- 1 A neuronal ensemble encoding adaptive choice during sensory conflict in *Drosophila*
- 2 Preeti F. Sareen¹, Li Yan McCurdy^{1,2}, Michael N. Nitabach^{1,3,4,*}
- 3
- ⁴ ¹Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- ⁵ ²Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- 6 ³Department of Genetics, Yale University, New Haven, CT, USA
- ⁷ ⁴Department of Neuroscience, Yale University, New Haven, CT, USA
- 8
- 9 *Corresponding author: michael.nitabach@yale.edu

10 Supplementary Table 1

11 Detailed statistics and sample size for data in main figures

Figure	Datasets compared	Statistics
Fig. 1d	w^{1118} male vs. female Preference index	Mixed-effects analysis,
		F(9,118)=22.46,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)
	1mM male vs. female (n=10)	0.9968
	10mM male vs. female (n=10)	>0.9999
	50mM male vs. female (n=20)	0.1784
	100mM male vs. female (n=27)	0.5552
	500mM male vs. female (n=10)	0.8233
Fig. 1e	w^{1118} Preference index, Group size (n=77)	Pearson's $r^2=0.05655$,
		p=0.0373 (two-tailed)
Fig. 1f	w^{1118} Preference index, % ate (n=77)	Pearson's $r^2=0.225$,
		p<0.0001 (two-tailed)
Fig. 1g	w^{1118} % ate, Group size (n=77)	Pearson's $r^2=0.0006$,
		p=0.8313 (two-tailed)
Fig. 1h	w^{1118} Preference index, Group size, % ate	Multiple linear
		regression,
		F(3,73)=9.393,
		p<0.0001

		r ² =0.278
Fig. 2a	Optogenetic Screen 20XUAS-Chrimson (Chr)	One-way ANOVA,
	empty>Chr (n=30)	F(40,358)=5.397,
		p<0.0001
		Dunnett's adjusted p:
		(two-tailed)
	empty>Chr vs. Akh>Chr (n=10)	0.9996
	empty>Chr vs. AstA>Chr (n=10)	<0.0001
	empty>Chr vs. Crz>Chr (n=10)	0.9990
	empty>Chr vs. DH44>Chr (n=10)	0.1302
	empty>Chr vs. Lk>Chr (n=10)	0.9997
	empty>Chr vs. NPF>Chr (n=10)	<0.0001
	empty>Chr vs. Proctolin>Chr (n=10)	0.9997
	empty>Chr vs. sNPF>Chr (n=10)	0.9983
	empty>Chr vs. Tk>Chr (n=10)	0.9993
	empty>Chr vs. TH>Chr (n=10)	0.9983
	empty>Chr vs. PPL1 (504B)>Chr (n=10)	0.9998
	empty>Chr vs. PPL1 (65B)>Chr (n=10)	0.9996
	empty>Chr vs. PAM (58E02)>Chr (n=10)	0.9993
	empty>Chr vs. OA/TA Tdc>Chr (n=10)	>0.9999
	empty>Chr vs. Ser/Trh>Chr (n=10)	0.9997
	empty>Chr vs. γ2α'1>Chr (n=10)	<0.0001

empty>Chr vs. α3>Chr (n=10)	0.8644
empty>Chr vs. γ1-pedc>Chr (n=10)	0.9986
empty>Chr vs. α'2α2>Chr (n=10)	0.9997
empty>Chr vs. α'2α2,γ2α'1>Chr (n=10)	0.9995
empty>Chr vs. α1>Chr (n=10)	0.0070
empty>Chr vs. β1>Chr (n=10)	0.1241
empty>Chr vs. β1β2>Chr (n=10)	0.9924
empty>Chr vs. γ5>Chr (n=10)	0.9997
empty>Chr vs. β'2a>Chr (n=6)	0.9983
empty>Chr vs. $\gamma 4, \gamma 4 < \gamma 1 \gamma 2$ >Chr (n=10)	0.9982
empty>Chr vs. γ3>Chr (n=10)	0.9990
empty>Chr vs. allKC 10B>Chr (n=10)	0.9988
empty>Chr vs. α/β 8B>Chr (n=8)	0.9988
empty>Chr vs. α/β c739>Chr (n=10)	0.9988
empty>Chr vs. α'/β' 5B>Chr (n=10)	0.9997
empty>Chr vs. γ-m 131B>Chr (n=8)	0.3762
empty>Chr vs. FB14,6 ss20>Chr (n=15)	0.9997
empty>Chr vs. FB13,4,6 ss208>Chr (n=10)	0.9990
empty>Chr vs. FB13,4,6 ss225>Chr (n=10)	0.9993
empty>Chr vs. FB16 c205>Chr (n=10)	0.9777
empty>Chr vs. FB12,8,9 R89E07>Chr (n=10)	0.6555
empty>Chr vs. FB15,8,9 R38E07>Chr (n=10)	0.9994

