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Extended Methods 
 
Sample. There was a large number of subjects with missing income data (n=1018), therefore missing values 
were imputed by taking the median income value across participants from the same testing site. The sources 
of other missing data were as follows: incomplete across all demographic variables (n=189), incomplete 
across all cognitive measures (n=944), unavailable T1-weighted MRI scan for reasons outlined in the ABCD 
release notes (e.g., did not get scanned, motion artefacts) (n=339) and imaging data that was made available 
but did not pass the free-surfer QC flag (n=462).  These missing data values are not mutually exclusive.  The 
permutation testing was dependent on having multiple families with the same number of children, therefore 
the single family with 5 children was excluded from these analyses.  Supplementary Table 1 displays the 
names of each variable used in these analyses from data release 2.0.1.  Supplementary Table 2 shows the 
demographic characteristics of the sample as a function of cognitive performance. 
 
Neurocognitive battery, Below are details of each of the cognitive tasks analyzed in this study. 

Toolbox Oral Reading Recognition Task® (TORRT): measured language decoding and reading.  
Children were asked to read aloud single letters or words presented in the center of an iPad screen.  The 
research assistant marked pronunciations as correct or incorrect.  Extensive training was given prior to 
administering the test battery.  Item difficulty was modulated using computerized adaptive testing (CAT). 

Toolbox Picture Vocabulary Task® (TPVT): a variant of the Peabody Picture Vocabulary Test 
(PPTV), measured language and vocabulary comprehension.  Four pictures were presented on an iPad screen 
as a word was played through the iPad speaker.  The child was instructed to point to the picture, which 
represented the concept, idea or object name heard.  CAT was implemented to control for item difficulty and 
avoid floor or ceiling effects. 

Toolbox Pattern Comparison Processing Speed Test® (TPCPST): measured processing speed.  
Children were shown two images and asked to determine if they were identical or different by touching the 
appropriate response button on the screen.  This test score is the sum of the number of items completed 
correctly in the time given. 

Toolbox List Sorting Working Memory Test® (TLSWMT): measured working memory.  Children 
heard a list of words alongside pictures of each word and were instructed to repeat the list back in order of 
their actual size from smallest to largest.  The list started with only 2 items and a single category (e.g., 
animals).  The number of items increased with each correct answer to a maximum of seven.  The child then 
progressed to the next stage in which two different categories were interleaved.  At this stage children were 
required to report the items back in size order from the first category followed by the second category.  
Children were always given two opportunities to repeat the list correctly before the experimenter scored the 
trial as incorrect. 

Toolbox Picture Sequence Memory Test® (TPSMT): measured episodic memory.  On each trial, 
children were shown a series of fifteen pictures in a particular sequence.  The pictures illustrated activities or 
events within a particular setting (e.g., going to the park), and as each appeared on the screen a pre-recorded 
narrative briefly described the content of the picture.  Participants were instructed to arrange the pictures in 
the original sequence in which they were shown.  The Rey-Auditory Verbal Learning Task was also included 
in the ABCD neurocognition battery as a more comprehensive measure of episodic memory.  

Toolbox Flanker Task® (TFT): measured executive function, attentional and inhibitory control.  This 
adaptation of the Eriksen Flanker task(Eriksen and Eriksen 1974) captures how readily a participant is 
influenced by the congruency of stimuli surrounding a target.  On each trial a target arrow was presented in 
the center of the iPad screen facing to the left or right and was flanked by two additional arrows on both 
sides.  The surrounding arrows were either facing in the same (congruent) or different (incongruent) 
direction to the central target arrow.  The participant was instructed to push a response button to indicate 
the direction of the central target arrow.  Accuracy and reaction time scores were combined to produce a total 
score of executive attention, such that higher scores indicate a greater ability to attend to relevant 
information and inhibit incorrect responses. 

