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1 High dimensional settings (i.e. p > n)

1.1 Notation

We classify the m biomarkers into q predefined disjoint sets, where the ms biomarkers of set s ∈ {1, ..., q}

are indexed by Gs = {s1, ..., sms} ⊂ {1, ...,m}, and define s(j) to be the set containing biomarker j.

We denote the MLE by β̂s = (β̂s1 , ..., β̂sms )
′ and γ̂s = (γ̂s1 , ..., γ̂sms )

′. Both vectors have asymptotically

distributed as multivariate normal,

β̂s ∼ N(βs,Σβs) and (1.1)

γ̂s ∼ N(γs,Σγs), (1.2)

with corr(β̂j, γ̂j′) = 0 for all j, j′ ∈ Gs. Here, we consider three types of null hypotheses:

H0
Es : βs = 0,

H0
Y s : γs = 0

and

H0 : βsjγsj = 0 for j = 1, ...,ms.
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1.2 Group tests

Both marginal (MARG) and two-step (TS ) procedures are based on variance component tests for no

association with a set Gs [2, 10, 13]. For testing the null hypothesis H0
Es of no association between the

exposure Ei and the set s of biomarkers Mis = (Mis1 , ...,Mims)
′, we considered two test statistics. The

first test statistic is

T sE,γ =
∑
j∈Gs

(γ̂jβ̂j)
2, (1.3)

where γ̂j for j ∈ Gs are treated as fixed weights. The second statistic is

T sE,1 =
∑
j∈Gs

β̂2
j . (1.4)

Similarly, for testing the null hypothesis (H0
Y s) of no association between the outcome Yi and the set of

biomarkers, Mis, we considered two test statistics. The weighted test statistic is

T sY,β =
∑
j∈Gs

(γ̂jβ̂j)
2, (1.5)

with weights fixed at β̂j and the unweighted test statistic is

T sY,1 =
∑
j∈Gs

γ̂2
j . (1.6)

Let psE,γ, p
s
E,1, psY,β and psY,1 be corresponding p-values for test statistics T sE,γ, T

s
E,1, T sY,β and T sY,1. These

p-values are calculated from distributions corresponding to a linear combination of chi-squared random

variables. [1, 13]. We also let C(α,Σ,w) be a critical value, such that P (T > C(α,Σ,w)) = α, where

T =
∑

j wjS
2
j and S = (S1, ..., SJ) ∼ N(0,Σ). Under models (1.1) and (1.2), the test statistics T sE,γ, T

s
E,1,

T sY,β and T sY,1 also have the following properties

Proposition 1, Independence:

1) Under H0
Es: T

s
E,γ and T sY,1 are independent.

2) Under H0
Y s: T

s
Y,β and T sE,1 are independent.
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3) T sY,1 and T sE,1 are independent.

Proof. Proof of statement 3 is trivial given the independence between biomarker specific estimates β̂s and

γ̂s. Proof of statement 1 (i.e. similarly for statement 2) of proposition follows

P (psE,γ < t1, p
s
Y,1 < t2) = E

[
P (psE,γ < t1, p

s
Y,1 < t2|γ̂s)

]
(1.7)

= E
[
P (psE,γ < t1|γ̂s)P

(
psY,1 < t2

)] H0
Es= t1P

(
psY,1 < t2

)
. (1.8)

We note that T sE,γ and T sY,β are not independent as the rejection region
{
psE,γ < t1, p

s
Y,β < t2

}
depends

jointly on β̂s and γ̂s. Thus, MARG uses T sE,1 and T sY,1 when testing the associations between group of

biomarkers and E, Y .

1.3 Post-selection adjustment of p-values

Post-selection testing following aggregated association tests has been developed in the context of meta-

analysis and gene based testing [4, 5]. Here, we extend their post-selection testing approach (see Theorem

3.1 of [5]) to recalculate pCE,j for j ∈ Gs, the p-values conditioned on the first selecting set (i.e. Gs) with

psE,γ < 0.025 and psY,1 < 0.1 (with an equivalent proposition for pCY,j).

Proposition 2, Post-selection distribution

1. For j ∈ Gs,

β̂j |
{
T sE,γ > C(0.025,Σβs

, γ̂s), T
s
Y,1 > C

(
0.1,Σγs ,1

)
, γ̂s,V β,s(j)

}
∼ TN

(
βj , σ̂

2
βj , Aβ (V β,s(j)) , Bβ (V β,s(j))

)

and

2. For j ∈ Gs,

γ̂j |
{
T sY,β > C(0.025,Σγs , β̂s), T

s
E,1 > C(0.1,Σβs

,1), β̂s,V γ,s(j)
}
∼ TN

(
γj , σ̂

2
γj , Aγ (V γ,s(j)) , Bγ (V γ,s(j))

)
,

3



where TN(µ, σ2, a, b) is normal distribution with mean µ and variance σ2 truncated at (− inf, a] ∪ [b,+ inf).