	empty>Chr vs. ventral FB R58F03>Chr (n=10)	0.3548
	empty>Chr vs. FB11,2 R52G12>Chr (n=10)	0.9987
Fig. 2a	Optogenetic Screen 20XUAS-GtACR1 (Gt)	One-way ANOVA,
	empty>Gt (n=30)	F(10,129)=7.719,
		p<0.0001
		Dunnett's adjusted p:
		(two-tailed)
	empty>Gt vs. AstA>Gt (n=10)	0.0004
	empty>Gt vs. DH44>Gt (n=10)	0.0023
	empty>Gt vs. Lk>Gt (n=10)	0.0081
	empty>Gt vs. NPF>Gt (n=10)	0.4307
	empty>Gt vs. $\gamma 2\alpha$ '1>Gt (n=10)	>0.9999
	empty>Gt vs. α3>Gt1 (n=10)	<0.0001
	empty>Gt vs. α1>Gt (n=10)	0.9628
	empty>Gt vs. β1>Gt (n=10)	0.9996
	empty>Gt vs. FBl6 c205>Gt (n=10)	0.0002
	empty>Gt vs. FBl2,8,9 89E07>Gt (n=20)	0.2042
Fig. 2b	Lk (left panel)	One-way ANOVA,
		F(4,84)=8.136,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)

	empty>Chr (n=10) (n=10) vs. Lk>Chr (n=20)	0.2664
	empty>Chr (n=10) vs. Lk>UAS-Chr;UAS-	0.3550
	$DH44^{RNAi}$ (n=30)	0.0005
	empty>Gt (n=10) vs. Lk>Gt (n=19)	
Fig. 2b	Lk (right panel)	One-way ANOVA,
	RNAi ctrl = Lk-GAL4>UAS-Valium (n=20)	F(7,106)=1.973,
		p=0.0655
	RNAi ctrl vs. AstA-R1 ^{RNAi} (n=14)	Multiple comparisons
	RNAi ctrl vs. DH44-R1 ^{RNAi} (n=10)	not carried out since
	RNAi ctrl vs. NPFR ^{RNAi} (n=10)	ANOVA is not
	RNAi ctrl vs. Dop1R1 ^{RNAi} (n=20)	significant
	RNAi ctrl vs. Dop1R2 ^{RNAi} (n=10)	
	RNAi ctrl vs. Dop2R ^{RNAi} (n=20)	
	RNAi ctrl vs. DopEcR ^{RNAi} (n=10)	
Fig. 2c	AstA (left panel)	One-way ANOVA,
		F(4,75)=61.57,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)
	empty>Chr (n=10) vs. Chr (n=20)	<0.0001
	empty>Chr (n=10) vs. AstA>UAS-Chr;UAS-AstA ^{RNAi}	0.9814
	(n=20)	<0.0001
	empty>Gt (n=10) vs. AstA>Gt (n=20)	

Fig. 2c	AstA (right panel)	One-way ANOVA,
	RNAi ctrl = AstA-GAL4>UAS-Valium (n=20)	F(7,90)=4.368,
		p=0.0003
		Dunnett's adjusted p:
		(two-tailed)
	RNAi ctrl vs. DH44-R1 ^{RNAi} (n=10)	0.9530
	RNAi ctrl vs. Lkr ^{RNAi} (n=5)	0.2010
	RNAi ctrl vs. NPFR ^{RNAi} (n=13)	0.5986
	RNAi ctrl vs. Dop1R1 ^{RNAi} (n=20)	0.0005
	RNAi ctrl vs. Dop1R2 ^{RNAi} (n=10)	0.9998
	RNAi ctrl vs. Dop2R ^{RNAi} (n=10)	0.9979
	RNAi ctrl vs. DopEcR ^{RNAi} (n=10)	0.9975
Fig. 2d	NPF (left panel)	One-way ANOVA,
		F(5,89)=11.81,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)
	empty>Chr (n=10) vs. NPF>Chr (n=20)	0.0002
	empty>Chr (n=10) vs. NPF>UAS-Chr;UAS-NPF ^{RNAi}	0.9855
	(n=25)	0.1928
	empty>Gt (n=10) vs. NPF>Gt (n=20)	

