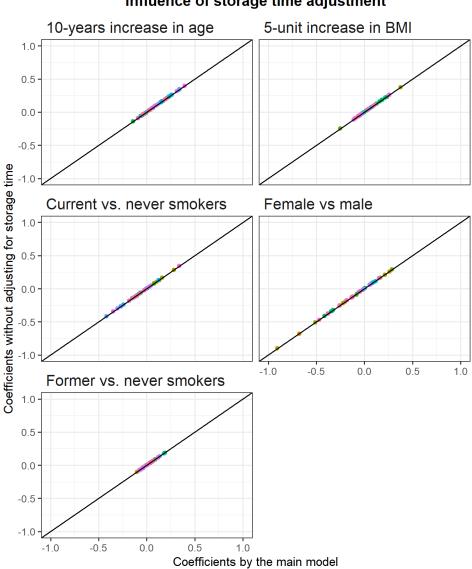
Supplementary Table 5: Description of vitamin deficiencies among 5,167 control subjects in the Lung Cancer Cohort Consortium

*Cutpoint for defining deficiency, as described in Midttun et al, Am J Clin Nutr 2017. We calculated p-values for heterogeneity (p-het) using the Fisher exact test. P-values less than 0.05 are shown in bold. We did not adjust for multiple comparisons. PLP: pyridoxal 5'-phosphate.


Supplementary Figure 2: Model parameterization sensitivity analyses. Effect of removing cohort adjustment on coefficients measuring the association between 40 biomarkers and age, sex, smoking status, and BMI

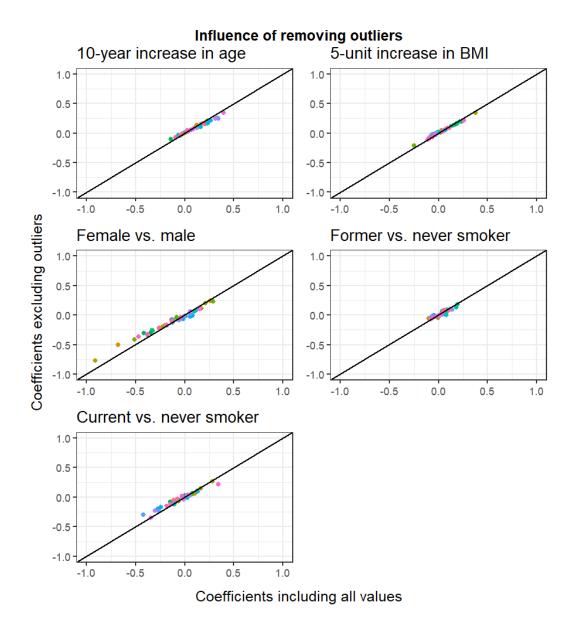
Influence of cohort adjustment

Each point represents the coefficients generated for one biomarker.


Supplementary Figure 3: Model parameterization sensitivity analyses. Effect of removing random effects for batch adjustment on coefficients measuring the association between 40 biomarkers and age, sex, smoking status, and BMI

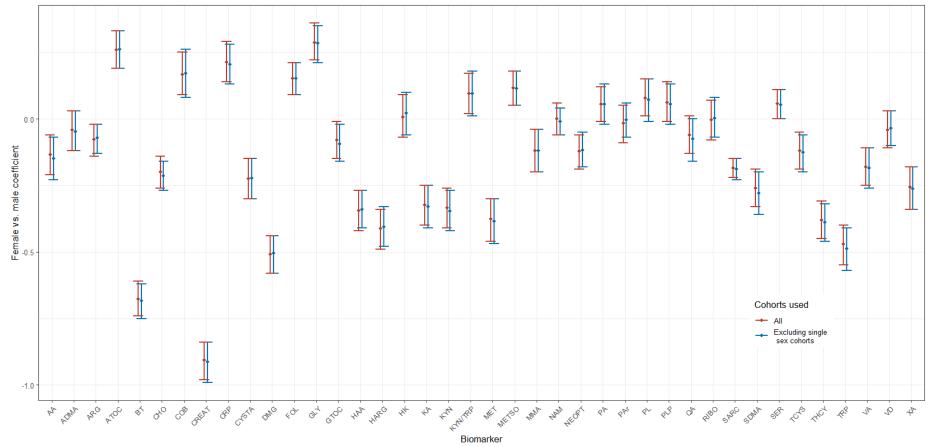
Influence of batch effect adjustment

Each point represents the coefficients generated for one biomarker.

