

- 7 Figure S1. Expression of *cbs* and *cth* in zebrafish larvae was efficiently downregulated by
- 8 *cbs* **MO** and *cth* **MO**, respectively. Summary of Western blot analyses. Error bars, SEM. ***P*
- 9 < 0.01 (unpaired two-tailed Student's *t*-test).

11 Figure S2. Production of H₂S in *cbs* and *cth* morphants and mutants was significantly

12 reduced. The experiments were repeated 3 times. At least 3 samples were analyzed in each

13 group at each time. Error bars, SEM. *P < 0.05 (unpaired two-tailed Student's *t*-test).

16 Tg(Flk1:eGFP) larvae at 3 - 5 dpf.

- 17 (A) Representative projected confocal images taken from *cbs* or *cth* morphants.
- 18 (B) Representative projected confocal images taken from cbs or cth F0 mutant larvae.
- 19 (C) Representative projected confocal images taken from cbs or cth homo-mutant larvae.
- 20 Confocal images were taken at 3 5 dpf of the same larva (A C).
- 21 Scale bar, 50 μ m (*A C*).

23 Figure S4. Brain size and cell apoptoss in *cbs* or *cth* morphants and homo-mutants.

(*A*) Image of a 3-dpf larva showing the measurement of brain size, with the width of the optic
tectum delineated with a red line as relative brain width. (*B* and *C*) Summary of the relative
brain width of *cbs* or *cth* morphants (*B*) and homo-mutants (*C*). (*D* and *E*) Representative
projected confocal images of TUNEL signals. (*D*) From left to right: positive control, Ctrl MO,

- 28 *cbs* MO, *cth* MO. (*E*) From left to right: positive control, WT, *cbs^{-/-}*, *cth^{-/-}*. (F and *G*) Summary
- of average TUNEL signal intensity of cbs or cth morphants (F) and homo-mutants (G).
- 30 Scale bar, 100 μ m (A, D, E). Error bars, SEM. *P < 0.05, **P < 0.01 (unpaired two-tailed
- 31 Student's t-test).

<i>cbs</i> WT: Mut-1: Mut-2:	5'-TTCCGTTGAAGACATCGTCAGCATCCCCGT-3' 5'-TTCCGTTGACATCGTCAGCATCCCCGT-3' 5'-TTCCGTTGAAGACATATGCGCATCCCCGT-3'	-3 -5, +4
cth		
VVI:	5-ATCCACGTTGGTTCAGAGCCCGAGCAGTGG-3	
Mut-1:	5'-ATCCACG <mark>AA</mark> CAGAGCCCGAGCAGTGG-3'	-6, +2
Mut-2:	5'-ATCCACTTCAGAGCCCGAGCAGTGG-3'	-5
Mut-3:	5'-ATCCAGTTCAGAGCCCGAGCAGTGG-3'	-5
Mut-4:	5'-ATCCACGTT <mark>-C</mark> GTTCAGAGCCCGAGCAGTGG-3'	-1, +1
Mut-5:	5'-ATCCACGTCGATTCCGAGCAGTGG-3'	-11, +5
Mut-6:	5'-ATCCACGTTG <mark>AA</mark> TCAGAGCCCGAGCAGTGG-3'	-2, +2

33 Figure S5. Mutations of the *cbs* and *cth* F0 mutants. All the indel mutations are highlighted

34 in yellow, and sgRNA target sequences are shown in red.

cbsWT:5'-CTGCAGAGGAGATCCTGGAGCAGTGTGGCGGTA-3'Mut:5'-CTGCAGAGGAGATCCTGGAG---GATCCTGGGATCC
TGTGGCGGTA-3'cthWT:5'-GGTCTGGCTGTTGCCTCTGGATTGGCGGCGAACT-3'Mut:5'-GGTCTGGCTGTTGCCTC-5

36 Figure S6. Mutations of the cbs and cth homo-mutants. All the indel mutations are

37 highlighted in yellow.

39 Figure S7. GYY4137 did not change the midbrain vessel density of the control fish.

- 40 (A) Representative projected confocal images showing that GYY4137 treatment did not change
- 41 the midbrain vessel density of the Ctrl fish. Confocal images were taken at 3 5 dpf of the same
- 42 larva.
- 43 (B) Summary of the midbrain vessel density of Ctrl fish and fish treated with GYY4137. Four
- 44 embryos were examined for each group.
- 45 Scale bar, 50 µm (*A*). Error bars, SEM. (unpaired two-tailed Student's t-test for *B*).

