

Supplemental Figure S1 The secretion and retainment of sABAleon2.1_Tao3 in the
ER. A,B Expression of sABAleon2.1_Tao3 alone resulted in the sensor either secreted
(A) or expressed in transit compartments (B), as shown by the different fluorescent
signals indicated by the green line (sABAleon2.1_Tao3) or the red line (RFP-CNX) in
the intensity plot. C Coexpression of sABAleon2.1_Tao3 with Nbs-CNX resulted in
the colocalization of sABAleon2.1_Tao3 with the ER marker RFP-CNX, as indicated
by the overlapping signal peaks in the intensity plot. Scale bars, 5 µm.

15

16 Supplemental Figure S2 Cytosolic ABAleon2.1_Tao3 shows ABA-induced specific increases in τ_{mT} . A,B Representative FLIM images (A) and data (B) show specific 17 increases in τ_{mT} in ABAleon2.1_Tao3_{cyto}, but not in that of donor-only (mT_{cyto}) and the 18 mutated ABAleon2.1_Tao3 (mABAleon2.1_Tao3cyto), in which the ABA receptor 19 20 PYR1 was mutated (R116G). FLIM data are presented as box bars with all data points. 21 Statistics were performed using one-way ANOVA followed by a Duncan's multiple 22 range test (*P < 0.05 comparing different ABA concentrations treated 23 ABAleon2.1_Tao3_{cyto} with mock treated ABAleon2.1_Tao3_{cyto}; ns, not significant). 24

26

Supplemental Figure S3 ABAleon2.1_Tao3_{cyto} shows a lower sensitivity of ABA
compared with ABAleon2.1. A,B Representative FLIM images (A) and data (B) of the

ABAleon2.1_Tao3_{cyto} and ABAleon2.1 in response to 100 nM ABA treatment. The

30 fluorescence lifetime values are shown as box bars with all data points. n = 9/12.

31 Significance was determined by students' t-test (*P < 0.05; ns, not significant).

- 32
- 33
- 34

35

Supplemental Figure S4 Osmotic stresses triggered specific increases in the τ_{mT} of 36 37 ABAleon2.1_Tao3s but not in that of donor-only controls (mT_{cyto} and mT_{ER}), mutated ABAleon2.1_Tao3s (mABAleon2.1_Tao3_{cyto} and mABAleon2.1_Tao3_{ER}), empty 38 39 FRET controls (emFRET_{cyto} and emFRET_{ER}). A Shown are representative FLIM 40 images and data of cytosol-localized constructs in response to NaCl (10 mM). B, C 41 FLIM images and data of cytosolic (B) and ER (C)-resided constructs in response to mannitol (50 mM). Data are presented as box bars with all data points. Statistics was 42 performed using students' t-test (*P < 0.05 compared with mock treatment; ns, not 43 significant). 44

titration		linear regression				K'dN (4 Parameter logistic)		
range	ABA probes	Y-intercept [ABA _{exo=0}] (nM)	slope	Tmin	Tmax	DR (%)	nM	fg/cell
0 - 100 µM	ABAleon2.1	129.1	1.845	3.05	3.45	-13.1	194.2	-
	ABAleon2.1_Tao3 _{cyto}	38.5	3.068	3.03	3.49	-15.2	398.4	-
	aABAleon2.1_Tao3 _{cyto}	217.6	2.282	2.95	3.35	-13.6	114.1	19.19 ± 1
	ABAleon2.1_Tao3 _{ER}	48.1	1.546	3	3.4	-13.3	103.6	17.73 ± 1.0

45 **Supplemental Table S1** Biochemical properties of ABA probes used in this study.