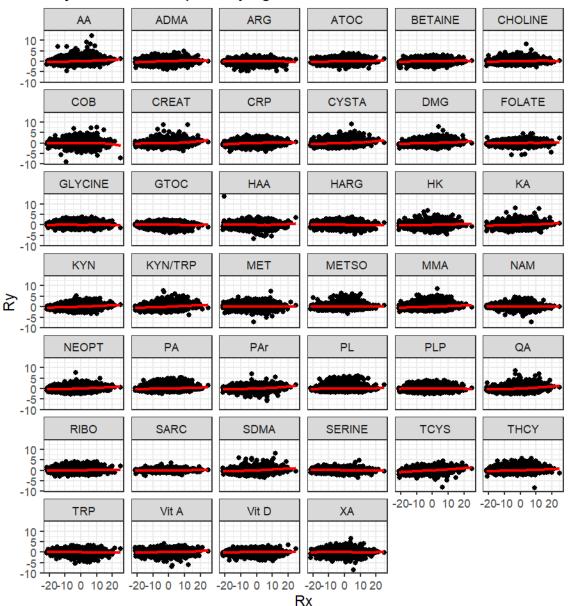

Supplementary Figure 4: Model parameterization sensitivity analyses. Effect of removing time storage adjustment on coefficients measuring the association between 40 biomarkers and age, sex, smoking status and BMI

Influence of storage time adjustment

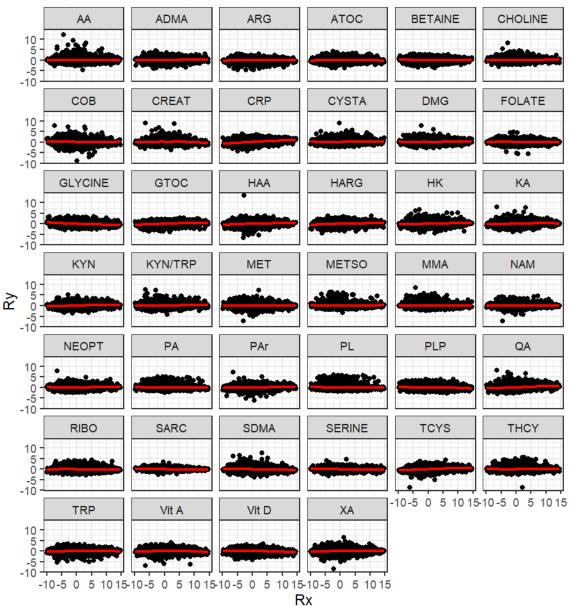
Each point represents the coefficients generated for one biomarker.


Supplementary Figure 5: Model parameterization sensitivity analyses. Effect of removing outliers on coefficients measuring the association between 40 biomarkers and age, sex, smoking status, and BMI

Each point represents the coefficients generated for one biomarker.


We defined outliers as values with an absolute difference with the mean concentration of a biomarker greater than 1.5 times the interquartile range.

Single-sex cohorts include male-only cohorts (ATBC, HPFS, PHS, SCS, SMHS) and female-only cohorts (NHS, NYU, SWHS, WHI, WHS).


Supplementary Figure 7: Adjusted variable plots to examine the assumption of a linear relationship between each biomarker and age (see list of abbreviations).

Adjusted variable plots by age

We used a general linear model to regress biomarker's concentration on every predictor used in the main model except for age (i.e. sex, BMI, smoking status, race, cohort, and storage time). The residuals from this regression (Rx) contain information about biomarker concentration that is not explained by those predictors. We separately used a general linear model to regress age against predictors used in the previous model. The residuals from this regression (Ry) contain information about by the other predictors. Finally, we plotted Rx against Ry to visualize the relationship between the biomarker and age after adjusting for all other predictors. The relationship is shown by a smoothed LOESS curve.

Supplementary Figure 8: Adjusted variable plots to examine the assumption of a linear relationship between each biomarker and BMI (see list of abbreviations).