Fig. 2d	NPF (right panel)	One-way ANOVA,
	RNAi ctrl = NPF-GAL4>UAS-Valium (n=20)	F(7,127)=3.657,
		p=0.0012
		Dunnett's adjusted p:
		(two-tailed)
	RNAi ctrl vs. AstA-R1 ^{RNAi} (n=15)	0.4148
	RNAi ctrl vs. DH44-R1 ^{RNAi} (n=10)	0.9972
	RNAi ctrl vs. Lkr ^{RNAi} (n=20)	0.0188
	RNAi ctrl vs. Dop1R1 ^{RNAi} (n=20)	0.0026
	RNAi ctrl vs. Dop1R2 ^{RNAi} (n=20)	0.1588
	RNAi ctrl vs. Dop2R ^{RNAi} (n=20)	0.9212
	RNAi ctrl vs. DopEcR ^{RNAi} (n=10)	0.9910
Fig. 2e	DH44 (left panel)	One-way ANOVA,
		F(4,75)=10.54,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)
	empty>Chr (n=10) vs. DH44>Chr (n=20)	0.1591
	empty>Chr (n=10) vs. DH44>UAS-Chr;UAS-	0.9807
	$DH44^{RNAi}$ (n=20)	<0.0001
	empty>Gt (n=10) vs. DH44>Gt (n=20)	

Fig. 2e	DH44 (right panel)	One-way ANOVA,
	RNAi ctrl = DH44-GAL4>UAS-Valium (n=20)	F(7,141)=5.56,
		p<0.0001
		Dunnett's adjusted p:
		(two-tailed)
	RNAi ctrl vs. DH44>AstA-R1 ^{RNAi} (n=20)	0.7806
	RNAi ctrl vs. DH44>Lkr ^{RNAi} (n=20)	0.6273
	RNAi ctrl vs. DH44>NPFR ^{RNAi} (n=19)	0.9997
	RNAi ctrl vs. DH44>Dop1R1 ^{RNAi} (n=20)	0.9998
	RNAi ctrl vs. DH44>Dop1R2 ^{RNAi} (n=10)	0.9996
	RNAi ctrl vs. DH44>Dop2R ^{RNAi} (n=20)	0.9952
	RNAi ctrl vs. DH44>DopEcR ^{RNAi} (n=20)	0.0001
Fig. 3a	c205 (left panel)	One-way ANOVA,
		F(14,318)=3.315,
		p<0.0001
		Sidak's adjusted p:
		(two-tailed)
	empty>Chr (n=26) vs. c205>Chr (n=45)	0.2150
	empty>Gt (n=20) vs. c205>Gt (n=20)	<0.0001
	empty>Gt (n=20) vs. 84C10>GAL80+c205>Gt (n=10)	0.7195
	c205>Gt (n=20) vs. 84C10>GAL80+c205>Gt (n=10)	0.0008
	c205 (right panel)	Kruskal-Wallis
	RNAi ctrl = c205-GAL4>UAS-Valium (n=47)	stat=40.85, p<0.0001

		Dunn's adjusted p:
		(two-tailed)
	RNAi ctrl vs. AstA ^{RNAi} (n=20)	0.2550
	RNAi ctrl vs. AstA-R1 ^{RNAi} (n=20)	0.0131
	RNAi ctrl vs. DH44 ^{RNAi} (n=20)	0.1245
	RNAi ctrl vs. DH44-R1 ^{RNAi} (n=20)	0.0001
	RNAi ctrl vs. Lk ^{RNAi} (n=20)	0.9999
	RNAi ctrl vs. Lkr ^{RNAi} (n=20)	0.0011
	RNAi ctrl vs. NPF ^{RNAi} (n=20)	0.9999
	RNAi ctrl vs. NPFR ^{RNAi} (n=40)	0.9999
	RNAi ctrl vs. Dop1R1 ^{RNAi} (n=20)	0.9999
	RNAi ctrl vs. Dop1R2 ^{RNAi} (n=20)	0.9999
	RNAi ctrl vs. Dop2R ^{RNAi} (n=20)	0.6954
	RNAi ctrl vs. DopEcR ^{RNAi} (n=31)	0.9999
Fig. 3b	c205 % ate	Kruskal-Wallis
		stat=49.98, p<0.0001
		Dunn's adjusted p:
		(two-tailed)
	c205>Chr deprived (n=29) vs. fed (n=10)	<0.0001
	c205>Gt deprived (n=20) vs. fed (n=10)	<0.0001
Fig. 3c	Food intake	Kruskal-Wallis
	empty>Chr (n=10) c205>Chr (n=8)	stat=3.022, p=0.6966