Toolbox Dimensional Change Card Sort Task® (TDCCS): measured executive function and cognitive 
flexibility.  On each trial, the participant was presented with two objects at the bottom of the iPad screen and 
a third object in the middle.  The participant was asked to sort the third object by matching it to one of the 
bottom two objects based on either color or shape.  In the first block participants matched based on one 
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dimension and in the second block they switched to the other dimension.  In the final block, the sorting 
dimension alternated between trials pseudorandomly.  The total score was calculated based on speed and 
accuracy. 

Rey-Auditory Verbal Learning Task (RAVLT): measures auditory learning, recall and recognition.  
Participants listened to a list of 15 unrelated words and were asked to immediately recall these after each of 
five learning trials.  A second unrelated list was then presented, and participants were asked to recall as many 
words as possible from the second list and then recall words again from the initial list.  Following a delay of 
30 minutes (during which other non-verbal tasks from the cognitive battery are administered), longer-term 
retention was measured using recall and recognition.  This task was administered via an iPad using the Q-
interactive platform of Pearson assessments (Daniel et al. 2014).  In the current study, the total number of 
items correctly recalled across the five learning trials was summed to produce a measure of auditory verbal 
learning. 

Little Man Task (LMT): measures visuospatial processing involving mental rotation with varying 
degrees of difficulty (Acker 1982).  A rudimentary male figure holding a briefcase in one hand was presented 
on an iPad screen.  The figure could appear in one of four positions: right side up vs upside down and either 
facing the participant or with his back to the participant.  The briefcase could be in either hand.  Participants 
indicated which hand the briefcase was in using one of two buttons.  Performance across the 32 trials was 
measured by the percentage of trials in which the child responded correctly.  This was divided by the average 
reaction time to complete the task (in seconds) to produce a measure of efficiency of visuospatial processing.  
This was the dependent variable analyzed in this study. 

WISC-V Matrix reasoning. Nonverbal reasoning was measured using an automated version of the 
Matrix Reasoning subtest from the Weschler Intelligence Test for Children-V (WISC-V; Weschler, 2014).  On 
each trial the participant was presented with a series of visuospatial stimuli, which was incomplete.  The 
participant was instructed to select the next stimulus in the sequence from four alternatives.  There were 32 
possible trials and testing ended when the participant failed three consecutive trials.  The total raw score, 
used in the current study, was the total number of trials completed correctly. 
 
MRI acquisition and image pre-processing.  The T1w acquisition (1 mm isotropic) was a 3D T1w inversion 
prepared RF-spoiled gradient echo scan using prospective motion correction, when available (White et al. 
2010; Tisdall et al. 2012) (echo time = 2.88 ms, repetition time = 2500 ms, inversion time = 1060 ms, flip 
angle = 8°, FOV = 256x256, FOV phase = 100%, slices = 176).  Pre-processing of all MRI data for ABCD was 
conducted using in-house software at the Center for Multimodal Imaging and Genetics (CMIG) at University of 
California San Diego (UCSD) as outlined in Hagler et al (Hagler et al. 2019).  Manual quality control was 
performed prior to the full image pre-processing and structural scans with poor image quality as well as 
those that did not pass FreeSurfer QC were excluded from all analyses.  Brain segmentation and cortical 
surface reconstruction were completed using FreeSurfer v5.3.0 (Dale et al. 1999; Fischl et al. 1999).  T1-
weighted structural images were corrected for distortions caused by gradient nonlinearities, coregistered, 
averaged, and rigidly resampled into alignment with an atlas brain.  See previous publications for details of 
the surface based cortical reconstruction segmentation procedures (Dale et al. 1999; Fischl et al. 1999, 2004; 
Fischl and Dale 2000; Jovicich et al. 2006).  In brief, a 3D model of the cortical surface was constructed for 
each subject.  This included segmentation of the white matter (WM), tessellation of the gray matter (GM)/WM 
boundary, inflation of the folded, tessellated surface, and correction of topological defects.  Measures of 
cortical thickness at each vertex were calculated as the shortest distance between the reconstructed GM/WM 
and pial surfaces (Fischl and Dale 2000).  To calculate cortical surface area, a standardized tessellation was 
mapped to the native space of each subject using a spherical atlas registration, which matched the cortical 
folding patterns across subjects.  Surface area of each point in atlas space was calculated as the area of each 
triangle.  This generated a continuous vertex-wise measure of relative areal expansion or contraction.  
Cortical maps were smoothed using a Gaussian kernel of 20 mm full-width half maximum (FWHM) and 
mapped into standardized spherical atlas space. 
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Statistical Analysis 

