

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202001701

HNRNPL Circularizes ARHGAP35 to Produce An Oncogenic Protein

Yan Li, Bing Chen, Jingjing Zhao, Qin Li, Siyuan Chen, Tianan Guo, Yuchen Li, Hongyan Lai, Zhiao Chen, Zhiqiang Meng, Weijie Guo,* Xianghuo He,* and Shenglin Huang*

Supporting Information

HNRNPL Circularizes ARHGAP35 to Produce An Oncogenic Protein

Yan Li, Bing Chen, Jingjing Zhao, Qin Li, Siyuan Chen, Tianan Guo, Yuchen Li, Hongyan Lai, Zhiao Chen, Zhiqiang Meng, Weijie Guo,* Xianghuo He,* and Shenglin Huang*

HNRNPL Circularizes ARHGAP35 to Produce An Oncogenic Protein

Yan Li, Bing Chen, Jingjing Zhao, Qin Li, Siyuan Chen, Tianan Guo, Yuchen Li, Hongyan Lai, Zhiao Chen, Zhiqiang Meng, Weijie Guo,* Xianghuo He,* and Shenglin Huang*

Dr. Y. Li, B. Chen, J. Zhao, Q. Li, Y. Li, H. Lai, Dr. W. Guo, Prof. S. Huang Department of Integrative Oncology Fudan University Shanghai Cancer Center the Shanghai Key Laboratory of Medical Epigenetics Institutes of Biomedical Sciences Shanghai Medical College Fudan University Shanghai 200032, China E-mail: slhuang@fudan.edu.cn; guoweijie1986@gmail.com

Dr. Z. Chen, Prof. X. He Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences Shanghai Medical College Fudan University Shanghai 200032, China E-mail: xhhe@fudan.edu.cn

S. Chen Department of Medical Oncology Fudan University Shanghai Cancer Center Shanghai Medical College Fudan University Shanghai 200032, China

T. Guo, Department of Colorectal Surgery Fudan University Shanghai Cancer Center Shanghai Medical College Fudan University Shanghai 200032, China

Supplementary Figures and Figure Legends

Figure S1. Identification of circRNAs in cancer tissues. A) Multidimensional scaling analysis for circRNAs in tumor (T) tissues and adjacent non-tumor (N) tissues. Red dots and black dots represented circRNAs in tumor tissues and adjacent non-tumor tissues, respectively. B) The Pearson's correlation of circRNA versus linear host gene expression. C) The expression of six circular ARHGAP35 isoforms in HCT-116 cells. Data were represented as mean \pm SEM. D) Validation for the formation of circRNA but not in genomic DNA (gDNA). Convergent primers spanning exons were used to detecte specific linear RNA. GAPDH was used as a

linear RNA control. E) qRT-PCR analysis of circARHGAP35 and linear ARHGAP35 RNA expression in the cytoplasm or nucleus of HCT-116 cells. F) qRT-PCR analysis of circARHGAP35 and linear ARHGAP35 RNA expression in the cytoplasm or nucleus of SK-Hep-1 cells. G) Northern blot for circHIPK3, which we reported previously (Zheng, et al., Nat Commun. 2016, PMID: 27050392), as a positive control, with or without RNase R treatment using a specific probe.

Figure S2. circARHGAP35 and linear ARHGAP35 have antithetical functions *in vitro*.(**A**) qRT-PCR analysis of the interference efficiencies after treatment with the siRNAs specifically targeting the back-splice junction of circARHGAP35, the ARHGAP35 linear transcript and both transcript in SK-Hep-1, HuH-7 and HCT-116 cells. (**B**) CCK-8 proliferation assay of SK-Hep-1 cells transfected with control or indicated siRNAs. (**C**, **D**) Transwell migration and invasion assays of HCT-116 (C) and SK-Hep-1(D) cells were performed after transfection of control or indicated siRNAs. Scale bars, 10 µm. (**E**) The position of gRNA targeting linear ARHGAP35 transcript. (**F**) The expression of circARHGAP35 after linear ARHGAP35 transcript was specifically knocked down by the CRISPR/Cas9 technology. Data were represented as mean \pm SEM and representative of at least 3 independent experiments. Two-way ANOVA and Tukey post hoc test were performed for (B); one-way ANOVA and Dunnett post hoc test were performed for (D); unpaired Student's t tests were performed for (F). *P < 0.05; **P < 0.01; ***P < 0.001.

Figure S3. The functions of circARHGAP35 and linear ARHGAP35 *in vitro* and *in vivo*. A) Shematic representation of shRNA targeting circARHAGP35 at the back-splice junction. B) The relative expression of circARHGAP35 was determined by qRT-PCR in SK-Hep-1 cells infected with either shRNA expressing lentivirus or vector control lentivirus. C) CCK-8

proliferation assay in SK-Hep-1 cells after knockdown of circARHAGP35 by shRNA. D) Cloning formation assay after knockdown of circARHGAP35 by shRNA. E) Transwell migration and invasion assays of SK-Hep-1 cells after knockdown of circARHGAP35 by shRNA. Scale bars, 10 µm. F) Western blot analysis of ARHGAP35 protein level in HCT-116 cells infected with either linear ARHGAP35 expressing lentivirus or vector control lentivirus. G) The effect of linear ARHGAP35 on tumor metastasis in mouse tail vein injection model. The linear ARHGAP35 overexpression group or vector control group were injected into the tail vein of each nude mouse (n=10). Statistical analysis of the differences between the two groups was performed using the γ^2 test. H.I.) Hematoxylin-eosin-stained sections of lung metastatic nodules formed in the two groups. Slides were examined by an expert pathologist. The number of metastatic nodules in the lungs of the two groups were counted and analyzed (H). Black arrows indicate the nodules formed in the lung (I). Scale bars, 200 µm. Shown were representative images. Data were represented as mean \pm SEM and representative of at least three independent experiments. Two-way ANOVA and Tukey post hoc test were performed for (C); one-way ANOVA and Dunnett post hoc test were performed for (D, E); unpaired Student's t tests were performed for (H). *P < 0.05; **P < 0.01; ***P < 0.001.