Fig. 3d	Food intake	Kruskal-Wallis
	empty>Gt (n=7), c205>Gt (n=7)	stat=4.189, p=0.5225
Fig. 3e	Place PI	One-way ANOVA,
	empty>Chr (n=8), c205>Chr (n=20)	F(3,39)=2.284, p=0.094
	empty>Gt (n=7), c205>Gt (n=8)	
Fig. 4d	84C10 Peak $\Delta R/R_0$	Kruskal-Wallis
		stat=37.79, p<0.0001
		Two-tailed Wilcoxon
		matched-pairs or Paired
		t test p:
	naïveDeprived sweet vs. naïveDeprived bittersweet	0.0488
	(n=10)	
	naïveFed sweet vs. naïveFed bittersweet (n=12)	0.9821 (t=0.02289,df=11)
	choseSweet sweet vs. choseSweet bittersweet (n=8)	0.0078
	choseBittersweet sweet vs. choseBittersweet	
	bittersweet (n=9)	0.0043 (t=3.937,df=8)
	choseNeither sweet vs. choseNeither bittersweet (n=10)	0.7755 (t=0.2939, df=9)
Fig. 5a	Preference index	One-way ANOVA
		F(3,30)=9.21, p=0.0002
		Sidak's adjusted p:
		(two-tailed)
	c205>w1118 deprived (n=6) vs. c205>Gt (n=12)	0.0095
	84C10>w1118 deprived (n=6) vs. 84C10>Gt (n=10)	0.0014

12 Supplementary Table 2

13 Source for all fly genotypes used

Figure	Genotype	Source
Fig. 2, 3	empty = Empty split-GAL4	FlyLight Robot ID: 3019156
Fig. 2, 3	Chr = 20XUAS-CsChrimson (X)	RRID:BDSC_55134
Fig. 2, 3	20XUAS-CsChrimson (II) for	RRID:BDSC_55136
	Chr;RNAi experiments	
Fig. 2, 3	Gt = 20XUAS-GtACR1 (III)	Rebecca Yang (Duke), A. Claridge-
		Chang (Duke-NUS)
Fig. 2	Akh-GAL4	RRID:BDSC_25684
Fig. 2	AstA-GAL4	RRID:BDSC_51979
Fig. 2	Crz-GAL4	RRID:BDSC_51976
Fig. 2	DH44-GAL4	RRID:BDSC_51987
Fig. 2	Lk-GAL4	RRID:BDSC_51993
Fig. 2	NPF-GAL4	RRID:BDSC_25682
Fig. 2	Proctolin-GAL4	RRID:BDSC_51972
Fig. 2	sNPF-GAL4	RRID:BDSC_51991
Fig. 2	Tk-GAL4	RRID:BDSC_51973
Fig. 2	TH-GAL4 (ple-GAL4)	RRID:BDSC_8848
Fig. 2	(PPL1) MB504B-GAL4	RRID:BDSC_68329
Fig. 2	(PPL1) MB065B-GAL4	RRID:BDSC_68281
Fig. 2	(PAM) 58E02-GAL4	RRID:BDSC_41347
Fig. 2	Tdc-GAL4	RRID:BDSC_9313