Vertex-wise effect size maps. All behavioral variables were standardized (z-scored) prior to analysis as was 
the vertex-wise brain data.  We applied a general linear model (GLM) associating a given behavior 𝑦  from a 
set of covariates 𝑊 and the vertex-wise morphology data, 𝑋𝑣  

𝑦 =  𝛼0,𝑣 + 𝑾𝛼𝑣 + 𝑋𝑣𝛽𝑣 + 𝜀𝑣 
Here, 𝑊 represents a standardized 𝑁 𝑥 𝑚 matrix of covariates of no interest where 𝑁 represents the number 
of subjects and 𝑚 the number of covariates.  𝑋𝑣 denotes the standardised 𝑁 𝑥 1 vector of imaging data for the 
vth vertex.  This GLM was applied univariately at each vertex v =  1, …  V  . Let 𝜷 =  (𝛽1, … , 𝛽𝑉)′   and α denote 
the 𝑉 𝑥 1 and 𝑚 𝑥 1 vectors of parameters of interest and no interest, respectively. For visualisation of these 
effects the standardized 𝜷 coefficients were plotted across vertices.  All vertexwise effect size maps were 
calculated with and without including race/ethnicity, income and parental education as predictors in the 
covariates matrix, 𝑊. 
 
Determining the significance of the effect size maps using an omnibus test.  Assuming that 𝒛 is 
asymptotically drawn from a multivariate normal distribution and �̂� is a consistent estimator of the 
covariance matrix 𝑹, the MOSTest statistic would have an approximate Chi-squared distribution (a special 
case of the gamma distribution) under the null hypothesis. However, we relax this assumption and instead 
compute its p-value using a hybrid permutation procedure as with the other statistics. The covariance matrix 
�̂� was estimated from the 𝑉 𝑥 𝐿 matrix of permuted Wald statistics, 𝒁𝒑𝒆𝒓𝒎 , where 𝐿 denotes the number of 

permutations.  This was then regularized using truncated singular value decomposition (SVD) to ensure the 
covariance matrix was invertible. The truncation parameter, kmax, was determined as the point in which the 
rate of decrease in magnitude of the eigenvalues decreased substantially towards 0 (quantified at the point in 
which all subsequent eigenvalues were below 0.1; supplementary figure 3).   

For the permutation procedure, families with the same number of siblings were allowed to be 
shuffled as a whole and siblings within a family were allowed to be shuffled with each other.  This was 
necessary to account for the joint distribution of the observed data due to the relatedness of the ABCD 
sample.  Permutations that adhered to this shuffling scheme were generated using the PALM toolbox 
(Winkler et al. 2014).  Permutations were conducted using the Freedman-Lane procedure(Freedman and 
Lane 1983).  This permutation procedure was used to determine the distribution of each test statistic under 
the global null hypothesis H0. We rejected H0 if the observed test statistic was greater than the value of the 
permuted test statistic at the critical threshold corresponding to an alpha level of 0.0038 (0.05 corrected for 
the 13 cognitive tests analyzed).  To extrapolate the p-values beyond the range that can be directly estimated 
from the permutations, we fit tail of the permuted null test statistics to specific analytic forms: gamma 
distribution for the MOSTest test statistic, and Weibull distribution for the -log(min-p). Supplementary figure 
2 shows the fit of the fitted distributions to the permuted data for each test statistic.  Fits were best for the 
MOSTest compared to the other test statistics, which suggests that extrapolated p-values for the other 
associations may be inflated. 
 