Figure S4. circARHGAP35 encodes a protein. A) Schematic of circARHGAP35 MS2-GST RNA pulldown assay. circARHGAP35 was tagged with MS2 hairpins. The plasmid p-MS2-circARHGAP35 or control plasmid was co-transfected with plasmid expressing MS2-GST fusion protein (contains MS2 binding protein which recognizes MS2 RNA, GST tag which recognizes glutathione-SH and a cytoplasmic localization signal) in HEK-293T cells. After 48 hours, cells were lysed and the complexes were affinity-purified by using GSH magnetic beads, followed by mass spectrometry. B) The immunoprecipitated protein sample was

subject to SDS-PAGE and mass spectrometry analysis to identify proteins interacting with circARHGAP35. C) RIP assay using anti-EIF3I antibody. The percentage of RIP-enriched circARHGAP35 relative to the input value was calculated by qRT-PCR. Nonspecific IgG was used as an isotype negative control. Statistical analysis was performed using unpaired Student's t tests. *P < 0.05. D) Endogenous circARHGAP35 protein was identified by mass spectrometry analysis after immunoprecipitation assay. The amino acid sequences (red letters) represent the peptides of circARHGAP35 protein. E) Representative polysome profile prepared from HCT-116 cell cytoplasmic extracts using a linear 15% to 50% sucrose gradient. The polysomes of HCT-116 cell cytoplasmic extracts were fractionated using sucrose density gradient centrifugation. Absorbance at 254 nm was measured. F) Representative polysome profile after EDTA treatment. G) The distribution of circARHGAP35, linear ARHGAP35, circPMS1 and Actin mRNA in polysomes (Fraction 6-15) and non-polysomes (Fraction 1-5). H) The m⁶A RNA immunoprecipitation sequencing (meRIP-seq) data around the circARGHGAP35 loci adjacent to the translation start site. A significant peak and three RRACH fragments (R = G or A; H = A, C or U) are present at the start codon. Data were represented as mean \pm SEM. Results were performed at least three independent experiments.

Figure S5. circARHGAP35 encodes a functional protein. A) circARHGAP35 protein was detected by western blot analysis after treatment with different concentrations of Doxycycline (Dox) in inducible SK-Hep-1 cells which were infected with pTRIPZ-circARHGAP35-ORF lentivirus. '-' means no Dox treatment. B, C) CCK-8 proliferation assays (B), and transwell migration and invasion assays (C) of inducible SK-Hep-1 cells after treatment with indicated Dox concentrations. Scale bars, 10 µm. D) Western blot validation of circARHGAP35 protein following stable overexpression of circARHGAP35 protein or RNA. circARHGAP35 protein was overexpressed by Dox treatment (25ng/mL) in inducible SK-Hep-1 cells.

circARHGAP35 RNA was overexpressed by infected with p-circARHGAP35 lentivirus. E) The expression of circARHGAP35 RNA was validated by qRT-PCR. F, G) CCK-8 proliferation assays (F), and transwell migration and invasion assays (G) after overexpression of circARHGAP35 protein or RNA. Scale bars, 10 μ m. H) qRT-PCR analysis of FOS mRNA level in SK-Hep-1 cells infected with circARHGAP35 protein vector lentivirus (p-lin-cORF-Flag), mutant vector lentivirus (p-lin-cORF-Flag-mut) or vector control lentivirus. Data were represented as mean \pm SEM. Results were performed at least three independent experiments; two-way ANOVA and Tukey post hoc test were performed for (B) and (F); one-way ANOVA and Dunnett post hoc test were performed for (C), (G) . *P < 0.05; **P < 0.01; ***P < 0.001.

Figure S6. HNRNPL regulates circARHGAP35 formation. A) HNRNPL binding sites flanking the circARHGAP35 locus. B) Correlation between linear ARHGAP35 and HNRNPL in 110 HCC samples was determined by qRT-PCR with β -actin serving as an internal control. Statistical analysis was performed with Pearson's correlation analysis.C) Correlation between linear ARHGAP35 and HNRNPL in cancer cell lines. Statistical analysis was performed with Pearson's correlation analysis.

Figure S7. The expression of circARHGAP35 and linear ARHGAP35 in cancer patient samples. A-C) The expression of circARHGAP35(A), linear ARHGAP35(B) and HNRNPL(C) in HBV-positive or HBV-negative HCC samples. Data were analyzed by unpaired Student's t tests. D) The expression of circARHGAP35 in 62 paired CRC and

adjacent non-tumour (NT) cancer tissues. Data were analyzed by paired Student's t-test, n=62. E) The fold change of circARHGAP35 expression in 62 paired HCC samples (downregulated, green; unchanged, gray; upregulated, red). F) The expression of linear ARHGAP35 in 62 paired CRC and adjacent non-tumour (NT) cancer tissues. Data were analyzed by paired Student's t-test, n=62. G) The fold change of linear ARHGAP35 expression in 62 paired HCC samples (downregulated, green; unchanged, gray; upregulated, red). H) qRT-PCR analysis of circARHGAP35 levels in plasma EVs of HCC patients and healthy people (n = 35, respectively). Data were analyzed by unpaired Student's t tests.

Figure S8. Uncropped blots of related figures.

	circARHGAP35 expression				
	n High Low		γ^2	P Value	
		(>Median)	(<median)< td=""><td>λ</td><td>1 value</td></median)<>	λ	1 value
Gender		(* 111001011)	(integration)		
Male	92	46	46		
Female	18	9	9	0	1
Liver cirrhosis					
ves	87	45	42		
no	22	9	13	1.831	0.4
unknown	1	1	0		
Family history of liver cancer					
yes	8	4	4	0	1
no	102	51	51	0	1
HBsAg					
Positive	87	39	48	1 153	0.035*
Negative	23	16	7	4.455	0.055
Tumor embolus					
yes	48	25	23	0 148	0 701
no	62	30	32	0.140	0.701
Tumor capsule					
yes	57	29	28	0.036	0.849
no	53	26	27	0.020	
Tumor size (cm)					
> 5	56	34	22	5 238	0.022*
≤5	54	21	33	5.250	0.022
Tumor No.					
1	92	43	49	0 00 1	0.122
>1	18	12	6	2.391	
Serum AFP (ng/ml)					
<20	35	13	22		0.065
>20	75	42	33	3.394	
Age (vears)					
<50	55	25	30		
> 50	55	30	25	0.909	0.34
GGT					
<54 U/L	39	16	23		
>54 U/L	71	39	32	1.947	0.163
TNM stage					
I + II	83	40	43		0.000
III + IV	26	15	11	0.715	0.398
BCLC stage					
0 + A	18	7	11	1.072	0 202
B+C+D	<u>9</u> 2	48	44	1.063	0.303

Table S1. Correlation of the Clinicopathological Features With circARHGAP35Expression in HCC

*, χ2 test, P<0.05.