Adjusted variable plots by BMI

We used a general linear model to regress biomarker's concentration on every predictor used in the main model except for BMI (i.e. sex, age, smoking status, race, cohort, and storage time). The residuals from this regression (Rx) contain information about biomarker concentration that is not explained by those predictors. We separately used a general linear model to regress BMI against predictors used in the previous model. The residuals from this regression (Ry) contain information about BMI not explained by the other predictors. Finally, we plotted Rx against Ry to visualize the relationship between the biomarker and BMI after adjusting for all other predictors. The relationship is shown by a smoothed LOESS curve.

	Multivitamin use if measured as current	Multivitamin use if measured as ever
	or no current use,	or never use,
	N current user / total respondents (%)	N ever user / total respondents (%)
Age, years		
<50	64/310 (20.6)	27/38 (71.1)
50-60	139/691 (20.1)	73/142 (51.4)
60-70	278/1184 (23.5)	119/374 (31.8)
70-80	147/425 (34.6)	89/259 (34.4)
p-value	<0.001	<0.001
Gender		
Male	215/1108 (19.4)	111/421 (26.4)
Female	413/1502 (27.5)	197/392 (50.3)
p-value	<0.001	<0.001
BMI		
Underweight	8/37 (21.6)	3/5 (60.0)
Normal	299/1225 (24.4)	158/355 (44.5)
Overweight	224/976 (23.0)	106/316 (33.5)
Obese	97/372 (26.1)	41/137 (29.9)
p-value	0.64	0.003
Smoking status		
Never	183/856 (21.4)	61/135 (45.2)
Former	222/698 (31.8)	139/442 (31.4)
Current	223/1056 (21.1)	108/236 (45.8)
p-value	<0.001	<0.001
Race		
White	485/1492 (32.5)	266/722 (36.8)
Black	61/210 (29.0)	7/28 (25.0)
Asian	61/851 (7.2)	28/50 (56.0)
Other	21/57 (36.8)	7/13 (53.8)
p-value	<0.001	0.01

Supplementary Table 6: Prevalence of multivitamin use across demographic variables.

Multivitamin supplement use was reported as follows: never or ever use in MEC, NYUWHS, PHS, and PLCO; current or no current use in CLUE, CPS-II, HPFS, HUNT, MCCS, NHS, NSHDS, SCCS, SMHS, SWHS, and WHI; and a mixture of these two systems in WHS. No information on multivitamin supplement use was reported in ATBC, MDCS, SCHS and SCS. Overall, information on multivitamin use was missing in 1744 of 5164 participants.

Supplementary	Table 7: Prevalence of	of vitamin	deficiencies b	y multivitamin use.

Multivitamin use	Vitamin D deficiency N (%)	PLP (B6) deficiency N (%)	Folate (B9) deficiency N (%)
Never users	22/505 (4.4)	67/505 (13.3)	1/505 (0.2)
Ever users	6/308 (2.0)	8/308 (2.6)	0/308 (0.0)
p-value	0.10	<0.001	
No current users	268/1977 (13.6)	228/1982 (11.5)	36/1982 (1.8)
Current users	29/628 (4.6)	24/628 (3.8)	8/628 (1.3)
p-value	<0.001	<0.001	0.46

Some cohorts measured multivitamin use as ever/never, while others measured as current/no current use. Cutpoints used to indicate vitamin deficiency were 20 nmol/L for PLP, 5 nmol/L for folate, and 30 nmol/L for vitamin D (Midtun et al, Am J Clin Nutr 2017).

Supplementary Table 8: Adjusted differences in standardized means of log-biomarker values. These values are shown in the main manuscript in Figures 1, 2, 3, and 4.