Fig. 2	Trh-GAL4	RRID:BDSC_38388
Fig. 2	(PPL1-γ2α'1) MB296B-GAL4 ^{1,2}	RRID:BDSC_68308
Fig. 2	(PPL1-α3) MB630B-GAL4 ²	RRID:BDSC_68334
Fig. 2	(PPL1-γ1-pedc) MB320C-GAL4 ²	RRID:BDSC_68253
Fig. 2	(PPL1-α'2α2) MB058B-GAL4 ⁻¹	RRID:BDSC_68278
Fig. 2	(PPL1-α'2α2, γ2α'1) MB099C-GAL4 ²	RRID:BDSC_68290
Fig. 2	(PAM-α1) MB043C-GAL4 ^{1,2}	RRID:BDSC_68363
Fig. 2	(PAM-β1) MB063B-GAL4 ^{1,2}	RRID:BDSC_68248
Fig. 2	(PAM-β1β2) MB213B-GAL4 ^{1, 2}	RRID:BDSC_68273
Fig. 2	(PAM-γ5) MB315C-GAL4 ^{1,2}	RRID:BDSC_68316
Fig. 2	(PAM-β'2a) MB109B-GAL4 ^{1,2}	RRID:BDSC_68261
Fig. 2	(PAM- γ 4, γ 4< γ 1 γ 2) MB312C-GAL4 ¹	RRID:BDSC_68252
Fig. 2	(PAM-γ3) MB441B-GAL4 ¹	RRID:BDSC_68251
Fig. 2	(all KC) MB010B-GAL4 ¹	FlyLight Robot ID: 2135061
Fig. 2	(α/β KC) MB008B-GAL4 ¹	FlyLight Robot ID: 2135059
Fig. 2	(α/β KC) c739-GAL4	RRID:BDSC_7362
Fig. 2	(α'/β' KC) MB005B-GAL4 ⁻¹	FlyLight Robot ID: 2135056
Fig. 2	(γ-m KC) MB131B-GAL4 ⁻¹	FlyLight Robot ID: 2135179
Fig. 2	(FB14,6) ss20-GAL4 (III)	L. Shao, U. Heberlein, FlyLight
Fig. 2	(FB14,6) ss208-GAL4 (III)	T. Wolff, A. Jenett, G. Rubin, FlyLight
Fig. 2	(FBl4,6) ss225-GAL4 (III)	T. Wolff, A. Jenett, G. Rubin, FlyLight
Fig. 2, 3	(FB16) c205-GAL4	RRID:BDSC_30826
Fig. 2	(FB12,8,9) 89E07-GAL4 ³	RRID:BDSC_40553

Fig. 2	(FB15,8,9) 38E07-GAL4 ³	RRID:BDSC_50007
Fig. 2	(ventral FB) 58F03-GAL4	RRID:BDSC_39187
Fig. 2	(FB11,2) 52G12-GAL4	RRID:BDSC_49581
Fig. 2, 3	UAS-Valium	RRID:BDSC_35786
Fig. 2, 3	UAS-Lk-RNAi ^{4, 5, 6, 7}	RRID:BDSC_25798
Fig. 2, 3	UAS-Lkr-RNAi ^{4,6,8}	RRID:BDSC_25936
Fig. 2, 3	UAS-AstA-RNAi ^{7,9}	RRID:BDSC_25866
Fig. 2, 3	UAS-AstA-R1-RNAi ¹⁰	RRID:BDSC_27280
Fig. 2, 3	UAS-NPF-RNAi ^{7, 11, 12}	RRID:BDSC_27237
Fig. 2, 3	UAS-NPFR-RNAi ^{6, 12, 13, 14}	RRID:BDSC_25939
Fig. 2, 3	UAS-DH44-RNAi ^{7, 15, 16}	RRID:BDSC_25804
Fig. 2, 3	UAS-DH44-R1-RNAi ¹⁵	RRID:BDSC_28780
Fig. 2, 3	UAS-Dop1R1-RNAi ¹⁴	RRID:BDSC_62193
Fig. 2, 3	UAS-Dop1R2-RNAi ¹⁴	RRID:BDSC_65997
Fig. 2, 3	UAS-Dop2R-RNAi ¹⁴	RRID:BDSC_26001
Fig. 2, 3	UAS-DopEcR-RNAi ¹⁴	RRID:BDSC_31981
Fig. 3	(FBl6) 84C10-LexA	RRID:BDSC_54339
Fig. 3	8XLexAop-GAL80	RRID:BDSC_32213
Fig. 4	(FBl6) 84C10-GAL4	RRID:BDSC_48378
Fig. 4	UAS-GCaMP6f;UAS-tdTomato	D. Clark, Yale University