Quantifying the magnitude of the association between brain structure and cognition using a polyvertex 
score (PVS). The association between each imaging phenotype and each cognitive task was modelled using 
the mass univariate approach such that the behavior of interest was predicted independently at each vertex 
using a general linear model (GLM). The PVS predicting behavior from cortical morphometry was then 
computed for each subject as the product sum of the estimated effects and the pre-residualized cortical 
morphometry vector. This measure thus harnesses the explanatory power of all of the vertices with respect 
to behavior. The computed PVS was then compared with the observed behavior in order to provide an 
estimate for how much variance in the observed behavior can be predicted using the vertex-wise imaging 
phenotype.  In order to generate an unbiased PVS for every subject we used a leave-one-out 10-fold cross-
validation procedure. The cortical mass univariate effects were estimated in the training set (90% of full 
sample) and multiplied with the imaging phenotype of participants in the test set (10% of full sample). This 
was repeated 10 times for each fold until a PVS was calculated for every participant in the full sample. The 
subjects in each fold were randomly selected based on unique family IDs, such that subjects within the same 
family were always within the same fold. The association between the imaging phenotype and behavior 
across the whole sample was calculated as the squared correlation (R2) between the observed behavior and 
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the predicted behavior (the PVS). This process was repeated for four imaging phenotypes: CSA, relative CSA 
(controlling for total CSA), CTH. relative CTH (controlling for mean CTH). 

In order to explore the proportion of shared variability in cognitive performance explained by brain 
structure and the demographic variables, we generated several linear models with differing predictors.  
These models were generated separately for each imaging modality (when these were included) and with 
either the fluid or crystallized scores as the dependent variable.  Each model was trained on 90% of the 
sample and tested in a 10% hold out set within a 10-fold cross validation framework to produce a robust, out-
of-sample R2.  The models are outlined in figure 7.  Where indicated both the dependent and independent 
variables were pre-residualized for the stated variables (in parentheses), in order to remove the variance 
associated with those variables and calculate the unique variance associated only with the variables of 
interest.  This method was used to partition the shared and unique variance across the measures of interest.  
It is important to note, this method offers an approximation of the unique behavioral variance associated with 
these variables of interest, because these variables are not completely orthogonal to one another.  Here we 
always pre-residualize for age, sex and scanner first as nuisance variables except for in the full model.  The 
full model (model 1) gives an estimate of the maximal variance explained when all of the variables measured 
are included in a model together and thus their covariance is accounted for when estimating the model R2. 
 
 
Supplementary References 
 
Acker W. 1982. A computerized approach to psychological screening—The Bexley-Maudsley Automated 

Psychological Screening and The Bexley-Maudsley Category Sorting Test, International Journal of 
Human-computer Studies / International Journal of Man-machine Studies - IJMMS. 

Dale AM, Fischl B, Sereno MI. 1999. Cortical Surface-Based Analysis. Neuroimage. 9:179–194. 
Daniel MH, Wahlstrom D, Zhang O. 2014. Equivalence of Q-interactiveTM and Paper Administrations of 

Cognitive Tasks: WISC ®-V Q-interactive Technical Report 8. 
Eriksen BA, Eriksen CW. 1974. Effects of noise letters upon the identification of a target letter in a nonsearch 

task. Percept Psychophys. 16:143–149. 
Fischl B, Dale AM. 2000. Measuring the thickness of the human cerebral cortex from magnetic resonance 

images. Proc Natl Acad Sci U S A. 97:11050–11055. 
Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM. 2004. Sequence-independent 

segmentation of magnetic resonance images. Neuroimage. 23:S69--S84. 
Fischl B, Sereno MI, Dale AM. 1999. Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-

Based Coordinate System. 
Freedman D, Lane D. 1983. A Nonstochastic Interpretation of Reported Significance Levels. J Bus Econ Stat. 

1:292. 
Hagler DJ, Hatton S, Cornejo MD, Makowski C, Fair DA, Dick AS, Sutherland MT, Casey BJ, Barch DM, Harms 

MP, et al. 2019. Image processing and analysis methods for the Adolescent Brain Cognitive Development 
Study. Neuroimage. 116091. 

Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, 
et al. 2006. Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction 
on phantom and human data. Neuroimage. 30:436–443. 

Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJW. 2012. Volumetric navigators for 
prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med. 
68:389–399. 