		ARHGAP3	ARHGAP35 expression		
	n	High (>Median)	Low (<median)< th=""><th>χ^2</th><th>P Value</th></median)<>	χ^2	P Value
Gender					
Male	92	43	49	2 201	0 1 2 2
Female	18	12	6	2.391	0.122
Liver cirrhosis					
yes	87	45	42		
no	22	10	12	1.285	0.526
unknown	1	0	1		
Family history of liver cancer					
yes	8	5	3	0.520	0.462
no	102	50	52	0.539	0.463
HBsAg					
Positive	87	41	46	1 274	0.241
Negative	23	14	9	1.374	
Tumor embolus					
yes	48	21	27	1 221	0.249
no	62	34	28	1.551	
Tumor capsule					
yes	57	30	27	0.228	0.567
no	53	25	28	0.528	0.307
Tumor size (cm)					
> 5	56	29	27	1 1 1 4 6	0 702
≤5	54	26	28	1.140	0.705
Tumor No.					
1	92	48	44		
>1	18	7	11	1.063	0.303
Serum AFP (ng/ml)					
≤20	35	17	18		0.838
>20	75	38	37	0.042	
Age (years)					
≤50	55	24	31		
> 50	55	31	24	1.782	0.182
GGT					
≤54 U/L	39	25	14		0.028*
>54 U/L	71	30	41	4.807	
TNM stage	-				
I + II	83	44	39		
III + IV	26	10	16	1.677	0.195
BCLC stage					
0 + A	18	9	9		
B+C+D	92	46	46	0	1

Expression in HCC

*, χ2 test, P<0.05.

		-	C C
		Forward primer(5'-3')	Reverse primer(5'-3')
43 candidate circular	r RNAs and	corresponding linear mRNAs	
FGA	Circular	GTTGCAGTCCCTCCAGTC	AAGCTGGAACTCTGGGAG
	Linear	TGTCAGAGACTGTGATGATGTCC	TACTGGATCCCGGTAGCTTG
MADIZA	Circular	AGTTGAAGCCATACACA	AGGATGCTCTCACAGTC
MARK4	Linear	GAAGGAAGCTCGAGCCAAGT	GTTCTCAGCCTTCAGGTCCC
0051	Circular	CCAAACAGGCGGAGGAG	GTCGCGGTGGAAAGCAT
GSEI	Linear	GCAGCCCCGGGTGAGATAAG	CAGCTCCACCTCGGCTGATA
GT G (1) A	Circular	GCAGATGAATCAGAACC	TGTAGAAGTGACCCCAA
SLC41A2	Linear	GCCAAACATCCAGCCACAAG	CTAGCCTGAATGGCCACCAA
	Circular	AAAGCTCAATACCCCAT	AGCCTCCAAGAATCACA
NNT	Linear	GGGAGAAGCAAATGTGTCCCT	TTTGGGGACTCCAACAGTCA
	Circular	AAGACCTGGATGGATTTC	ACATTGCTTTGCTAAGAT
UGP2	Linear	GCTCAAGGTGTGCATGTGTG	GCTTTGCTAAGATCTTCCTCTTCC
	Circular	CGAGACCCAGCAAAGGAAA	CCCCCAGTTAGAGCACCCC
SMC3	Linear	CCAACACAGGGTTTCAGTGT	TAGCCTCCAGCACTTTGTCAG
	Circular	ATGGATACAGAGTCAAGTG	ATCTTCATCAGTGATCTCA
SMARCA5	Linear	CCAACACAGGGTTTCAGTGT	TAGCCTCCAGCACTTTGTCAG
	Circular	GATCTGCAGCTAAAGAGTT	GAGGTGGAGGTGGGGAATG
REPS1	Linear	GCAGGGGGGCAAGTGAAAAAG	ATGCAGGTTCCTGTGCATCT
	Circular	CGCTTCAGGCGCTTCTGT	TTGCGAGCATCTCAGGTC
ZKSCAN1	Linear	TCCCAGGACATAAAGGCTGC	CCTGTAGGGTGGAATCCTGC
	Circular	GGAAAGTGATTGGTGAC	AGCAGTTTTGTGTTGAT
TMEM56	Linear	CTGAACCCAGCACCATCAGT	CAACCAGAGTCGCCAGTCAT
	Circular	AATGGTCCCAGACCCTC	CTGCTCCCTGAAATGCT
KDM8	Linear	CCAAACGCAACGAGTCTTCG	CTTTCTCCCCGAGGTCCAAC
	Circular	GGTGAGCCTCATCACACAG	GCAAAACAGAAAAACATTT
PPP6R2	Linear	AGTGTTTGATGAGCCAGCGA	TGACTCGGAGCAGCAGAAAG
	Circular	ACTCCCAGTCTGTGAGCC	TCCAGGACCTGTGATGTA
MASP2	Linear	AGGTCACTTGCCCCTGAAAT	CACAGTCAACAATGCTGCACG
	Circular	CTTTTACTAACCTCGTGAG	GTATTTTGGTAGGACTCTT
VEZT	Linear	GCACAACAGAGGGACAA	AAGCATAACGAGCAAGC
	Circular	CTTCAGGCTCCTCTCTTTA	ATTTGGTGGTTGTATTTCC
ANKIB1	Linear	GAGCTCATGACTGGGACAGG	TGGTGGTGGAGTTGGCATTT
	Circular	TCGAATGATGTCTGGCTCC	CCAAAACGCACAGTGTACC
AFTPH-F	Linear	CAGTTCCGCGTCGGAATAGA	TTTACACCTGGCTCCTTCGG
ODOLE	Circular	AGTCGACGTCATAAATCCC	CCACATCATCACCAACAGT
CPSF6	Linear	TGATGCCAGTGCTGGTGATT	TCACGTCTTGATCCAGAACCA
	Circular	GGAAATCGTTGTTGTTGGA	CCTTTGCGTATTGTGGTCA
FBXL5	Linear	GCCCTTTCCTGAAGAAGTGGA	GAGCACGGAAATCGTTGTTGT
FOOT	Circular	AGAGAGATTTGCTGGGATA	GGTTGACTGGTAATGGGTG
FGGY	Linear	ACTAAAGGGCATGGTCACCG	AAGGGGATTCTTGCTGAGGC
	Circular	CAACAGCACCAGCAAATAA	AAAGGGTAGAGAGAAGGCA
KLHL8	Linear	GCCATTGTTGCCGGTTGATT	ACACAAAACAGCACACCAGC
FOCAD	Circular	TTCTCTCTCGCTTGTGTGA	AGGCTGTGCTTTTTTTGTA
FOCAD	Linear	TTCCATCCACACAGATTAGCAGTT	TGCAACACTTCTCCCACAGC
DTCD 1	Circular	AGAAATGGAGTGCGTTG	AGGACTTGCTGAAATGG
PIGKI	Linear	AAGGAGATGCCCGCCAAAAA	TTCCCTTCATTTTTCTGCTTTGAA
DEV	Circular	AAAAGTTGAAGAAACCCCC	TTGTGCAATTGTAAATGGC
DEK	Linear	TCTCTTCCTTACAGAGAGAGCCA	AAGCCACTGAACTGACCCAC
CDD	Circular	AAAGCCCATACCTTTATCC	AGTCTCTTCCTCTCCCCAT
GDIZ	Linear	TCGCCAGCTCCATTTTCCTC	AGATGCACTCTCTCCTCCGT
PI4KB	Circular	CTCCCTCCAAAAGGACTCA	GGCAGGCTCCACTACTGTA
	Linear	GCAACTGCAGTCCATTTGGG	GCAAGGAGAGCTGTGACTGT
TMEM191	Circular	CAGTGATAGTGGGATTTGA	GCTTGGAGAGCGTGTAGAG
IMEM181	Linear	CCTGGCCAAAGGGAAGTTGT	CGGACAGGTCCACAACTGAA
	Circular	AAACCAAAGCCCAAACCCC	ACCACCTCTCATCGCCAAA
ANIOALI	Linear	GTCAGCGGGAACAAGTCTGA	GCTCCCGGTCGTTGATTTTG
FANCL	Circular	GTTCTACTCAAGCCTTATT	TCTTCAGGCAACACTATC

