
Details of the Model of Symbiosis among Randomly Generated Networks1

To numerically examine how complicated forms of symbiosis can emerge because of cell-level optimization for each cell’s growth,2

the following algorithm is employed (Fig. A). To solve the ODE, the 4th order Runge-Kutta method is implemented using C++.3

Here, note that the diffusion coefficient of the nutrient, D(α)
0 , is fixed to 1.0 for all cell species α throughout the simulation.4

Step 1. Prepare a “species pool” that contains N = 50 cell species with different, randomly generated reaction5

networks. (see the next subsection for details).6

Step 2. Select the cell species 0 whose growth rate in isolation, µ(0)
iso , is highest among the N species. First, only7

cell species 0 with the fastest growth in isolation is placed in an environment with fixed Venv, Senv, and D(env)
S = 20. Then,8

the diffusion coefficient of each non-nutrient metabolite i is chosen from D
(0)
i = 0.001, 0.002, 0.004, · · · , 1.024 to optimize the9

growth rate of the cell species. If the optimal diffusion coefficients of all non-nutrient metabolites, D(0)
i , equal zero (i.e., if10

species 0 has no leak-advantage chemicals), the species pool is re-generated (otherwise, species 0 dominates and coexistence of11

multiple specie does not occur).12

Step 3. Cell-level adaptation of the diffusion coefficient for the invading species. Each cell species with the other13

N − 1 networks is examined, one by one, to determine whether they can invade (i.e., grow and coexist) or not. This new cell14

species β initially constitutes a proportion pβ = 0.0025 of the population, and the diffusion coefficient of each non-nutrient15

metabolite i is selected from D
(β)
i = 0.001, 0.002, 0.004, · · · , 1.024 so that the growth rate is maximized in the environmental16

condition with pre-existing cell species (initially only the fastest growing species, given at Step 2, exists). (In other words, at17

the onset of the invasion, the invading species’ population is small enough not to affect the environmental conditions.) Next,18

the population dynamics of ṗα = (µα − µ̄)pα are computed for a period T = 1.8× 106 that is long enough for populations to19

reach a stationary distribution with fixed D(α). Here, if the population ratio pα of a cell species α is below pmin ≡ 0.00025, the20

cell species α becomes extinct.21

Step 4. Cell-level adaptation of the diffusion coefficient for all coexisting species after invasion. Each of the22

surviving species independently changes its diffusion coefficient by ∆DLeak = 0.001 to optimize its growth over a sufficiently23

long period T (see the following subsection and Fig. B for details). After that, the population dynamics are calculated over a24

sufficiently long period T without changing their diffusion coefficients D(α).25

Step 5. Repeat steps 3 and 4 (i.e., invasion and adaptation) until the population of coexisting species26

converges.27

In this model, it is assumed that the timescales of the following three procedures are distinct: “the dynamical change of28

the environmental concentration and population” � “the adaptation of the diffusion coefficients of each cell species” � “the29

invasion of new species.” Assuming this timescale separation, the above algorithm is justifiable as a model of the invasion of30

the microbial ecological system by additional species.31
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Fig. A. Schematic illustration of the model of symbiosis among randomly generated networks.

Preparing a “species pool” of randomly generated networks in Step 1. We randomly generated catalytic reaction networks32

with n kinds of chemical components as shown below. Subsequently, we selected those networks that provide stable growth,33

namely, those whose growth rate µ is higher than 5× 10−5.34

Each catalytic network consists of n chemicals and ρn two-body catalytic reactions with ρ = 2. Chemicals 1 to nenzyme35

are defined as enzymes and they can be a catalyst or product of catalytic reactions but cannot be a substrate of reactions,36

while the rest of the chemicals (chemicals nenzyme + 1 to n− 1 and nutrient chemical 0) are defined as metabolites that can be37

substrates or products but cannot catalyze any reactions.38

The cellular growth rate is determined by the synthesis rate of a single chemical that contributes to biomass, where39

metabolite n−1 and enzyme 1 are defined as the precursor for biomass synthesis and enzyme for biomass synthesis, respectively.40

The cellular growth rate µ(x) is thus given by the rate of biomass synthesis, µ(x) = kBMxn−1x1.41
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Then, the time course of the concentration of chemical i (i = 1, 2, · · · , n− 2) is expressed as42

d

dt
xi =

n−1∑
j,l=0

P (j, i, l)xjxl −
n−1∑
j,l=0

P (i, j, l)xixl︸ ︷︷ ︸
Fi(x)

+Di(x(env)
i − xi)︸ ︷︷ ︸

fi(x;Di,x
(env)
i

)