Weschler D. 2014. Weschler Intelligence Scale for Children, 5th ed. Pearson, Bloomington, MN. 
White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A. 2010. PROMO: 

Real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med. 63:91–
105. 

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. 2014. Permutation inference for the general 
linear model. Neuroimage. 92:381–397. 

 
 



 

 

 6 

 
Type of Variable Variable NDA/DEAP Variable Name Instrument 
Covariates of no 

interest 
Age interview_age Developmental history questionnaire (dhx01) 
Sex sex Developmental history questionnaire (dhx01) 
Self-declared race/ethnicity race.4level**, hisp** Parent Demographics Survey (pdem02) – computed DEAP variable 
Income household.income Parent Demographics Survey (pdem02) – computed DEAP variable 
Parental education high.educ Parent Demographics Survey (pdem02) – computed DEAP variable 
Scanner ID mri_info_deviceserialnumber MRI Info (abcd_mri01) 

Family ID Family rel_family_id ACS Post Stratification Weights (acspsw02) 
MRI QC Freesurfer QC fsqc_qc FreeSurfer QC (freesqc01) 

Cognitive Measures Toolbox Oral Reading Recognition nihtbx_reading_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Picture Vocabulary Task nihtbx_picvocab_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Flanker Task nihtbx_flanker_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Dimensional Card Sorting Task nihtbx_cardsort_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Pattern Speed Task nihtbx_pattern_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Picture Sequence Task nihtbx_picture_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox List Working Memory Task nihtbx_list_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Fluid Composite Score nihtbx_fluidcomp_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Toolbox Crystallised Composite Score nihtbx_cryst_uncorrected Youth NIH TB Summary Scores (abcd_tbss01) 
Matrix reasoning 
Little Man Task 
RAVLT 

pea_wiscv_trs 
lmt_scr_efficiency 
pea_ravlt_sd_trial_i_tc+pea_ravlt_sd_tria
l_ii_tc+pea_ravlt_sd_trial_iii_tc+pea_ravlt
_sd_trial_iv_tc+pea_ravlt_sd_trial_v_tc 

Pearson Scores (abcd_ps01) 
Little Man Task Summary Scores (lmtp201) 
Pearson Scores (abcd_ps01) 

 
Supplementary Table 1. List of all variables used in this study with corresponding variable names and the instruments in which they can be found in the ABCD data dictionary and data 

release.  Only participants with complete data on all of these variables, available T1-weighted MRI scans and whose imaging data passed the freesurfer QC flag (fsqc_qc=1) were included in 
the analyses.** We computed race/ethnicity by changing the race of all those who endorsed being Hispanic to ‘Hispanic’ to create a 5-level race/ethnicity variable as seen in release 1.1 and 2.0. 
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n 10145 
Toolbox Fluid Composite Score (mean (SD)) 91.76 (10.54) 

Toolbox Crystallised Composite Score (mean (SD)) 86.50 (7.03) 
Age (mean (sd)) 119.02 (7.48) 
Sex = M (%) 5288 (52.1) 
Parent education (%)  

< HS Diploma 460 ( 4.5) 
HS Diploma/GED 942 ( 9.3) 

Some College 2624 (25.9) 
Bachelor 2611 (25.7) 

Post Graduate Degree 3508 (34.6) 
Income (%)  

<=50k 2676 (28.7) 
>50k<=100k 2661 (28.6) 

>100k 3971 (42.7) 
Race/ethnicity (%)  

White 5411 (53.3) 
Black 1484 (14.6) 
Asian 211 ( 2.1) 

Other/Mixed 989 ( 9.7) 
Hispanic 2050 (20.2) 

Scanner ID (%)  
HASH03db707f 423 ( 4.2) 
HASH11ad4ed5 480 ( 4.7) 
HASH1314a204 506 ( 5.0) 
HASH311170b9 339 ( 3.3) 
HASH31ce566d 43 ( 0.4) 
HASH3935c89e 959 ( 9.5) 
HASH48f7cbc3 29 ( 0.3) 