Table S3. Primers and RNA sequences used in this study

	Linear	GGTAAATTCTCCTCAGAGCTCCTT	CTGGCTCAAGTACCCAGGTC
	Circular	TATTGTCCACCATCCAGG	ACCGCTCAAATGTTATCT
LIFR	Linear	GTTGCTGGGACTGAATACCCT	AGCCATTCAATCACGTGTGC
0.0115	Circular	CTTGTCTTTCCAGTCCTT	ACAAAATCAATTTGCTCC
S0X5	Linear	GGAGACGATCATAGGTGGCT	AGCCCGTCACTCTCCTCTTC
CNING	Circular	CTGTTTGAGAGTGGGAA	GAGCGGTTGATCTTGGG
CININ2	Linear	ATCAACCGCTCCATGCAGAA	CGAGAAGAGACACCTGCACC
PBM23	Circular	ATCAGATGCCATCCTGTC	TTATCCTAGCAATACCACC
KDW25	Linear	GAAGGTTCTGGAAGACGGCA	GTCAGATCAGTTCCGGGTCC
ARHGEF12	Circular	TAAAAGAGGAGCAGCATG	ATTCACCTTCCAAACCAA
	Linear	TTCTGTTTTCTGGGGGTCTGGG	GGCTCCTCGACTCCTCAACT
RHOBTB3	Circular	TCGTTGGGAAGAATTGGA	TGTGACGCTTCAGCCTTT
	Linear	AGGCAACCCACCATTACGAG	TCCCACTGAAAAGCACCTGA
C3	Circular	TCTGGGAACTCACTTCGG	GTGGGAGATTCTGGCTGT
	Linear	CAAGCGCATTCCGATTGAGG	CCTGAGTGCAAGATGACGGT
ENPP1	Circular	GCCTCAAGTCTGGCACAT	AGCATTCATTTTGGGATC
	Linear	CAGCATIGICACCGGATIGT	GCCAGACITGAGGCCTTGAT
ZCCHC6	Circular	GCCCCAAAIGATAGAIGI	TGACAGGAATACCAAATAC
	Linear		
MED13L	Lincor		
	Circular	GACAGAATAGCAGCGGTCTA	CCTCCCACTCCAAATGA
HMGCS1	Linear	GACTGTCCTTTCGTCGCTC	GCATGCTGAAAGAGCTGTG
	Circular	AGCGTCTCCTGATGGTTA	AGAAATGGAGTGCGTTGT
PTGR1	Linear	CAGTCCCAGCCGCCTTC	GCTTCAAGCAGGACCTCTCC
	Circular	GAGTTGCTCATGGAGGTG	AAGTTTGTGGCTTCTTGG
CBFA2T2	Linear	GCCTTCCAGCTTGGTCCTG	GGGAGGTGAGGATCTGGACT
	Circular	TTTAGTGGGCGGCTGGTA	AAGCCAAACCTATTGCTACTCC
LONP2	Linear	TGCAGTACAAATTTTAGATGCTGTG	GGGCGTATTGCTATAACCCTCT
Actin	Linear	TTGTTACAGGAAGTCCCTTGCC	ATGCTATCACCTCCCCTGTGTG
Putative circARHGAP	35 isoforms		
circARHGAP35.2		GGAACACTAAGGAAGAAAT	CTGGACATGCAGCAAAAAT
circARHGAP35 3		CCCGTATAACATGCAGATC	CGGTATTCACCGTAAAGTC
circARHGAP354		TTGTACTTGTCTCAATGGG	
CICARIDAL 55.4			
circARHGAP35.5			CIGCCACAGICCCIGCCIG
circARHGAP35.6		TGGGTGGGAGGGCGTTGGC	AAGCGGGAGTGGGGGCAGC
Northern blotting			
circARHGAP35-probe		CAGGCATCCCAGGGTTAT	GATCACTAATACGACTCACTATAG GGTTCGGACATCTTGCTTTCTT
linear ARHGAP35- probe		GGCTGGTGCCATGAAGAG	GATCACTAATACGACTCACTATAG GGAGGCGTGGAAGTGAGGAA
circHIPK3-probe		CGGCAGCCTTACAGGGTTA	TAATACGACTCACTATAGGGAGAC AACTGCTTGGCTCTACTT
gRNA gRNA targeting ARHGAI	235	CACCGTATAACATGCAGATCGACT	AAACAGTCGATCTGCATGTTATAC
shRNA			
shRNA targeting circARH	IGAP35	CACCGTGAAGCCACAGGAAGAAATTC AAGATTTCTTCCTGTGGCTTCATTTTTT	AAACAAAAAATGAAGCCACAGGA AGAAATCTTGAATTTCTTCCTGTGG CTTCAC
Constructs			
p-circARHGAP35		CGGAATTCTGAAATATGCTATCTTACA GGAAGAAATGTTGGCTATTTG	CGGGATCCTCAAGAAAAAATATAT TCACCTGTGGCTTCAATGTACTCA
p-lin-cORF-Flag		AGAAGATTCTAGAGCTAGCGATGATG GACTACAAAGACCATGACGGTGATTA TAAGGATCATGACATCGATTACA	GCAGATCCTTCGCGGCCGCGTCAC TGTTCACCACCTCTCATCGCCAAAT AGCCAACATTTCTTCCTGTGGCTTC AATGTACTCAA

