2 Supplemental Figure S1

3

Supplemental Figure S1. Pathways for serine biosynthesis in plants. In theory, three serine 4 biosynthesis pathways exist in plants: the phosphorylated pathway, the glycolate pathway and 5 the glycerate pathway. The phosphorylated pathway is catalyzed by the three enzymes, 3-6 phosphoglycerate dehydrogenase (PGDH), 3-phosphoserine aminotransferase (PSAT), and 3-7 phosphoserine phosphatase (PSP), and starts from 3-phosphoglycerate (3-PGA) generated by 8 plastidial glycolysis (Ros et al., 2014). The glycolate pathway is part of photorespiration and 9 therefore starts from 2-phosphoglycolate (2-PG). The reactions directly involved in 10 photorespiratory serine biosynthesis are catalyzed by glutamate-glyoxylate aminotransferase 11 (GGAT), glycine decarboxylase (GDC) and serine hydroxymethyltransferase (SHMT). The 12 glycerate pathway functions in reverse orientation to photorespiration and is carried out by 3-13 phosphoglycerate phosphatase (PGAP), hydroxypyruvate dehydrogenase (HRP) and alanine-14 hydroxypyruvate aminotransferase (AHAT). Abbreviations: pyruvate (Pyr), 15 3phosphohydroxypyruvate (3-P-OH-Pyr), 3-phosphoserine (3-PSer), tetrahydrofolate (THF), 16 5,10-methylenetetrahydrofolate (5,10-CH2-THF), carbon dioxide (CO₂), ammonia (NH₃), 17 inorganic phosphate (P_i), nicotinamide dinucleotide (NAD(H)), 2-oxoglutarate (2-OG). Red 18 font indicates enzymes. Solid lines indicate one reaction and dashed lines indicate multiple 19 reactions. 20 21

Supplemental Figure S2. Growth of *psp1-1* mutants. Growth phenotype of *psp1-1* mutants
and wild type (WT) plants on growth medium supplemented with 0, 0.01, 0.02 and 0.1mM
serine or at elevated (4000 μl l⁻¹) CO₂ (e.CO₂). Data presented are means ± SE of n = 20.
Asterisks indicate significant differences based on Student's t test (** *P* < 0.01; *** *P* < 0.001).

30

31 Supplemental Figure S3. Expression analysis of PPSB genes at ambient and elevated CO₂.

- Expression analysis of PPSB genes in empty vector (EV) control plants grown at ambient or elevated CO₂. Data presented are means \pm SE of n = 5. Asterisks indicate significantly different
- 34 values by the Student's t test (* P < 0.05).

(b)

PRGR after transfer from Ser-free to Ser-free 1/2 MS plates

PRGR after transfer from Ser to Ser-free 1/2 MS plates

37

days after transfer from Ser to Ser-free 1/2 MS plates

3

4

5

6

Supplemental Figure S4. *PGDH1*-silenced lines require continuous supply of external serine to maintain normal plant growth. *PGDH1*-silenced lines (*ts-pgdh1.1* and *ts-pgdh1.2*) and empty vector (EV) control plants were germinated and pre-cultivated on half-strength (1/2)

2

0

0

1

41 MS medium without (a) or with (b) supplementation of 0.1mM serine. After ten days plants

- 42 were transferred to serine-free half-strength MS medium and the primary root growth rate 43 (PRGR) was determined further. Red lines indicate the average root length of plants before
- 43 (FROR) was determined further. Red miles indicate the average foot length of plants before 44 transfer to serine-free half-strength MS medium. (c) Data presented are means \pm SE of n > 10.
- 45 Asterisks indicate significant differences based on Student's t test (* P < 0.05). Red arrow

⁽a)

- indicates the average root length of plants before transferred to serine-free half-strength MS 46 47
- medium.

|

Supplemental Figure S5. Growth of *PGDH1*-silenced lines at elevated CO₂ is significantly improved by external serine. Shoot and root biomasses of empty vector (EV) control plants and *PGDH1*-silenced lines (*ts-pgdh1.1* and *ts-pgdh1.2*) were determined at e.CO₂ (elevated CO₂, 4000 μ l l⁻¹) and e.CO₂ supplemented with 0.1 mM serine conditions. Therefore, plants were germinated and pre-cultivated on half-strength MS medium at ambient CO₂ for eight days before transfer to vertical plates containing either half-strength MS medium (Mock) or halfstrength MS medium supplemented with 0.1mM serine (Ser), and incubated for additional eight

57 days at elevated CO₂. Relative fresh weight as percent of EV control plants was calculated. 58 Data presented are means \pm SE of n > 5. Asterisks indicate significant differences based on

59 Student's t test (* P < 0.05). Red lines indicate the average shoot or root fresh weight of

60 *PGDH1*-silenced lines grown on Mock.