HASH4b0b8b05 387 ( 3.8) 
HASH4d1ed7b1 352 ( 3.5) 
HASH5ac2b20b 462 ( 4.6) 
HASH5b0cf1bb 559 ( 5.5) 
HASH5b2fcf80 255 ( 2.5) 

HASH65b39280 307 ( 3.0) 
HASH69f406fa 130 ( 1.3) 

HASH6b4422a7 318 ( 3.1) 
HASH7911780b 358 ( 3.5) 
HASH7f91147d 86 ( 0.8) 
HASH96a0c182 535 ( 5.3) 
HASHa3e45734 291 ( 2.9) 
HASHb640a1b8 471 ( 4.6) 

HASHc3bf3d9c 439 ( 4.3) 
HASHc9398971 199 ( 2.0) 
HASHd422be27 419 ( 4.1) 
HASHd7cb4c6d 497 ( 4.9) 

HASHdb2589d4 495 ( 4.9) 
HASHe3ce02d3 86 ( 0.8) 
HASHe4f6957a 505 ( 5.0) 
HASHe76e6d72 15 ( 0.1) 
HASHfeb7e81a 200 ( 2.0) 

 
Supplementary Table 2.  Descriptive characteristics of the analyzed sample.  
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Full sample partial r 
  

Not controlling for 
Socio-

demographics 

Controlling for 
Socio-

demographics 

Not controlling for 
Socio-

demographics 

Controlling for 
Socio-

demographics 

DV IV CSA 
PVSU 

TOTAL 
CSA 

CSA 
PVSU 

TOTAL 
CSA 

CTH 
PVSU 

MEAN 
CTH 

CTH 
PVSU 

MEAN 
CTH 

Fluid PC1_PVS 0.13 0.17 0.06 0.08 0.16 0.02 0.10 -0.02 

Fluid F_PVS 0.12 0.17 0.07 0.08 0.16 0.02 0.10 -0.02 

Fluid C_PVS 0.09 0.17 0.02 0.08 0.14 0.02 0.07 -0.02 

Cryst PC1_PVS 0.14 0.27 0.05 0.15 0.19 0.06 0.08 -0.01 

Cryst F_PVS 0.11 0.27 0.02 0.15 0.19 0.06 0.07 -0.01 

Cryst C_PVS 0.14 0.27 0.06 0.15 0.19 0.06 0.09 -0.01 

PC1 PC1_PVS 0.17 0.25 0.07 0.13 0.21 0.05 0.12 -0.02 

PC1 F_PVS 0.15 0.25 0.06 0.13 0.22 0.05 0.11 -0.02 

PC1 C_PVS 0.14 0.25 0.05 0.13 0.20 0.05 0.09 -0.02 

Cross-validated %R2 

Fluid PC1_PVS 1.60 2.80 0.31 0.54 2.38 0.04 1.02 0.02 

Fluid F_PVS 1.41 2.82 0.39 0.55 2.53 0.03 0.89 0.03 

Fluid C_PVS 0.83 2.79 0.00 0.53 1.95 0.03 0.47 0.02 

Cryst PC1_PVS 1.97 7.26 0.20 2.19 3.68 0.37 0.57 0.02 

Cryst F_PVS 1.13 7.19 0.01 2.21 3.56 0.37 0.44 0.07 

Cryst C_PVS 1.95 7.29 0.32 2.20 3.51 0.36 0.73 0.03 

PC1 PC1_PVS 2.88 6.35 0.52 1.65 4.50 0.20 1.31 0.00 

PC1 F_PVS 2.17 6.32 0.37 1.64 4.63 0.17 1.10 0.00 

PC1 C_PVS 2.01 6.29 0.21 1.63 3.91 0.22 0.82 0.01 

PC1 F_PVS+C_PVS 2.87 6.34 0.50 1.64 4.67 0.20 1.28 0.02 

 
Supplementary Table 3. Unique associations between behavior and regional and global structural phenotypes.  Associations are shown as 
both partial correlation coefficients in the full sample (top) and cross-validated, out-of-sample %R2 (bottom) after residualizing for covariates of 
no interest only (age, sex, scanner ID) and additionally residualizing for sociodemographic variables (household income, race/ethnicity, parental 
education).  Each row shows a different model.  PC1, fluid and crystallized composite scores were predicted by either relative CSA/CTH (the PC1, 
fluid or crystallized PVSU) and in a separate model total CSA/mean CTH residualized for the respective PVSU indicated in column ‘IV’.  Associations 
for relative CSA and Total CSA, and relative CTH and mean CTH, are therefore unique.  The F_PVSU and C_PVSU were less predictive of the behavior 
they were not trained on highlighting the differences in the regionalization associations.  They predicted a similar proportion of variance in PC1.  
The final row shows a model in which PC1 was predicted by both F_PVSU and C_PVSU in the same model.  When controlling for sociodemographic 

factors, the R2 was very similar to the sum of the R2 of each PVS predicting PC1 independently, which suggests these imaging measures are 
predicting non-overlapping variance in PC1.  This was more evident for CSA than CTH due to the increased similarity in the CTH regionalization 

association patterns.  When not controlling for sociodemographic factors, the F_PVSU and C_PVSU predicted overlapping variance in PC1 indicative 