p-lin-FL	AGAAGATTCTAGAGCTAGCGATGATG ATGGCAAGAAAGC	GCAGATCCTTCGCGGCCGCGTCAC AGCGTGTGTTCGGCTT
pTRIPZ- circARHGAP35-ORF	GTGAACCGTCAGATCGCAATGATGGA CTACAAAGACCA	CTAAAGTAGCCCCTTGAATTTCACT GTTCACCACCTCTCA
HNRNPL related		
Up-1	GGAGACAAACTCAGCACCAT	CCCTGGGACCTTGAAATA
Up-2	CCCACGTTACGTCGCTCCTT	CGGGACCTGACCAGCCAAT
Down-1	TTGGGCCTGCCGTGGAAAGGA	ATCACACGCCACCACCAC
Down-2	TCAGAAGGGCTGAGACAG	TTTCAAACAGTAAACCACC
U2	ATCGCTTCTCGGCCTTTTGG	AGGTCGATGCGTGGAGTGGA
HNRNPL mRNA	ATGAGCTGGGAGTGAAGC	TCAGGAAGCCCAGAGTCT
Others		
circGFP	GCCGGACACGCTGAACTT	TCTCGGCATGGACGAGCT
circPMS1	CTTGAAAGGAGTCGAACTGTTGCC	GATCTCCTCATGAGCTTTGGTATCC

Table S4. Antibodies used in this study			
ANTIBODIES	SOURCE	IDENTIFIER	
p190-A RhoGAP (D8Q6C) (ARHGAP35)	Cell Signaling Technology	Cat. #12164	
TFII-I	Cell Signaling Technology	Cat. #4562	
HA	Cell Signaling Technology	Cat. #3725	
FLAG	Sigma	Cat. F1804	
β-actin	Proteintech	Cat. 60008-1-IG	
HNRNPL	Santa Cruz Biotechnology	Cat. sc-32317	

Table S4 Antibadias used in this s -

Table S5. siRNA sequences used in this study

siRNA	Sequences
circARHGAP35 siRNA	GCCACAGGAAGAAATGTTG
both circular/linear ARHGAP35 siRNA	GCACCTTAGTGCAACTCAT
linear ARHGAP35 siRNA	GCACACATTTACTCTGCAT
TFII-I siRNA-1	CGAGAACTATGATCTTGCA
TFII-I siRNA-2	GTCGTGTGATGGTAACAGA
TFII-I siRNA-3	GTATGAAACAGACGTGTTT
siRNAs for 63 RBPs	
CSTF2 siRNA-1	GGTTGGACCTGTTGTTAGT
CSTF2 siRNA-2	CTGAATGGGCGCGAATTCA
CSTF2 siRNA-3	AAGAGGACCCATGCTAGAT
HNRNPA2B1 siRNA-1	GGAGAGTAGTTGAGCCAAA
HNRNPA2B1 siRNA-2	GCTACGGAGGTGGTTATGA
HNRNPA2B1 siRNA-3	AGCTGTTTGTTGGCGGAAT
HNRNPF siRNA-1	GGAAGTTAGGTCATACTCA
HNRNPF siRNA-2	ACCGGTACATTGAGGTGTT
HNRNPF siRNA-3	AAGCGACCGAGAACGACAT
DHX8 siRNA-1	GCAGTGGGTTCTTCCGTAA
DHX8 siRNA-2	GGAGTTTGGTTGTTGCTTA
DHX8 siRNA-3	GCACTGAGCTGGACAATCA
HNRNPH1 siRNA-1	GGTCCAAATAGTCCTGACA
HNRNPH1 siRNA-2	GATCCACCACGAAAGCTTA
HNRNPH1 siRNA-3	GTTCGCAACTCATGAAGAT
CLK2 siRNA-1	GGAGATGCCTACTATGACA
CLK2 siRNA-2	CTATCGGCATTCCTATGAA

CLK2 siRNA-3 GEMIN2 siRNA-1 GEMIN2 siRNA-2 GEMIN2 siRNA-3 EFTUD2 siRNA-1 EFTUD2 siRNA-2 EFTUD2 siRNA-3 EEF1E1 siRNA-1 EEF1E1 siRNA-2 EEF1E1 siRNA-3 HNRNPL siRNA-1 HNRNPL siRNA-2 HNRNPL siRNA-3 HNRNPH3 siRNA-1 HNRNPH3 siRNA-2 HNRNPH3 siRNA-3 HNRNPK siRNA-1 HNRNPK siRNA-2 HNRNPK siRNA-3 CPSF1 siRNA-1 CPSF1 siRNA-2 CPSF1 siRNA-3 DAZAP1 siRNA-1 DAZAP1 siRNA-2 DAZAP1 siRNA-3 DHX35 siRNA-1 DHX35 siRNA-2 DHX35 siRNA-3 ALYREF siRNA-1 ALYREF siRNA-2 ALYREF siRNA-3 CPSF3 siRNA-1 CPSF3 siRNA-2 CPSF3 siRNA-3 POLR2G siRNA-1 POLR2G siRNA-2 POLR2G siRNA-3 PRPF3 siRNA-1 PRPF3 siRNA-2 PRPF3 siRNA-3 KIF2A siRNA-1 KIF2A siRNA-2 KIF2A siRNA-3 LAMB2 siRNA-1 LAMB2 siRNA-2 LAMB2 siRNA-3 HNRNPM siRNA-1 HNRNPM siRNA-2 HNRNPM siRNA-3 NONO siRNA-1 NONO siRNA-2 NONO siRNA-3 PPARGC1A siRNA-1 PPARGC1A siRNA-2 PPARGC1A siRNA-3