63

64 Supplemental Figure S6. Size of the meristem and elongation zone in wild type and *psp1*-

65 *I* mutant plants. Quantification of size and cell number of the meristem and sizes of the first 66 fifteen cells of the elongation zone of WT (black bars) and *psp1-1* mutant (white bars) plants

and visualization of roots by propidium iodide staining. White arrows indicate the beginning of

the elongation zone in epidermal cell layers. Data presented are means \pm SE. Asterisks indicate

significant differences based on Student's t test (* P < 0.05; ** P < 0.01; *** P < 0.001). Scale

70 bar: 50 μm.

Supplemental Figure S7. Citrate synthase activity in PGDH1-silenced lines. The activity of 74 citrate synthase was analyzed in shoot and root tissue of empty vector (EV) control plants and 75 *PGDH1*-silenced lines (*ts-pgdh1.1* and *ts-pgdh1.2*) grown at ambient CO₂ (a.CO₂, 400 μ l 1⁻¹; 76 black bars) or elevated CO₂ (e.CO₂, 4000 µl l⁻¹; white bars). (b) The oxygen consumption in 77 pmol O₂ mg⁻¹ min⁻¹ is shown for roots of empty vector (EV) control plants and PGDH1-silenced 78 lines (ts-pgdh1.1 and ts-pgdh1.2) grown at ambient CO₂ (a.CO₂, 400 µl l⁻¹; black bars) or 79 elevated CO₂ (e.CO₂, 4000 μ l l⁻¹; white bars). For (a) and (b), data presented are means \pm SD 80 of n = 5; one-way ANOVA followed by Fisher's least significant difference test (P < 0.05) were 81 performed and columns with the same letter are not significantly different. 82

85 Supplemental Figure S8. Quantification of ¹⁵N-labeled amino acids in *PGDH1*-silenced 86 lines.¹⁴N- (blue) and ¹⁵N-isotopes (M+1 orange; M+2 yellow) of major amino acids are shown 87 in shoot and root tissue of empty vector (EV) control plants and *PGDH1*-silenced lines (*ts*-88 *pgdh1.1* and *ts*-*pgdh1.2*) in a 16 hour time course (see inset). Data presented as relative (rel.) 89 abundance per mg fresh weight (FW) are means \pm SE of n = 5. Sharp (M0), asterisk (M+1) and

- cross (M+2) indicate significantly different values between EV and *PGDH1*-silenced lines by the Student's t test (#, *, + *P* < 0.05).

94

95 Supplemental Figure S9. Quantification of ¹⁵N-labeled amino acids in *PGDH1*-silenced 96 plants. ¹⁴N- (blue) and ¹⁵N- isotopes (M+1; orange) of minor abundant amino acids are shown 97 for shoot and root tissues of empty vector (EV) control plants and *PGDH1*-silenced lines (*ts*-98 *pgdh1.1* and *ts*-*pgdh1.2*) in a 16 hour time course. Data presented are means \pm SE of n = 5. 99 Orange Numbers are significantly different values for M+1 between EV and *PGDH1*-silenced 100 lines. Sharp (M0) and asterisk (M+1) indicate significantly different values between EV and 101 *PGDH1*-silenced lines by the Student's t test (#, * *P* < 0.05).

104

105 Supplemental Figure S10. Changes in the ammonium content in *PGDH1*-silenced lines.

106 The ammonium content was analyzed in shoot and root tissues of empty vector (EV) control

plants and *PGDH1*-silenced lines (*ts-pgdh1.1* and *ts-pgdh1.2*). Data presented are means \pm SD

108 of n = 5. Asterisks indicate significantly different values between EV and *PGDH1*-silenced

109 lines by the Student's t test (* P < 0.05; ** P < 0.01).

113 **Supplemental Figure S11. Expression analysis of** *PGDH* genes in *PGDH1*-silenced lines. 114 Expression of the *PGDH* genes was quantified by RT-qPCR in *PGDH1*-silenced lines (*ts*-115 *pgdh1.1* and *ts-pgdh1.2*) and empty vector (EV) control plants. Data presented are means \pm SE 116 of n = 5. Asterisks indicate significant differences between *PGDH1*-silenced lines and EV 117 plants based on Student's t test (****P* < 0.001). For detailed characterization of *PGDH1*-118 silenced plants please see Benstein et al. (2013).