Biomarkers related to	10-year increase in age	Female vs. male	Former vs. never smoker	Current vs. never smoker	5-unit increase in body mass index
One carbon metabolism					
Total cysteine	0.40 (0.36; 0.43)	-0.12 (-0.19; -0.05)	-0.05 (-0.13; 0.03)	-0.14 (-0.22; -0.07)	0.26 (0.23; 0.29)
Cystathionine	0.23 (0.20; 0.27)	-0.22 (-0.30; -0.15)	0.09 (0.00; 0.17)	0.16 (0.08; 0.24)	0.13 (0.10; 0.16)
Total homocysteine	0.19 (0.15; 0.22)	-0.38 (-0.45; -0.31)	0.12 (0.04; 0.20)	0.34 (0.26; 0.42)	0.05 (0.01; 0.08)
Dimethylglycine	0.16 (0.13; 0.19)	-0.51 (-0.58; -0.44)	-0.04 (-0.11; 0.04)	0.13 (0.06; 0.20)	0.03 (0.00; 0.06)
Choline	0.12 (0.09; 0.15)	-0.20 (-0.26; -0.14)	0.09 (0.02; 0.16)	0.10 (0.04; 0.17)	0.05 (0.03; 0.08)
Betaine	0.10 (0.07; 0.13)	-0.68 (-0.74; -0.61)	-0.10 (-0.17; -0.03)	-0.06 (-0.13; 0.01)	-0.06 (-0.09; -0.03)
Methionine sulfoxide	0.07 (0.04; 0.10)	0.12 (0.05; 0.18)	0.04 (-0.04; 0.11)	-0.10 (-0.17; -0.03)	-0.01 (-0.04; 0.02)
Sarcosine	0.03 (0.01; 0.04)	-0.18 (-0.22; -0.15)	0.03 (-0.01; 0.08)	0.05 (0.01; 0.09)	-0.03 (-0.04; -0.01)
Glycine	-0.01 (-0.04; 0.03)	0.29 (0.22; 0.36)	-0.05 (-0.13; 0.03)	0.08 (0.00; 0.15)	-0.25 (-0.28; -0.22)
Methionine	-0.06 (-0.10; -0.02)	-0.38 (-0.46; -0.30)	0.03 (-0.06; 0.12)	-0.06 (-0.15; 0.02)	0.00 (-0.04; 0.03)
Serine	-0.09 (-0.12; -0.06)	0.06 (0.00; 0.11)	-0.02 (-0.09; 0.04)	0.02 (-0.04; 0.09)	-0.11 (-0.14; -0.09)
Vitamin status					
B12: Methylmalonic acid	0.23 (0.19; 0.27)	-0.12 (-0.20; -0.04)	0.08 (-0.01; 0.17)	0.02 (-0.06; 0.11)	-0.05 (-0.09; -0.02)
B6:4-Pyridoxic acid	0.15 (0.12; 0.18)	0.05 (-0.01; 0.12)	-0.04 (-0.12; 0.04)	-0.24 (-0.32; -0.17)	-0.03 (-0.06; 0.01)
B2: Riboflavin	0.12 (0.09; 0.16)	0.00 (-0.08; 0.07)	-0.06 (-0.15; 0.03)	-0.30 (-0.38; -0.22)	-0.02 (-0.06; 0.01)
VE: A-tocopherol	0.12 (0.09; 0.15)	0.26 (0.19; 0.33)	-0.01 (-0.08; 0.07)	-0.12 (-0.19; -0.04)	0.02 (-0.01; 0.05)
B9: Folate	0.08 (0.05; 0.12)	0.15 (0.09; 0.21)	-0.08 (-0.15; 0.00)	-0.35 (-0.41; -0.28)	-0.04 (-0.07; -0.01)
B6: Pyridoxal	0.07 (0.03; 0.10)	0.08 (0.01; 0.15)	-0.05 (-0.13; 0.03)	-0.27 (-0.35; -0.19)	-0.06 (-0.09; -0.03)
Vitamin A	0.05 (0.01; 0.09)	-0.18 (-0.25; -0.11)	0.06 (-0.03; 0.14)	-0.03 (-0.10; 0.05)	0.04 (0.01; 0.07)
Vitamin D	0.03 (-0.01; 0.06)	-0.04 (-0.11; 0.03)	0.04 (-0.05; 0.12)	-0.18 (-0.26; -0.10)	-0.10 (-0.13; -0.06)
B12: Cobalamin	0.02 (-0.02; 0.06)	0.17 (0.09; 0.25)	-0.08 (-0.17; 0.01)	-0.13 (-0.21; -0.04)	-0.06 (-0.10; -0.03)
B6: Pyridoxal 5'-phosphate	-0.01 (-0.05; 0.02)	0.06 (-0.01; 0.14)	-0.07 (-0.15; 0.01)	-0.42 (-0.50; -0.34)	-0.07 (-0.10; -0.04)
VE: G-tocopherol	-0.01 (-0.04; 0.03)	-0.08 (-0.15; -0.01)	0.00 (-0.08; 0.07)	0.08 (0.00; 0.15)	0.23 (0.21; 0.26)
B3: Nicotinamide	-0.05 (-0.07; -0.02)	0.00 (-0.06; 0.06)	0.04 (-0.02; 0.11)	0.05 (-0.01; 0.11)	0.03 (0.01; 0.06)
Kynurenine pathway and inflammation					
Quinolinic acid	0.34 (0.31; 0.38)	-0.06 (-0.13; 0.01)	0.14 (0.05; 0.22)	-0.26 (-0.34; -0.18)	0.26 (0.23; 0.29)