GAGAGCATCTAGCCATGAT GATCGAAGCAGCTCAATGT GTAGAGCCTTGCGACTTGA AAAGTCCTGGAATAGATTA GATGGAGCCTTACTACTTT GAGCAGACATTACCTGTTA CAAGGCTCTTCTTGGTTCA GCAACATCTGTCTAGTGTT ACCTGACAGTTCAAGAAAA CACACAGAGGTAGGGAACT GACGGGTCTTGCAGTTACA GTCAGTCATACGGGTTGGA GTCCATACCCTTACACTCT GGCTACGGAAGAGATGGAA ATGGGATAACATTGACGAT GACCATATGATAGACCAAT GGATCCGAAGATCGGATCA ATCCCAATTTTTACGATGA AAGGTGGTCAGCGGATTAA TGATCAGCGTCAAGAACTT CCCACTATGTGGCTTACCA ACCGCAACCTCATGGTGTA TCACGGAGGTAGTCATGAT ACACGCTAGATGGCCGAAA AAAGGACCCAGGAGCGATA GCATGAGAATTGCAGAGTT GCAGCGAGGTTTCATTCTA CAAAGACTGTCGCCTAACT GCACGATCTTTTCGACAGT GAGGTGGCATGACTAGAAA ACGACATCATTAAACTGAA GGACCCATATCCATGAGAA GTAACACTGTCCACGATAT GCAGTGACCTTAAACTTCA CCACCATGTTACAAGACAA GCTCCCTGATGGACGATTA GCCGAGGCTTTGTCCTTTA CTGGGAGTATATCTTACCA GGAGTAAAGAAGCGACGAA GGGAACAATTCAAGCAACA TGGTGATGTTCGTCCAATA TTCCGTGCAAGTAAACTCA TAAGAATGACCCTCCTTCA CAAGGATGATCGCATCCAA GTGCAACCCTCAAGGTTCA CCTACAAGCTGCATCTGAA GGTGTGGCGTGGTTAAGTT GAGAGATTGACGTTCGAAT GAAGGCCTGCCAGATATTT GAAGGCTCCTTCCTGCTAA CAGGCGAAGTCTTCATTCA AGGTCATGCTAATGAGACA CACCACTCCTCCTCATAAA CAGAGACACTAGACAGTCT GGCACGCAATCCTATTCAT

PRPF6 siRNA-1 PRPF6 siRNA-2 PRPF6 siRNA-3 PRPF40B siRNA-1 PRPF40B siRNA-2 PRPF40B siRNA-3 LSM4 siRNA-1 LSM4 siRNA-2 LSM4 siRNA-3 PPIH siRNA-1 PPIH siRNA-2 PPIH siRNA-3 PRPF31 siRNA-1 PRPF31 siRNA-2 PRPF31 siRNA-3 HNRNPR siRNA-1 HNRNPR siRNA-2 HNRNPR siRNA-3 LSM2 siRNA-1 LSM2 siRNA-2 LSM2 siRNA-3 PHF5A siRNA-1 PHF5A siRNA-2 PHF5A siRNA-3 HNRNPLL siRNA-1 HNRNPLL siRNA-2 HNRNPLL siRNA-3 LSM7 siRNA-1 LSM7 siRNA-2 LSM7 siRNA-3 SERPINC1 siRNA-1 SERPINC1 siRNA-2 SERPINC1 siRNA-3 SNRPA siRNA-1 SNRPA siRNA-2 SNRPA siRNA-3 PTEN siRNA-1 PTEN siRNA-2 PTEN siRNA-3 SNRPB siRNA-1 **SNRPB siRNA-2** SNRPB siRNA-3 SATB1 siRNA-1 SATB1 siRNA-2 SATB1 siRNA-3 SFPQ siRNA-1 SFPQ siRNA-2 SFPO siRNA-3 SF3B4 siRNA-1 SF3B4 siRNA-2 SF3B4 siRNA-3 SF3B2 siRNA-1 SF3B2 siRNA-2 SF3B2 siRNA-3 SRSF11 siRNA-1

GAAGCGGGTTCTTCGGAAA GGATCTAAATGACACCAAT CTCGGAACCTTATCATGAA GGCAAACCTTATTACTATA CCACCTGGATGGAGCTATA GCAATATCCAGGCCCTAAA CCGACGAGATCATCGACAT ACAACTGGATGAACATTAA GCAGCACCATCAAGTACCT GCATGAAGATCGAGCTCTT GCAGACGTTGTGCCTAAGA GGGTTCCAATAGGATACAA GCTACGAACTGAAGGATGA GCCAAGCTATGGGATAGTA CAAGCAAGCCAAAGCTTCA AGGTAGAGCTGGCTATTCA ACTGTCCGGTCAGAATAGA AGGGTTTGGTGGACGTTAT TCTCAACATCAAACTAACT GTGTCACAGACCCTGAGAA GTGGAACCCTCCATTCTGT AGAGATGGCTGCCCAAAGA GCGCATATGTGATGAGTGT GGTCTCTGATGCCTATTAT GAACACCCTTCTTCGTTTA CGTGTACATTGCTGGTCAA GTACCAGCAGCTACAAAGA CGATCCGGGTAAAGTTCCA ACGTCCGTGGTGCTAATCT ACCCACTCCTCAACCTTGT CCAACAGGGTGACTTTCAA GAGGACGGCTTCAGTTTGA GAGTCGTGTTCAGCATCTA CAGATATCATTGCCAAGAT TCGTGGAGTTTGACAATGA CTGAGAATCCACCGAATCA GGAATATCTAGTACTTACT GGTGTAATGATATGTGCAT ACCGCCAAATTTAATTGCA TGGTCTCAATGACAGTAGA CTGGTATGAGACCTCCTAT GCCAAAGAACTCCAAACAA GGTACGCGATGAACTGAAA GTCCTCAATTGGTCAACCA GGGCTCGTATCAACACCTA CCAGAAATTTCCACCTCTA GGATGATCGTGGAAGATCT GGAGGAACGACGTAGAAGA GGAAGCCAATACGGGTGAA GTCCTATCACCGTATCTTA GCATCAGCTCACAACAAAA GGACGTGTTTGGAACCAAT GAGACACCTCAGCTCTTCA GGAAGCGTAGGAACCGAAA GGATACCTCTAGTAAAGAA

SRSF11 siRNA-2 SRSF11 siRNA-3 SRSF10 siRNA-1 SRSF10 siRNA-2 SRSF10 siRNA-3 SNRPC siRNA-1 SNRPC siRNA-2 SNRPC siRNA-3 SNRPD2 siRNA-1 SNRPD2 siRNA-2 SNRPD2 siRNA-3 **RBMXL1** siRNA-1 RBMXL1 siRNA-2 RBMXL1 siRNA-3 PTBP2 siRNA-1 PTBP2 siRNA-2 PTBP2 siRNA-3 RALY siRNA-1 **RALY siRNA-2** RALY siRNA-3 SRSF2 siRNA-1 SRSF2 siRNA-2 SRSF2 siRNA-3 SRSF4 siRNA-1 SRSF4 siRNA-2 SRSF4 siRNA-3 SRSF6 siRNA-1 SRSF6 siRNA-2 SRSF6 siRNA-3 SRSF7 siRNA-1 SRSF7 siRNA-2 SRSF7 siRNA-3 TRA2B siRNA-1 TRA2B siRNA-2 TRA2B siRNA-3 SRSF3 siRNA-1 SRSF3 siRNA-2 SRSF3 siRNA-3 THOC2 siRNA-1 THOC2 siRNA-2 THOC2 siRNA-3 USP39 siRNA-1 USP39 siRNA-2 USP39 siRNA-3 SUGP2 siRNA-1 SUGP2 siRNA-2 SUGP2 siRNA-3 TUBG1 siRNA-1 TUBG1 siRNA-2 TUBG1 siRNA-3 THOC5 siRNA-1 THOC5 siRNA-2 THOC5 siRNA-3 SRSF9 siRNA-1 SRSF9 siRNA-2