119

1 Supplemental Table S1

Lab.ID	AGI	Gene	Enzyme	Orientation	Sequence
859	At4g34200	PGDH1	3-phosphoglycerate dehydrogenase	FWD	gacactgaagaagattgggg
739	At4g34200	PGDH1	3-phosphoglycerate dehydrogenase	REV	ccggtgagatttaagattcaag
743	At4g35630	PSAT1	phosphoserine aminotransferase	FWD	ggagaagtctgaattggaagc
744	At4g35630	PSAT1	phosphoserine aminotransferase	REV	gcaaaaacccttaaaactaagcatgc
410	At1g18640	PSP	phosphoserine phosphatase	FWD	caagagacccccaaggctat
411	At1g18640	PSP	phosphoserine phosphatase	REV	tgccaagaatcgatgctaca
1562	AT5G04140	GLU1	glutamate synthase	FWD	gggaatctcattgctttcaagt
1563	AT5G04140	GLU1	glutamate synthase	REV	tgacacacttccagtgaatgc
1600	AT2G41220	GLU2	glutamate synthase	FWD	tccgtggtagtgcatctcaa
1601	AT2G41220	GLU2	glutamate synthase	REV	aacgtctccctagccagctc
1602	AT5G53460	GLT1	glutamate synthase	FWD	tgttggtctgcctcatgatt
1603	AT5G53460	GLT1	glutamate synthase	REV	ccagcagaaggaagtacaaagc
1729	AT3G03910	GDH3	glutamate dehydrogenase	FWD	acttcgagtgggttcagaacat
1730	AT3G03910	GDH3	glutamate dehydrogenase	REV	tcacatgagtgcgtctgaca
1731	AT5G07440	GDH2	glutamate dehydrogenase	FWD	ggacgcaactggaagtctca
1732	AT5G07440	GDH2	glutamate dehydrogenase	REV	accaagagcgcatggaatga
1733	AT5G18170	GDH1	glutamate dehydrogenase	FWD	atggatactcgcctgcagtt
1734	AT5G18170	GDH1	glutamate dehydrogenase	REV	tgccctgatatggtctttccg
1592	AT5G37600	GLN1,1	glutamine synthetase	FWD	ccactgacaaaatcattgctg
1593	AT5G37600	GLN1,1	glutamine synthetase	REV	tcactggtccaggtagagtcct
1594	AT3G17820	GLN1,3	glutamine synthetase	FWD	ggccctcagggaccttacta
1595	AT3G17820	GLN1,3	glutamine synthetase	REV	tccacaatgtcacgaccaat
1596	AT5G35630	GLN2	glutamine synthetase	FWD	gtggaggcaataacatcttgg
1597	AT5G35630	GLN2	glutamine synthetase	REV	tgtttgttggaattggctca
1723	AT1G48470	GLN1;5	glutamine synthetase	FWD	tagcaccgatcaagctgccg
1724	AT1G48470	GLN1;5	glutamine synthetase	REV	gatctccggccggtctgtaa
1725	AT5G16570	GLN1;4	glutamine synthetase	FWD	ggtctgggttgctcgttaca
1726	AT5G16570	GLN1;4	glutamine synthetase	REV	cccctgcaccattccaatct
2004	AT1G66200	gln1.2	glutamine synthetase	FWD	gtctcacgggacaccatgaa
2005	AT1G66200	gln1.2	glutamine synthetase	REV	caagggttccagaggagtgt
2006	AT1G64780	AMT1;2	ammonium transporter	FWD	tgggtgggtgacggtaacta
2007	AT1G64780	AMT1;2	ammonium transporter	REV	tcttccagcgaaatgacccc
1590	AT1G37130	NIA2	nitrate reductase	FWD	ctttggtagacgccgaactc
1591	AT1G37130	NIA2	nitrate reductase	REV	tttagctcgttgattatgtactctg
1560	AT1G77760	NIA1	nitrate reductase	FWD	aagccgtacacattaaaaggcta
1561	AT1G77760	NIA1	nitrate reductase	REV	tcacctcaaccctcgttacc
1566	AT1G08090	NRT2.1	nitrate transporter	FWD	tggaaatcgagctaccttgg
1567	AT1G08090	NRT2.1	nitrate transporter	REV	gtaacggcataccacagaatctt

2 Supplemental Table S1. Oligonucleotide sequences.