Kynurenine/Tryptophan	0.33 (0.30; 0.37)	0.09 (0.02; 0.17)	0.18 (0.09; 0.27)	0.01 (-0.08; 0.09)	0.13 (0.10; 0.16)
Kynurenine	0.26 (0.23; 0.30)	-0.33 (-0.41; -0.26)	0.19 (0.11; 0.27)	-0.02 (-0.10; 0.06)	0.22 (0.18; 0.25)
Neopterin	0.26 (0.23; 0.29)	-0.12 (-0.19; -0.06)	0.07 (-0.01; 0.14)	-0.10 (-0.17; -0.03)	0.07 (0.05; 0.10)
B6:PAr	0.25 (0.22; 0.28)	-0.02 (-0.09; 0.05)	0.03 (-0.05; 0.11)	0.13 (0.05; 0.20)	0.05 (0.02; 0.08)
Anthranilic acid	0.20 (0.16; 0.24)	-0.13 (-0.21; -0.06)	0.04 (-0.05; 0.13)	-0.27 (-0.35; -0.18)	0.00 (-0.04; 0.03)
C reactive protein	0.17 (0.13; 0.20)	0.21 (0.14; 0.29)	0.03 (-0.05; 0.12)	0.28 (0.20; 0.37)	0.38 (0.34; 0.41)
Kynurenic acid	0.16 (0.12; 0.20)	-0.32 (-0.40; -0.25)	0.08 (0.00; 0.17)	-0.08 (-0.17; 0.00)	0.19 (0.15; 0.22)
3-Hydroxykynurenine	0.14 (0.10; 0.18)	0.01 (-0.07; 0.09)	0.12 (0.03; 0.21)	0.00 (-0.08; 0.09)	0.16 (0.12; 0.19)
3-hydroxyanthranilic acid	-0.03 (-0.06; 0.01)	-0.34 (-0.42; -0.27)	0.04 (-0.05; 0.13)	-0.15 (-0.23; -0.07)	0.19 (0.15; 0.22)
Xanthurenic acid	-0.04 (-0.08; 0.00)	-0.26 (-0.34; -0.18)	0.07 (-0.02; 0.16)	-0.08 (-0.16; 0.01)	0.11 (0.07; 0.14)
Tryptophan	-0.09 (-0.13; -0.05)	-0.47 (-0.55; -0.40)	0.01 (-0.07; 0.10)	-0.02 (-0.10; 0.06)	0.09 (0.06; 0.12)
Renal and endothelial					
functions					
SDMA	0.31 (0.28; 0.35)	-0.26 (-0.33; -0.19)	0.01 (-0.07; 0.09)	-0.01 (-0.09; 0.07)	-0.09 (-0.12; -0.06)
ADMA	0.21 (0.18; 0.25)	-0.04 (-0.12; 0.03)	0.00 (-0.08; 0.09)	0.13 (0.05; 0.21)	0.08 (0.04; 0.11)
Creatinine	0.15 (0.11; 0.18)	-0.91 (-0.98; -0.84)	0.05 (-0.02; 0.13)	-0.06 (-0.14; 0.01)	0.02 (-0.01; 0.05)
Arginine	0.04 (0.01; 0.07)	-0.08 (-0.14; -0.02)	-0.03 (-0.10; 0.03)	0.03 (-0.03; 0.09)	-0.05 (-0.07; -0.02)
Homoarginine	-0.14 (-0.18; -0.11)	-0.41 (-0.49; -0.34)	0.01 (-0.07; 0.09)	-0.26 (-0.34; -0.18)	0.18 (0.15; 0.21)