of the shared variance across the cognitive, brain and sociodemographic variables. 
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Supplementary Figure 1. A) Loadings for each of the cognitive tasks and the first unrotated principal component (PC1) from the PCA. B) Scree 

plot showing the eigenvalues for the top 10 components of the PCA.  PC1 explained 37% of the variance across tasks.  
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Supplementary Figure 2.  Cumulative density functions (CDF) for permuted and fitted data across all associations.  The CDF of the 
permuted test statistic (black) and the predicted CDF (yellow) after fitting either a Weibull distribution (column 1) to the permuted univariate 

statistics or gamma distribution to the permuted multivariate statistics (columns 2-4).  The fitted CDF was extrapolated to provide an 
approximated p-value for the observed statistic.  For each association and across each of the test statistics, the observed statistics for the 

associations between cortical morphology and cognition were statistically significant i.e., the observed statistic (green) was further in the tail of 
the null distribution (black) than the FWE-corrected threshold (red).  The magnitude of effects were larger for the multivariate statistics than the 

univariate case likely due to the distributed nature of the brain-behavior effects across the cortex. 
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Supplementary Figure 3.  Eigenvalues (black) for 200 of the 1284 components from the SVD of the covariance matrix for cortical thickness (left) 
and cortical surface area (right).  The vertexwise covariance matrix was estimated based on the z statistics from 10,000 permuted vertexwise 

associations between cortical morphology and cognition.  This used a different permutation scheme to the main results in this  paper to avoid any 
biases.  The vertexwise covariance matrix was used for the calculation of the MOSTest test statistic.  To ensure the matrix was invertible the high 

dimensional matrix was regularized using a truncated SVD approach based on spectral filtering of the covariance matrix using all eigenvalues 
above the red dotted line (truncation parameter, k). k was determined based on the point at which the rate of change in the magnitude of the 

eigenvalues decreased towards zero (blue). 
 
  



 

 

 12 

 
 

 
Supplementary Figure 4. Similarity maps for the vertexwise structure-function associations.  Estimated effect size maps showing the 

association between fluid (A,D) and crystallized (B,E) scores with relative CSA (A,B) and relative CTH (D,E).  Maps are thresholded to show the 
largest 20% absolute beta estimates colored based on the sign of the association (red=positive; blue=negative).  Similarity m aps (C,F) show the 

overlap between the fluid and crystallized associations.  Vertices with positive associations above threshold for both fluid and crystallized scores 
are shown in yellow and negative associations light blue (C,F). 
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Supplementary Figure 5.  Estimated effect size maps showing the mass univariate standardized beta coefficients for the association between each cognitive task and (A) the 
regionalization of CSA and (B) the regionalization of CTH without controlling for the sociodemographic variables of race/ethnicity, household income and parental education.  In 
general, beta estimates were larger compared to when controlling for these variables (figure 4), particularly for relative CTH, and the effects were more similar across cognitive 
task. 
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