GAGCAAACTTGAACTCTCA GGCACAAGATCTCCTAAAA GACGGCAGATTGAAATACA GTCGGTCTTTTGATTACAA GACAGATACAGACGTTCTA CTCAGAGCCTGATTGACAA GCTGCATTTCAACAAGGAA CTCCCATGATGCCAATGAT GCCGCAACAATAAGAAACT GACTGAGGTACCCAAGAGT GCGAGAGGAGGAGGAATTT TGAGAAAGCTCTTGAAACA GATGGTGGATATTCCATGA GGAGGAAGAGCTCCTCTAT GTGTTACTCTGTCTAAACA GCAGAAGAGGATCTACGAA GAGAGGGACTTGATGATCA AGACCATCTTCTCTAAGTA GCAGCATCTGCCATATACA GAGTCTTCATTGGAAACCT CACGAAGGTCCAAGTCCAA GTGTCCAAGAGGGAATCCA TCGGTCTCCAGATCTCGTT GAATCACGCTCCAGATCAA GACTTATTGTGGAGAATTT CGATCTCGGTCCAAGTCTA GACCACCTGTTCGTACAGA AGGCGATCTTACTCTGGAA GCAGATCTAAGGATGAGTA GGGACATTATGCTTATGAT CCTCGACGATCAAGATCTA CGAAGATCCTAGAGATGCA GGACTACTATAGCAGATCA GGCGTAGGATCAGAGTTGA CGGTCACCTTCTCCTTACT CTATGTGGCTGCCGTGTAA CGAGATGATTATCGTAGGA CGATCTAGGTCAAATGAAA GGGCAAGATTTATCTGGAA GGACAAGCTTCTTGAAGAA GCCGCAAAATTGATACTCA TCAAGAGATTCACTAAGAA GCAGTTGTACTTTGCAGTA TCCCGGGCATATGATGGTA CACCCAGAGTTGATAATGA GCACTAACCAAATCCAGAA GCTTTGACATCATAGATAA GGTCCAGCCTTACAATTCA GACGCAGAATGCAGACTGT GAACCTGTCGCCAGTATGA GTGCAGGAGTACCTGTTTA GGGTTCAGTTGGACGACAA GAGAGTGCCTATCTAACAA GGTCGAGTATCTCAGAAAA ACACCAAATTCCGCTCTCA

SRSF9 siRNA-3	GGAATATGCCCTGCGTAAA
SUGP1 siRNA-1	GTAGCTTCTTGCAGCAGTT
SUGP1 siRNA-2	GCAGGGAATTCCTCTACTA
SUGP1 siRNA-3	GAGCCTGACTACTCAGAGT
UPF3B siRNA-1	GATGCAGCTTTACCAACCA
UPF3B siRNA-2	TCAGGAATATCCCGCTATA
UPF3B siRNA-3	GCGCATACTTCGAGAAAGA

Table S6. Sequences of circARHGAP35 RNA and protein

circARHGAP35 RNA:

GAAGAAATGTTGGCTATTTGGCGATGAGAGGTGGTGAACAGTGACCATACTGGTATACAACACTATGGGACCTGGCATTTTTGCTGC ATGTCCAGCCCACCCACTAATAATGTAGGAAGCTGTCTGGTCCATTGGAAACACTAATCTGATCTCAGAAGTGGCTGATCGTGGC AGGATGTCGACGATGATGATGGCAAGAAAGCAAGATGTCCCGAATTCCCACCTACAACATCAGTGTGGGGGATTATCTGGGACCG ATACCTCCGTCCTCAGCACCAGTGACTTTGGAGGGCGAGTGGTCAATAATGACCACTTTCTCTACTGGGGAGAAGTTAGCCGCTCCCT GGAGGATTGTGGGAATGTAAGATGCACATTGTGGAGCAGACTGAATTTATTGATGATCAGACTTTTCAACCTCATCGAAGCACGGC ${\tt CCTGCAGCCCTATATCAAGAGAGCTGCTGCGACCAAGCTTGCATCAGCTGAAAAACTCATGTACTTTTGCACTGACCAGCTGGGGCT$ GGAGCAGGACTTTGAGCAGAAACAAATGCCAGACGGAAAGCTGCTGGTTGATGGTTTTCTTCTTGGTATTGATGTTAGCAGGGGCAT GACTAAGTGTGACGAAGGTGTTGAGCGGTACATTAGAGATGCACATACTTTTGCCTTAAGCAAAAAGAACCTCCAGGTTGTGGAGAC CTCAGCGAGATCCAATGTAAACGTGGACTTGGCTTTCAGCACCTTAGTGCAACTCATTGATAAAAGTCGGGGAAAGACAAAAATCAT AGAAAGCCAAGAAGCTGTTTCTACAGCACATCCACCGCCTCAAGCATGAGCATATCGAGCGTAGGAGAAAGCTGTACCTGGCAGCC CTGCCATTAGCTTTTGAAGCTCTTATACCTAATCTAGATGAAATAGACCACCTAAGCTGCATAAAAGCCAAAAAGCTCTTAGAAACC ATTCCCTTTGATTTAATGGATACCGTCCCTGCAGAGCAGCAGCTATACGAGGCCCACTTAGAGAAGCTGAGGAACGAAAGGAAAAGAGTT GAGATGCGAAGGGCGTTTAAAGAAAACCTGGAGACTTCTCCTTTCATAACTCCCGGAAAGCCTTGGGAAGAGCCCGTAGTTTTATT ATGAATGAGGATTTCTACCAGTGGCTGGAGGAATCTGTATACATGGATATTTATGGCAAACACCAAAAGCAAATTATAGATAAAGCA AAGGAAGAATTTCAGGAGTTGCTTTTGGAATATTCAGAATTGTTTTATGAACTGGAGCTGGATGCTAAGCCCAGCAAGGAGAAGATG GGTGTTATTCAGGATGTTCTGGGAGGAGGAACAGCGATTTAAAGCATTACAAAAGCTCCAAGCAGAGCGTGATGCCCTTATTCTGAAA CACATTCATTTTGTGTACCACCCAACAAAGGAGACATGCCCCAGCTGCCCAGCTTGTGTGGACGCTAAGATTGAGCACTTGATTAGTTCTCGGTTTATCCGGCCGTCTGACCGGAATCAGAAAAATTCACTCTCTGACCCTAACATTGATAGAATCAACTTGGTTATATTGGGCAAAGACGGCCTTGCCCGAGAGTTGGCCAATGAGATTCGAGCTCTTTGTACAAATGATGACAAGTATGTGATAGATGGTAAAATGTATGA GCTTTCCCTGAGGCCAATAGAGGGGAATGTCAGGCTTCCTGTGAACTCTTTCCAGACGCCAACATTTCAGCCCCACGGCTGTCTCTGC CTTTACAATTCAAAGGAATCGCTATCCTATGTAGTGGAAAGTATAGAGAAGAGTAGAGAGTCCACGCTGGGCCGGCGGGATAATCAT CAACAAATTGCTAGCAAACTTCAGTGTGTCTTTCTCGACCCTGCTTCTGCTGGCATTGGTTACGGACGCAACATTAATGAAAAGCAAA TCAGTCAAGTTTTGAAGGGACTCCTGGACTCTAAGCGTAACTTAAACCTGGTCAGTTCTACTGCTAGCATCAAAGATTTGGCTGATGT TGATCTGCGAATTGTTATGTGTCTGATGTGTGGGGGGACATCCTTTTAGTGCAGATGACATACTTTTTCCTGTCCTTCAGTCCCAAACCTGTA CCAGCATAAACTTGAGATCTTTCACCCATTTTTTAAAGATGTGGTGGAAAAAAAGAACATAATCGAGGCTACTCATATGTACGATAA TGCTGCCGAGGCCTGTAGCACCACCGAAGAGGTGTTTAACTCCCCCCGGGCAGGATCACCGCTCTGCAACTCAAACCTGCAGGATTC AGAAGAAGATATCGAGCCATCTTACAGCCTGTTTCGAGAAGACACATCACTGCCTTCTCTGTCCAAAGACCATTCTAAGCTCTCTATG GAACTGGAGGGAAATGATGGGCTGTCTTTCATTATGAGCAATTTTGAGAGTAAACTGAACAACAAAGTACCTCCGCCAGTCAAACCA TCTAGCCCCTGGCTGCCTCAGGATGGGTTTGATCCTTCTGACTATGCTGAACCCATGGATGCTGTGGTGAAGCCAAGGAATGAAGAA GAAAACATATACTCCGTGCCCCATGACAGCACCCAAGGCAAAATCATCACCATTCGGAATATCAACAAAGCCCAGTCCAACGGCAG CGGGAATGGTTCTGACAGTGAAATGGACACCAGCTCTCTAGAGCGAGGGCGCAAGGTTTCCATCGTGAGCAAGCCAGTGCTGTACAG AGAAAGAGGAGGATCAGGCATCCCAGGGTTATAAAGGGGACAATGCTGTCATTCCATACGAAACAGACGAAGACCCGCGGAGGAG GAATATTCTTCGCAGCCTAAGGAGGAACACTAAGAAACCAAAGCCCAAACCCCGGCCATCATCACAAAGGCAACCTGGGAGAGTA ACTATTTTGGGGTGCCCTTAACAACTGTCGTGACTCCAGAGAAGCCGATCCCCATTTTTATTGAAAGATGTATTGAGTACATTGAAGC CACAG

circARHGAP35 protein:

MMMARKQDVRIPTYNISVVGLSGTEKEKGQCGIGKSCLCNRFVRPSADEFHLDHTSVLSTSDFGGRVVNNDHFLYWGEVSRSLEDCVECK MHIVEQTEFIDDQTFQPHRSTALQPYIKRAAATKLASAEKLMYFCTDQLGLEQDFEQKQMPDGKLLVDGFLLGIDVSRGMNRNFDDQLKF VSNLYNQLAKTKKPIVVVLTKCDEGVERYIRDAHTFALSKKNLQVVETSARSNVNVDLAFSTLVQLIDKSRGKTKIIPYFEALKQQSQQIAT AKDKYEWLVSRIVKNHNENWLSVSRKMQASPEYQDYVYLEGTQKAKKLFLQHIHRLKHEHIERRRKLYLAALPLAFEALIPNLDEIDHLS CIKAKKLLETKPEFLKWFVVLEETPWDATSHIDNMENERIPFDLMDTVPAEQLYEAHLEKLRNERKRVEMRRAFKENLETSPFITPGKPWE EARSFIMNEDFYQWLEESVYMDIYGKHQKQIIDKAKEEFQELLLEYSELFYELELDAKPSKEKMGVIQDVLGEEQRFKALQKLQAERDALI LKHIHFVYHPTKETCPSCPACVDAKIEHLISSRFIRPSDRNQKNSLSDPNIDRINLVILGKDGLARELANEIRALCTNDDKYVIDGKMYELSLR PIEGNVRLPVNSFQTPTFQPHGCLCLYNSKESLSYVESIEKSRESTLGRRDNHLVHLPLTLILVNKRGDTSGETLHSLIQQGQQIASKLQCVF LDPASAGIGYGRNINEKQISQVLKGLLDSKRNLNLVSSTASIKDLADVDLRIVMCLMCGDPFSADDILFPVLQSQTCKSSHCGSNNSVLLELP IGLHKKRIELSVLSYHSSFSIRKSRLVHGYIVFYSAKRKASLAMLRAFLCEVQDIIPIQLVALTDGAVDVDINDLSREQLTEGEEIAQEIDGRF TSIPCSQPQHKLEIFHPFFKDVVEKKNIIEATHMYDNAAEACSTTEVFNSPRAGSPLCNSNLQDSEEDIEPSYSLFREDTSLPSLSKDHSKLS MELEGNDGLSFIMSNFESKLNNKVPPPVKFPVHFEITKGDLSYLDQGHRDGQRKSVSSSPWLPQDGFDPSDYAEPMDAVVKPRNEEENI YSVPHDSTQGKIITIRNINKAQSNGSGNGSDSEMDTSSLERGRKVSIVSKPVLYRTRCTRLGRFASYRTSFSVGSDDELGPIRKKEEDQASQG YKGDNAVIPYETDEDPRRRNILRSLRRNTKKPKPKPRPSITKATWESNYFGVPLTTVVTPEKPIPIFIERCIEYIEATGRNVGYLAMRGGEQ-

The start codon (ATG) and stop codon (TGA) are shown in blue letters. The red letters represent the specific sequence of circARHGAP35 protein.