47 SUPPLEMENTARY METHODS

48

49 Zebrafish husbandry

The adult zebrafish (Dario rerio) were maintained with an automatic fish housing system at 28°C following standard protocols. Zebrafish embryos and larvae were raised in 10% Hanks' solution[1] under a 14 h-10 h light-dark cycle, and 0.003% 1-phenyl-2-thiourea (PTU) (Sigma, P7629) was added to the Hanks' solution since 24 hpf to prevent pigment formation. The Tg(Flk1:eGFP) zebrafish were described previously[2]. Euthanasia was performed by rapid freezing.

56

57 Western blotting

Protein sample preparation and western blotting were performed as previously described[1].
Protein sample preparation was conducted at 3 dpf. The primary antibodies were anti-CBS
(Aviva, ARP45746_T100), anti-CTH (Santa Cruz, sc-374249), anti-VEGF (R&D, MAB1247),
anti-β-actin (Immunoway, YT0099) anti-ERK1/2 (Cell Signaling, 9107), and anti-p-ERK1/2
(Cell Signaling, 4370).

63

64 **RNA preparation and Real-time PCR**

Total RNAs of zebrafish embryos were extracted by using TRIzol reagent according to the manufacturer's instructions (Invitrogen, 15596018). The extracted total RNA was used to generate the first-strand cDNA by using PrimeScript reverse transcriptase (Takara, 2680A) with random primer. The real-time PCR with SYBR Premix Ex Taq II (Takara) was performed

on the cDNA to detect the relative expression of nos1, nos2a, and nos2b. The relative RNA

70	amount was calculated with the $\Delta\Delta$ Ct method and normalized with β -actin (actb1) expression
71	(as an internal control). The primers used for real-time PCR are as follows.
72	nos1 primers:
73	forward: 5'-ACACAGTGGATCTGGAGCAC-3'
74	reverse: 5'-GCCGCACCAAATTTCTCTCC-3'
75	nos2a primers:
76	forward: 5'-AACATTTTGGAGCGCGTTGG-3'
77	reverse: 5'-CGGCAACATTGATAGCCACG-3'
78	nos2b primers:
79	forward: 5'-AAGCCCCGACTCTACTCCAT-3'
80	reverse: 5'-TGGACCTTTTCCCTCCTGTG-3'
81	actb1 primers:
82	forward: 5'-AAGCCCCGACTCTACTCCAT-3'
83	reverse: 5'-TGCTCAATGGGGTATTTGAGGG-3'
84	
85	Measurement of H ₂ S production
86	Total H ₂ S production in the zebrafish larvae was examined at 3 dpf with the H ₂ S measurement
87	kit (Sino Best Biological Technology, YX-C-C000). Protein samples were extracted with the
88	extraction buffer and then mixed with solution I - IV. Absorbance at 665 nm was measured
89	and total H ₂ S production was calculated according to the provided formula.
90	

91 Whole-mount TUNEL assay

- 92 Zebrafish embryos at 3 dpf were fixed in 4% paraformaldehyde (PFA) overnight at 4 $^{\circ}$ C.
- 93 Genotyping of mutant larvae was conducted before they were fixed with PFA. TUNEL staining
- 94 was conducted using the In Situ Cell Death Detection Kit, TMR red (Roche Diagnostics GmbH,
- 95 12156792910). Procedures were performed as previously described[3]. The dorsal view of
- 96 whole-mounts with Z stack (3 µm per step) images were captured with an Olympus Fluoview
- 97 1000 confocal microscope (Olympus, Japan). XLumplfl 20× (W/IR; NA, 0.95) objective lenses
- 98 were used. Raw images were processed with ImageJ.
- 99

100 Brain size measurement

101 Since larval brains are too small to be dissected and weighed, we measured the width of the

- 102 optic tectum from dorsal confocal images using ImageJ. The width of the optic tectum predicts
- 103 the mass of the brain with 79% accuracy in zebrafish[4], thus the measurement is regarded as
- 104 a predictor of overall brain size[5].

105

106 **REFERENCES**

107 [1] Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate

108 brain vascular integrity. *Cell Res* 2017;27(7):882-97.

- 109 [2] Roman BL, Pham VN, Lawson ND, et al. Disruption of acvrl1 increases endothelial cell
- 110 number in zebrafish cranial vessels. *Development* 2002;129(12):3009-19.
- 111 [3] Du W-J, Zhang R-W, Li J, et al. The Locus Coeruleus Modulates Intravenous General
- 112 Anesthesia of Zebrafish via a Cooperative Mechanism. *Cell reports* 2018;24(12).
- 113 [4] Näslund J. A simple non-invasive method for measuring gross brain size in small live fish
- 114 with semi-transparent heads. *PeerJ* 2014;2:e586.
- 115 [5] Chen Y-C, Harrison PW, Kotrschal A, et al. Expression change in Angiopoietin-1 underlies

116 change in relative brain size in fish. *Proceedings Biological sciences* 2015;282(1810).