Supplementary information

A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting

Xiaoyu Yan,^{1,3} Jasper Biemolt,² Kai Zhao,^{1,3} Yang Zhao,¹ Xiaojuan Cao,^{1,3} Ying Yang,⁴ Xiaoyu Wu,^{1,3} Gadi Rothenberg,² and Ning Yan^{1,2,3,*}

- ¹ School of Physics and Technology, Wuhan University, Wuhan, China.
- ² Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands.
- ³ Suzhou Institute of Wuhan University, Suzhou, China.
- ⁴ Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, China.
- *To whom the correspondence should be addressed: ning.yan@whu.edu.cn

1. Supplementary Tables

Supplementary Table 1: Comparison of OER overpotentials with selected highperformance electrocatalysts at 10 mA cm⁻² and 50 mA cm⁻² in 1.0 M KOH solutions.

Note: n.g. indicates not given or obtainable in the literature.

Supplementary Table S2: Comparison of HER overpotentials of FeP-CoP/NC/CC with selected high-performance electrocatalysts at 10 mA $cm⁻²$ and 50 mA $cm⁻²$ in 1.0 M KOH solutions.

Note: n.g. indicates not given or obtainable in the literature.

Supplementary Table S3: Comparison of the applied voltage FeP-CoP/NC/CC with selected high-performance electrocatalysts at 10 mA $cm⁻²$ and 50 mA $cm⁻²$ in 1.0 M KOH.

Note: n.g. indicates not given or obtainable in the literature.

Supplementary Table S4: Minerals in the tap water used in this work

2. Supplementary Figures

Supplementary Figure 1: CV of GC electrode in 1.0 mM K₃Fe(CN)₆ + 1.0 mM K₄Fe(CN)₆ $+$ 0.1 M KCl at 5 mV s⁻¹ for calibration.

Supplementary Figure 2: The preparation process and structure of the AE.

Supplementary Figure 3: SEM image of Ni(OH)₂ in a AE.

Supplementary Figure 4: XRD pattern of AE; three main peaks corresponds to the Ni form matrix where as the remaining peaks belong to Ni(OH)2.

Supplementary Figure 5: The original assembly of MFE before activation.

Supplementary Figure 6: Activation process of AEs in MFE, current is ±250 mA, temperature is 35 °C and flow rate is 50 ml min⁻¹.

Charge/discharge process:

Anode: $Ni(OH)_2 + OH^- \rightarrow NiOOH + H_2O$ Cathode: $NiOOH + H_2O \rightarrow Ni(OH)_2 + OH^-$ Overcharge/discharge process:

Cathode: $H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Supplementary Figure 7: CVs of a activated Ni(OH)₂ electrode at various scan rates. The redox behavior of NiOOH/Ni(OH)² is visible.

Supplementary Figure 8: The molar conversion of Ni(OH)₂ in MFE as a function of time at various currents.

Supplementary Figure 9: SEM images of (a) Fe-Co bimetallic alloy/NC and (b) FeP-CoP/NC after phosphidation.

Supplementary Figure 10: The comparison of (a) N₂ adsorption isotherms and (b) pore size distribution of FeP-CoP/NC and NC.

Supplementary Figure 11: EIS spectra of FeP-CoP/NC, FeP-CoP/C, FeP-CoP, CoP/NC, FeP /NC and NC in a 3-electrode system at open circuit condition. Electrolyte is N₂saturated 1.0 M KOH.

Supplementary Figure 12: Electrochemical performance of FeP-CoP/NC in OER with various Fe/Co ratio.

Supplementary Figure 13: The OER and HER performance of FeP-CoP/NC/CC in 1.0 M KOH solutions.

Supplementary Figure 14: The schematic assembly of (a) single-compartment cell and (b) H-cell for alkaline water splitting in this work.

Supplementary Figure 15: high resolution XPS spectra of (a) Fe 2*p* and (b) Co 2*p* in FeP-CoP/NC before and after HER/OER cycle.

Supplementary Figure 16: Performance of MFE when the time per cycle is varied.

Supplementary Figure 17: The comparison of EIS spectra for a normal MFE and a MFE which is over (dis)charged.

Supplementary Figure 18: The schematic of the electrolyzer using NiOOH/Ni(OH)² redox couple without flowing and MEA structure.

Supplementary Figure 19: Photograph of the conventional decoupled electrolyzer using NiOOH/Ni(OH)₂ redox couple.

Supplementary Figure 20: (a) The *V–t* curve at ±10 mA cm-2 ; (b) Cyclic stability test at $±10$ mA cm⁻² in conventional electrolyzer using redox couples. Temperature is 35 °C. Both anolyte and catholyte are 1.0 M KOH solutions. The cycle stability lowered by 10% from first cycle to the sixteen cycle.

Supplementary Figure 21: Measured H₂ and O₂ yields in conventional electrolyzer using redox couples, solids lines represent the gas evolution at 100% Faradaic efficiency at current density of 40 mA cm⁻². Both anolyte and catholyte are 1.0 M KOH solutions. After 30 min, 0.353 mmol of H² has been measured, which was close to the theoretical value (0.356 mmol). The calculated Faradaic efficiency was 96.2%.

Supplementary Figure 22: The internal ohmic resistance of cells with different architectures (H-cell, single-compartment, electrolyzer using NiOOH/Ni(OH)₂ redox couple without flowing and sandwiched electrode structure), all electrodes are employed with FeP-CoP/NC catalysts in 1.0 M KOH solutions.

Supplementary Figure 23: The photograph of deionized water (left) and tap water electrolyte (right), Note the precipitation in the tap water electrolyte after adding KOH.

Supplementary Figure 24: Rescaled plots of the cyclic stability test of MFE in Figure 5c and 5d.

Supplementary Figure 25: A 500 h longevity test of MFE in tap water electrolyte. For the evaluation of the cyclic stability of the auxiliary electrode, 2 min per cycle was applied to achieve a higher cycle number.