46

Biochemical properties of ABAleon2.1 and ABAleon2.1_Tao3s in ABA titration 47 assays using tobacco protoplasts. Shown are titration range, different ABA probes, 48 49 linear regression models, the minimum (τ_{min}) and maximum (τ_{max}) of mTurquoise fluorescence lifetime in each assay, the dynamic range (DR) calculated as $(\tau_{min}-\tau_{max})$ 50 51 $\times 100/\tau_{min}$, the original ABA affinity (K'd) (in nM) calculated from a four-parameter logistic fit and the K'dN that was normalized by linear regression model. The 52 53 protoplasts that had been treated with ABA or mock were harvested and extraction for 54 measuring endogenous ABA by LC/MS. The endogenous ABA level (ng/mL) was calculated by the equation $[ABA]_{ng/mL} = (Peak area of ABA) \times [ABA-d6]/(Peak area$ 55 of ABA). The endogenous ABA level (nM) was calculated by the equation [ABA]_{nM}= 56 57 [ABA]_{ng/mL}×1000/264.32. The endogenous ABA level (fg/cell) was calculated by the equation [ABA]fg/cell=([ABA]ng/mL \times the sample volume) \times 1000/the total (alive) 58 number of protoplasts in each sample. 59

Exp.	ABAleon2.1_Tao3 _{cyto} -transfected cells				ABAleon2.1_Tao3 _{ER} -transfected cells			
No.	total number of protoplasts/mL	final volume	[ABA] _{ng/mL}	[ABA] _{fg/cell}	total number of protoplasts/mL	final volume	[ABA]ng/mL	[ABA] _{fg/cell}
1	1000000	0.1	42.49	4.25	1280000	0.1	29.69	2.32
2	1550000	0.1	25.94	1.67	1965000	0.1	28.99	1.48
3	2272000	0.1	105.37	4.64	2312000	0.1	111.73	4.83
4	1099000	0.2	10.17	1.85	1241600	0.2	12.71	2.05
5	1543200	0.2	49.01	3.18	1312800	0.2	40.42	3.08
6	1578200	0.2	43.47	2.76	1263200	0.2	37.72	2.98

61 Supplemental Table S2 Basal level of endogenous ABA in individual cells.

62

The total alive number of protoplasts that had been transfected with cytosolic 63 ABAleon2.1_Tao3 (ABAleon2.1_Tao3_{cyto}) or ER-targeted ABAleon2.1_Tao3 64 (ABAleon2.1_Tao3_{ER}) was counted before harvest and extraction for measuring 65 66 endogenous ABA by LC/MS. The endogenous ABA level (ng/mL) was calculated by 67 the equation $[ABA]_{ng/mL} = (Peak area of ABA) \times [ABA-d6]/(Peak area of ABA)$. The 68 endogenous ABA level (fg/cell) was calculated by the equation [ABA]fg/cell = ([ABA]_{ng/mL} × the final volume of each sample) × 1000000/the total alive number of 69 70 protoplasts in each sample. Data are from six independent experiments.

	<u> </u>			
New fragment (vector)	Primers	Sequence (5'-3')	Template	Recipient Vector
CNX-HA- Nbs (pYLZ06)	<u>NheI</u> -HA-S	CG <u>gctagc</u> atgtatccttatg atgttcctgat		pYLZa06 (CNX-GFP)
	HA-Nbs- <u>BamHI</u> - AS	GCTGAT <u>ggatcc</u> ctagct gctcacggtcacctgggtg	pSF087*	cut NheI/BamHI
cytRFP (pYLZ13)	35S- <u>EcoRI</u> -S	TGCAGC <u>gaattc</u> ctacgc agcaggtctcatcaagacg GCTGAT <u>ggatcc</u> tctaga	pFK098*	pSF074 cut EcoRI/BamHI
	KFP- <u>BamHI</u> -AS	ttatgetecagtactgtgge		NH 7 OC
CNX-RFP	<u>NheI</u> -RFP-S	gaggac	pVI 713	pYLZa06 (CNX-GFP)
(pYLZ18)	BamHI-RFP-AS	GCTGAT <u>ggatcc</u> tctaga ttatgctccagtactgtggc		cut NheI/BamHI
	35S- <u>EcoRI</u> -S	TGCAGC <u>gaattc</u> ctacgc agcaggtctcatcaagacg	*	pSF074 cut EcoRI/BamHI
	35S- <u>ClaI</u> -AS	GCTGAT <u>atcgat</u> atagag agagagatagatttatag	pSF074*	
RFP-CNX (pYLZ14)	spRFP- <u>ClaI</u> -S	TGCACG <u>atcgatgaggct</u> ttgtaaattcacagctctctcttc tctactattttctctcctactgcttt ctgctagcatggcctcctccga ggacgtcatc	pYLZ13	
	RFP- <u>XmaI</u> -AS	GCTGAT <u>cccggg</u> tgctcc agtactgtggcggccctcgg		
	CNX- <u>XmaI</u> -S	GCTGAT <u>cccggg</u> catatg gaactgattgagaaagccg	pSF087*	

Supplemental Table S3 Oligonucleotides and plasmids used in this study.