14 Supplementary Table 3

15 Detailed statistics and sample size for data in supplementary figures

Figure	Datasets compared	Statistics
Suppl.	<i>w1118</i> 100 mM sucrose,	One-way ANOVA,
Fig. 1d	2h (n=20), 6 h (n=10), 21 h (n=20)	F(2,47)=3.53, p=0.0372
	Slope -0.1652 SE of slope -0.06535	Test for linear trend:
	95% CI of slope -0.03372 to -0.2966	F(1, 47)=6.39, p=0.0149
Suppl.	CS 50 mM sucrose	Two-tailed Unpaired t test
Fig. 1f	5 h (n=12), 21 h (n=12)	t=2.611, df=22, p=0.016
Suppl.	w1118 transitions per fly	Two-tailed Paired t test
Fig. 1j	first half vs. second half (n=201)	t=-0.84, df=200, p=0.4004
Suppl.	Lk % ate	Two-tailed Mann-Whitney t
Fig. 2b	Lk>Chr (n=10) vs. Lk>Chr;Lk-RNAi (n=20)	test
		p<0.0001
Suppl.	84C10-GAL4 left panel	One-way ANOVA,
Fig. 3b		F(3,50)=7.82, p=0.0002
		Sidak's adjusted p:
	84C10>Valium (n=17) vs. 84C10>Chr (n=17)	0.1463
	84C10>Valium (n=10) vs. 84C10>Gt (n=10)	0.0034
	84C10-GAL4 right panel	One-way ANOVA,
		F(3,28)=5.02, p=0.0066
		Dunnett's adjusted p:
	RNAi ctrl (n=8) vs. AstA-R1 ^{RNAi} (n=10)	0.0069

	RNAi ctrl (n=8) vs. DH44-R1 ^{RNAi} (n=9)	0.0417
	RNAi ctrl (n=8) vs. Lkr ^{RNAi} (n=5)	0.0078
Suppl.	84C10-GAL4 % ate	One-way ANOVA,
Fig. 3c		F(3,55)=186.1, p<0.0001
		Sidak's adjusted p:
	deprived 84C10>Chr (n=17) vs. fed 84C10>Chr	<0.0001
	(n=15)	<0.0001
	deprived 84C10>Gt (n=20) vs. fed 84C10>Gt	
	(n=7)	
Suppl.	84C10-GAL4 Place PI	One-way ANOVA,
Fig. 3d	84C10>w1118 (n=8), 84C10>Chr (n=12)	F(3,35)=1.95, p=0.1389
	84C10>w1118 (n=7), 84C10>Gt (n=12)	
Suppl.	84C10 Peak $\Delta R/R_0$ prior sweet experience	Two-tailed Paired t test
Fig. 4b	sweet vs. bittersweet (n=5)	t=0.5381, df=4, p=0.6191
Suppl.	84C10 Peak $\Delta R/R_0$ prior bittersweet experience	Two-tailed Paired t test :
Fig. 4d	sweet vs. bittersweet (n=7)	t=1.258, df=6, p=0.2552
Suppl.	Preference index	One-way ANOVA,
Fig. 5a		F(2,22)=7.41, p=0.0035
		Dunnett's adjusted p:
	empty>Chr (n=5) vs. c205>Chr (n=10)	0.0634
	empty>Chr (n=5) vs. 84C10>Chr (n=10)	0.4417

Suppl.	Preference index left panel	One-way ANOVA,
Fig. 5b		F(3,8)=4.37, p=0.0424
		Sidak's adjusted p:
	c205>w1118 (n=3) vs. c205>Chr (n=3)	0.1867
	84C10>w1118 (n=3) vs. 84C10>Chr (n=3)	0.0873
	Preference index left panel (n=3)	One-way ANOVA,
		F(3,8)=0.81, p=0.52

16

17 Supplementary Figure 1. Food content and hunger affect food preference. a w1118 flies 18 always preferred higher sucrose concentration when no quinine was present (n = 10 each). b 19 Food preference depended on sucrose concentration ratio between the two food options when 20 quinine concentration was kept constant (n = 24 each). c Most w1118 flies at after 21 h food 21 deprivation, with almost 100% eating at the equal-preference 50 mM sucrose condition (n = 10