−µ(x)xi,43

where P (i, j, l) takes a positive value (that equals the reaction rate constant) if reaction i + l → j + l occurs; otherwise, it44

equals 0. For chemicals 0 (nutrient) and n− 1 (biomass precursor), evolution can be written as45

d

dt
x0 = −

n−1∑
j,l=0

P (0, j, l)x0xl +DS(x(env)
0 − x0)− µ(x)x0,46

d

dt
xn−1 =

n−1∑
j,l=0

P (j, n− 1, l)xjxl −
n−1∑
j,l=0

P (n− 1, j, l)xn−1xl − kBMxn−1x1 +Dn−1(x(env)
n−1 − xn−1)− µ(x)xn−1.47

Each reaction network consists of ρn catalytic reactions (with the rate constant 1), randomly chosen such that an enzyme l48

(i.e., chemical 1, 2, · · · , nenzyme) catalyzes the conversion from a metabolite i (i.e., chemical 0, nenzyme + 1, nenzyme + 2, · · · , n−1)49

to another chemical j (a different enzyme or a different metabolite, which is not a nutrient 0; i.e., j 6= 0, i, l). Because of j 6= l,50

autocatalytic reactions are prohibited. The network can contain multiple identical reactions, and if so, the corresponding51

P (i, j, l) takes the value 2 (or more) such that the sum of P (i, j, l) is ρn, i.e., the corresponding reaction rate is doubled52

(multiplied). The number of non-zero elements in P (i, j, l) is ≤ ρn.53

Cell-level adaptation dynamics for diffusion coefficients in Step 4. To numerically compute the cell-level adaptation processes54

of diffusion coefficients D(α) (leakage and uptake) by each cell species α, we considered the following procedures where each55

cell species simultaneously increases or decreases the diffusion coefficient of one chemical, say D(α)
i , at regular time intervals τ56

such that its own growth rate increases.57

If the growth rate of cell species α increases after time τ has passed since D(α)
i is increased (decreased), then D

(α)
i is58

increased (decreased) again; while if the growth rate of cell species α decreases after time τ has passed since D(α)
i is increased59

(decreased), then D(α)
i is decreased (increased) (see also Fig. B):60

D
(α)
i (t+ τ + dt) = D

(α)
i (t+ τ) + ∆D(α)

i (t+ τ)61

= D
(α)
i (t+ τ) + ∆DLeakSgn

[
µ(α)(t+ τ)− µ(α)(t)

]
Sgn

[
∆D(α)

i (t)
]
,62

where the initial value is set to ∆D(α)
i (t = 0) = ∆DLeak = 0.001, and τ is chosen as ∼ 10/µ.63

As the diffusion coefficients of all metabolites change adaptively, the index i of the selected chemical is randomly switched64

to another chemical i′ at a constant probability pchange = 0.1, if the diffusion coefficient D(α)
i of chemical i has already been65

changed more than twice. If D(α)
i (t+ τ) = 0 and ∆D(α)

i (t+ τ) < 0, then D(α)
i (t+ τ + dt) is maintained at 0, and the index i66

of the selected chemical is randomly switched to another chemical i′.67
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Fig. B. Schematic illustration of cell-level adaptation dynamics of diffusion coefficients. In this example of the time series of diffusion coefficient D(α)

i
(dark blue) and

µ(α) (green), D(α)
i

is increased at time t+ τ as D(α)
i

(t+ τ + dt) = D
(α)
i

(t+ τ) + ∆DLeak because the increase in D(α)
i

at time t increases the growth rate as

µ(α)(t+τ) > µ(α)(t). Likewise,D(α)
i

is decreased at time t+2τ because the increase inD(α)
i

at time t+τ decreases the growth rate as µ(α)(t+2τ) < µ(α)(t+τ).

Note that one can consider another way to numerically simulate the cell-level adaptation of the diffusion coefficients. For68

instance, the growth change due to small additional leakage/uptake can be computed using the inverse matrix of the Jacobi69

matrix at a steady state [see Eq. [1] in Yamagishi et al. (2020) for details], under the assumption that such small changes in70

diffusion coefficients do not affect the environmental concentrations x(env). This “more rigorous” procedure for the cell-level71

adaptation, however, requires much more computing time, while it reproduces qualitatively identical results (Fig. C).72
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Fig. C. An example of symbiosis when the adaptation dynamics with the Jacobi matrix is adopted. (A) Time series of the number of coexisting species by successful
invasions of new species and the growth rate of cell species in coexistence. (B) Plot of leakage (blue) and uptake (red) fluxes of non-nutrient chemicals from each cell
species, A-E. (C) Structure of metabolic exchange among five species that originally have different growth rates in isolation. Cyan and pink arrows indicate the leakage
and uptake of each chemical component, respectively. Symbiosis among multiple cell species raises the growth rate to reach µsymbiosis (as indicated on the top), which
is higher than the growth rate of each cell species in isolation, µiso. In the numerical simulation, the parameters were set to n = 20, Senv = 0.03, Venv = 3,
D

(env)
S

= 20, DS = 1, Rdeg = 5 × 10−5, nenzyme = n/5.
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