	CNV Domili AS	TGCACG <u>ggatcc</u> ctaatt		
	CNA- <u>Ballifi</u> -AS	atcacgtctcggttgcct		
	25S EacDI S	TGCAGC <u>gaattc</u> ctacgc		
	555- <u>ECORI</u> -5	agcaggtctcatcaagacg	~SE074*	
	35S- <u>ClaI</u> -AS	GCTGAT <u>atcgat</u> atagag	psr0/4	
		agagagatagatttatag		
amT DVD1		TGCACG <u>atcgatg</u> aggct		rSE074 out
		ttgtaaattcacagctctctcttc		pSF0/4 cut
(P ¥L Z 21)	spmT- <u>ClaI</u> -S	tctactattttctctcctactgcttt	h2.1-L	ECORI/Dammi
		ctgctagcgccatggtgagca	(mT-	
		agggcgaggagctgt	PYR1)	
	DVD1 Domilii AC	GCTGAT <u>ggatcc</u> cgtcac		
	PYRI- <u>Bamhi</u> -AS	ctgagaaccacttccgtcacc		
	EcoRI-35S-S	TGCAGC <u>gaattc</u> ctacgc	- pSF074*	
mT-PYR1		agcaggtctcatcaagacg		pYLZ21 cut
(pYLZ25)	<u>NheI</u> -35S-AS	GCG <u>gctagc</u> atatagagag		EcoRI/NheI
		agagatagatttatagagag		
		GCTGAT <u>ggatccggtgg</u> a		
		ggcgttgatcctgataatgaag		
a A D A loon ?	linker3-ABI1-	catacgaaatgccttctgaaga	b2 1 S	
SADAICUIIZ.	<u>BamHI</u> -S	aggctatcaagattatgaaccg	(ARI1	pYLZ21
(pVI 724)		gaggctggtggaggcagtgt	(ADII-	cut BamHI
(p11224)		gcctttgtatggttttac	cpv)	
	cnV-BamHI-AS	TGCAGC <u>ggatcc</u> ctactc		
		gatgttgtggcggatcttgaag		
ABAleon2.1	35S-EcoRI-S	TGCAGC <u>gaattc</u> ctacgc		
Tao3		agcaggtctcatcaagacg	pSF074*	pYLZ24 cut
(nYL723)	35S- <u>NheI</u> -AS	GCG <u>gctagc</u> atatagagag	Por 07 1	EcoRI/NheI
(p x LZ23)		agagatagatttatagagag		