22 each except 50 mM n = 20, 100 mM n = 27). **d** Food preference in w1118 flies shifted from 23 sweet to equal-preference for sweet and bittersweet as food deprivation duration increased from 2-21 h at 100 mM sucrose vs. 500 mM sucrose + 1 mM quinine. A linear downward trend from 24 25 2 h to 21 h was statistically significant. e CS flies also showed shift in food preference at equal 26 preference condition (50 mM sucrose vs. 500 mM sucrose + 1 mM quinine) with varying food 27 deprivation duration (n = 12 each). f At equal-preference condition, CS flies preferred sweet 28 after 5 h food deprivation while they showed equal-preference for sweet and bittersweet after 21 29 h food deprivation. g w1118 fly tracking during decision task at equal-preference condition (50 mM sucrose vs. 500 mM sucrose + 1 mM quinine) showed that flies transitioned from one food 30 patch to the other and sampled both foods multiple times throughout the assay. X-axis depicts 31 32 time during the assay and y-axis shows single fly transitions over time from all flies during a 33 sample trial. Blue depicts transition from bittersweet to sweet patch, while red depicts transition 34 from sweet to bittersweet patch. h Histogram of number of flies that made a certain number of 35 transitions. 81% of flies made at least one transition, while majority of flies (69%) made at least 36 2 transitions during the decision task. i Histogram of number of transitions made over time during the decision task. Flies transitioned throughout the task with j no significant difference 37 between the number of transitions per fly during the first and the second half of the task. Plots 38 39 depict mean \pm 95% CI; violins show data distribution. See Supplementary Table 3 for statistics and sample size. p<0.01=**, p<0.05=*. Non-significant differences are not depicted in figures. 40

Supplementary Figure 2. Percentage of flies that ate during decision assay. a Percent of flies 42 43 that ate during the optogenetic screen for all the genotypes tested. n is the same as in Figure 2a. b 44 Only ~4% of the flies ate when Lk neurons were activated (Lk>Chr) and this effect was 45 abolished (~57% ate) by knocking down Lk in the same neurons during optogenetic activation 46 (Lk>Chr;Lk-RNAi). c Acute optogenetic (TPN3>Gt) and chronic inhibition (TPN3>TNTe) of 47 second-order taste projection neurons (TPN3) did not change food preference at the equal-48 preference condition (50 mM, n for Gt = 20, n for TNTe = 10) or when sucrose concentration 49 was the same in both sweet and bittersweet options (500 mM, n for Gt = 10, n for TNTe = 20). 50 Plots depict mean \pm 95% CI; violins show data distribution. See Supplementary Table 3 for 51 statistics and sample size. p<0.0001=***.

52

53 Supplementary Figure 3. 84C10-GAL4 characterization. a 84C10-GAL4 showed high baseline GCaMP6f fluorescence. Images shown are raw florescence images from the same frame 54 55 without background subtraction. **b** 84C10-GAL4 had the same behavioral phenotype as c205-56 GAL4 **b** (left) when optogenetically activated (84C10>Chr) and inhibited (84C10>Gt) compared to appropriate controls. Flies preferred bittersweet food compared to control flies 57 58 when FBl6 neurons were inhibited using 84C10-GAL4. b (right) Receptor RNAi knockdown of 59 AstA, DH44 and LK in FB16 neurons using 84C10-GAL4 had the same effect as with c205-60 GAL4. Flies preferred more bittersweet compared to control upon receptor RNAi knockdown. c 61 Feeding was not initiated in fed flies and not inhibited in food-deprived flies on FBI6 activation 62 or inhibition using 84C10-GAL4. d Neither activation nor inhibition of FBl6 was inherently 63 rewarding or aversive since there was no significant difference in place preference without food 64 for illuminated vs. non-illuminated sectors of the arena. Plots depict mean \pm 95% CI; violins show data distribution. See Supplementary Table 3 for statistics and sample size. 65 66 p<0.00001=****, p<0.0001=***, p<0.01=**, p<0.05=*.

Supplementary Figure 4. FBl6 neural activity is context-dependent. a FBl6 ratiometric
calcium responses to sweet and bittersweet taste stimuli, ΔR/R₀, of food-deprived flies that
experienced only sweet food prior to imaging. Gray background area represents taste application.
Calcium activity trace depicts mean ΔR/R₀ ± 95% CI. b Peak ΔR/R₀ show no significant

72 difference between response to experienced sweet and new bittersweet food stimulus. c FBl6 ratiometric calcium responses to sweet and bittersweet taste stimuli, $\Delta R/R_0$, of flies that 73 74 experienced only bittersweet food prior to imaging. Gray background area represents taste 75 application. Calcium activity trace depicts mean $\Delta R/R_0 \pm 95\%$ CI. **d** Peak $\Delta R/R_0$ show no 76 significant difference between response to experienced bittersweet and new sweet food stimulus. 77 e Spontaneous normalized FB16 ratiometric calcium response, $\Delta R/R_0$, without any taste 78 application in naïve food-deprived flies. f Spontaneous normalized FB16 ratiometric calcium response, $\Delta R/R_0$, without any taste application in naïve fed flies. g Spontaneous FBl6 calcium 79 80 response, R, without any taste application in naïve food-deprived flies. h Spontaneous FBI6 81 ratiometric calcium response, R, without any taste application in naïve fed flies. Points on graphs 82 depict mean \pm 95% CI, with violins depicting full data distribution. See Supplementary Table 3 83 for details on statistics and sample size).