		GACGAGCTGTACA		
		AG <u>GGGCCC</u> ATGCC		
	<u>Psp</u> -PYRI-F	TTCGGAGTTAACA		
sm1-PYR1-		CCAGAAGAAC	/	pYLZ21 cut
		TGAACGATCTGCTT	přLZ24	Psp/BamHI
(p¥Zw81)	BamHI-linker3-	C <u>GGATCC</u> CTAGCCT		
	PYR-R	CCACCAGCCTCCG		
		G		
mT DVD1	EcoDI 358 S	TGCAGC <u>gaattc</u> ctacgc		
liinkon3	<u>ECORI</u> -353-5	agcaggtctcatcaagacg	05074*	pYZW81 cut
(nV7W82)	Nhal 255 AS	GCG <u>gctagc</u> atatagagag	p31074	EcoRI/NheI
(p¥ZW82)	<u>INIE</u> -555-AS	agagatagatttatagagag		
	PVR1-YmaI-S	ATGC <u>cccggg</u> atgccttcg	pYLZ21	
sRFP-PYR1		gagttaacaccagaaga		pYLZ14 cut
(pYLZa02)	PYR1- <u>BamHI</u> -AS	GATC <u>ggatcc</u> ctacgtcac		NheI/XmaI
		ctgagaaccacttccg		
	RFP3'- <u>XmaI</u> -	cacagtactggagca <u>cccgg</u>		
	PYR1-S	gatgccttcggagttaacac		
cRFP_PVR1	PYR1 (R116G)-AS	attegteageceatgttegeete		
(R116G)		cgatgatactgaatcc	pYLZ21	pYLZa02 cut
(nYLZa05)	PYR1 (R116G)-S	gcgaacatgggctgacgaatt		XmaI/BamHI
(prizzuve)		acaaatccgttacgacggt		
	3'nos-BamHI-	gaacgatctgcttcggatccct		
	PYR1-AS	acgtcacctgagaaccac		
smT-PYR1 (R116G) (pYLZ33)	sn-Ncol-mT-S	tgctttctgctagcg <u>ccatgg</u> tg		
		agcaagggcgaggagctgt	nYL 721	pYLZ40 cut
	GC-mT-AS	catgggccccttgtacagctcg	r · · · · · · · ·	NcoI/BamHI
		tccatgccgagag		

	1	I	I	I
	GC-PYR1-S	tacaaggggcccatgccttcg		
		gagttaacaccagaag	nYI 7a05	
	3'nos- <u>BamHI</u> -	gaacgatctgcttcggatcccg	p I LZd05	
	PYR1'-AS	tcacctgagaaccac		
		GCTGAT <u>ggatccgg</u> tgga		
		ggcgttgatcctgataatgaag		
sABAleon2.	Linker3-ABI1-	catacgaaatgccttctgaaga	b2 1 S	
1_Tao3	<u>BamHI</u> -S	aggctatcaagattatgaaccg	112.1-5	pYLZ33
(R116G)		gaggctggtggaggcagtgt	(ADII-	cut BamHI
(pYLZ34)		gcctttgtatggttttac	ср v)	
		TGCAGC <u>ggatcc</u> ctactc		
	ср v - <u>ватн</u> -А5	gatgttgtggcggatcttgaag		
ABAleon2.1	250 EachI C	TGCAGC <u>gaattc</u> ctacgc		
_Tao3	358- <u>ECORI</u> -S	agcaggtctcatcaagacg	- pSF074*	pYLZ34 cut
(R116G)	250 NH 1 40	GCG <u>gctagc</u> atatagagag		EcoRI/NheI
(pYLZ35)	555- <u>miei</u> -A5	agagatagatttatagagag		
	EcoRI-35S-S	TGCAGC <u>gaattc</u> ctacgc	• pYLZ21	
smT		agcaggtctcatcaagacg		pSF074 cut
(pYLZ40)	T.D. W.A.G	GCTGAT <u>ggatcc</u> cttgtac		EcoRI/BamHI
	тт-ватн-А5	agctcgtccatgccgagag		
		GCTGAT <u>ggatccggtgg</u> a		
		ggcgttgatcctgataatgaag	b2 1 S	
a T	linker3-cpV-	catacgaaatgccttctgaaga	(ABI1-	pYLZ40 cut
sm1- linker3-cpV (pYLZ41)	BamHI-S	aggctatcaagattatgaaccg		BamHI
		gaggctggtggaggcatgga	ср v)	
		cggcggcgtgcagctc		
	cpV-BamHI-AS	TGCAGC <u>ggatcc</u> ctactc		
		gatgttgtggcggatcttgaag		

mT-linker3-	35S- <u>EcoRI</u> -S	TGCAGC <u>gaattc</u> ctacgc agcaggtctcatcaagacg	~SE074*	pYLZ41 cut
ср у (nVI 746)	35S-NheI-AS	GCG <u>gctagc</u> atatagagag	psr0/4*	EcoRI/NheI
(p1LZ40)	555- <u>Miei</u> -A5	agagatagatttatagagag		

73 ^{*}, plasmids kindly provided by Dr. Peter Pimpl.

74 h2.1, ABAleon2.1, kindly provided by Dr. Waadt.