84

85 Supplementary Figure 5. Activation of FBI6 neurons in any context has no effect on food preference. a Optogenetically activating (c205>Chr and 84C10>Chr) FBl6 neurons throughout 86 87 the food arena in food-deprived flies at the condition in which control flies had a strong 88 preference for sweet food (0.5 M sucrose vs. 0.5 M sucrose + 1 m M quinine) had no effect on 89 food preference. **b** Optogenetically activating (c205>Chr and 84C10>Chr) FBl6 neurons on only 90 bittersweet food (left panel) in food-deprived flies at the condition in which control flies had a 91 strong preference for sweet food (0.5 M sucrose vs. 0.5 M sucrose + 1 m M quinine) had no 92 effect on food preference. Activating FBl6 neurons on sweet food only also did not shift 93 preference in this condition (right panel). Plots depict mean \pm 95% CI; violins show data 94 distribution. See Supplementary Table 3 for statistics and sample size. 95

96 Supplementary References

Aso Y, *et al.* The neuronal architecture of the mushroom body provides a logic for
 associative learning. *Elife* 3, e04577 (2014).

99

100	2.	Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-
101		specific rules. Elife 5, (2016).
102		
103	3.	Hu W, et al. Fan-Shaped Body Neurons in the Drosophila Brain Regulate Both Innate
104		and Conditioned Nociceptive Avoidance. Cell Rep 24, 1573-1584 (2018).
105		
106	4.	Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate
107		through output circuits. Nat Neurosci 19, 587-595 (2016).
108		
109	5.	Murphy KR, et al. Postprandial sleep mechanics in Drosophila. Elife 5, (2016).
110		
111	6.	Senapati B, et al. A neural mechanism for deprivation state-specific expression of
112		relevant memories in Drosophila. Nat Neurosci 22, 2029-2039 (2019).
113		
114	7.	Lee JH, Bassel-Duby R, Olson EN. Heart- and muscle-derived signaling system
115		dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U
116		<i>S A</i> 111 , 9491-9496 (2014).
117		
118	8.	Zandawala M, et al. Modulation of Drosophila post-feeding physiology and behavior by
119		the neuropeptide leucokinin. PLoS Genet 14, e1007767 (2018).
120		

121	9.	Schiemann R, Lammers K, Janz M, Lohmann J, Paululat A, Meyer H. Identification and
122		In Vivo Characterisation of Cardioactive Peptides in Drosophila melanogaster. Int J Mol
123		<i>Sci</i> 20 , (2018).
124		
125	10.	Yu Y, et al. Regulation of starvation-induced hyperactivity by insulin and glucagon
126		signaling in adult Drosophila. <i>Elife</i> 5, (2016).
127		
128	11.	Guevara A, Gates H, Urbina B, French R. Developmental Ethanol Exposure Causes
129		Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival. Front
130		<i>Physiol</i> 9 , 237 (2018).
131		
132	12.	Ameku T, et al. Midgut-derived neuropeptide F controls germline stem cell proliferation
133		in a mating-dependent manner. PLoS Biol 16, e2005004 (2018).
134		
135	13.	Tsao CH, Chen CC, Lin CH, Yang HY, Lin S. Drosophila mushroom bodies integrate
136		hunger and satiety signals to control innate food-seeking behavior. Elife 7, (2018).
137		
138	14.	Klose M, Shaw P. Sleep-drive reprograms clock neuronal identity through CREB-binding
139		protein induced PDFR expression. bioRxiv, 2019.2012.2012.874628 (2019).
140		
141	15.	King AN, et al. A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity.
142		<i>Curr Biol</i> 27 , 1915-1927 e1915 (2017).

143

144	16.	Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JAT, Davies SA. The corticotropin-
145		releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate
146		desiccation and starvation tolerance in Drosophila melanogaster. Peptides 80, 96-107
147		(2016).