Orthogonal vectors V β,s(j), V γ,s(j) (i.e. independent of β̂j and γ̂j) and Aβ (V β,s(j)), Bβ (V β,s(j)),

Aγ (V γ,s(j)) and Bγ (V γ,s(j)), functions of V β,s(j) and V γ,s(j) are defined in Theorem 3.1 of Heller

et al. [5].

Proof. For β̂j (and similarly for γ̂j), the conditional distribution is simplified to

β̂j |
{
T sE,γ > C(0.025,Σβs

, γ̂s), T
s
Y,1 > C

(
0.1,Σγs

,1
)
, γ̂s,V β,s(j)

}
= β̂j |

{
T sE,γ > C(0.025,Σβs

, γ̂s), γ̂s,V β,s(j)
}
,

because T sY,1 =
∑

j∈Gs γ̂
2
j . The remainder of the proof follows from Theorem 3.1 of Heller et al. [5] and

independence of γ̂s and β̂s.

We denote the conditional p-values for testing βj = 0 and γj = 0 for j ∈ Gs by pCE,j and pCY,j.

1.4 Confidence intervals for the estimated mediation effects

TS method does not only select potentially mediating sets but also it determines biomarkers that are driving

associations. Under certain assumptions [7, 8, 9, 12] and assumption of Theorem 1, natural indirect effect

of mediator j is equal to NIE(j) = βjγj for the continuous outcome and rare binary outcome model.

We estimate NIE(j) for selected biomarker by product of the MLEs β̂j and γ̂j from models (3) and (5).

We note that conditional distributions of β̂j and γ̂j on selection by group tests (see equation 1 and 2 in

Supplemental Section 1.3) are not independent because weighting in T sE,γ and T sY,β. Thus, exact methods

defined in [5] are not applicable for modeling the joint distribution of β̂j and γ̂j. We propose a new

numerical approach to calculate confidence intervals while adjusting for selection of a set by group tests

(i.e. psE,γ < 0.025 and psY,1 < 0.1; psE,1 < 0.1 and psE,γ < 0.025. Let V β,s(j) and V γ,s(j) be orthogonal

vector (i.e independent of) to β̂j and γ̂j effect estimates of the jth biomarker of selected set. Estimates β̂s

and γ̂s can be rewritten in terms of V β,s(j) and V γ,s(j)

β̂s = β̂j + cβV β,s(j) and γ̂s = γ̂j + cγV γ,s(j), (1.9)
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where cβ and cγ are functions of covariance matrix of β̂s and γ̂s and they are considered to be fixed

(see [5]). We use these relationships to regenerate new vectors βrs and γrs by simulating effects βrj and γrj

for a single SNP j from normal distributions with observed means and variances and keeping observed

values Vβ,s(j) and V γ,s(j) constant. Then, confidence intervals are calculated from βrj and γrj in subset of

replicates with group tests p-values satisfying our selection criteria, i.e. psE,γ < 0.025, psY,1 < 0.1, psE,1 < 0.1

and psE,γ < 0.025. Similar procedure was proposed by [5], which is a direct consequence of our Proposition

2. We note that proposed approach can be extended to biomarkers selected by LIN method (linear). Lastly,

this approach does not adjust for multiplicity testing (i.e. winner’s curse).

1.5 FWER control

Here, we follow similar steps to [11] and show that Theorem 1 holds. We start by defining four sets of

biomarkers, w00, w01, w10 and w11, where wxy = {j : sign(|βj|) = x, sign(|γj|) = y}. We let w·0 = w00

⋃
w10,

w0· = w00

⋃
w01, w·1 = w01

⋃
w11, w1· = w10

⋃
w11 and w∅ = w00

⋃
w10

⋃
w01. We also define the sets

of selected sets at the first step SE = {s : psE,γ < 0.025, psY,1 < 0.1}, the set of selected biomarkers

GE1 =
⋃
s∈SE Gs and the set of candidate biomarkers GE2 = {j ∈ GE1 : pY,j < 0.025} (and similarly for Y ,

SY = {s : psY,γ < 0.025, psE,1 < 0.1}, GY 1 =
⋃
s∈SY Gs and GY 2 = {j ∈ GY 1 : pE,j < 0.025}). Furthermore,

we set W = 1 if pE,j < 0.025 for ∀j ∈ w1· and pY,j < 0.025 for ∀j ∈ w·1.

In the second step of our procedure, for biomarkers in the sets GE1 and GY 1, we define the marker

specific thresholds α∗E,j for j ∈ GE1 and α∗Y,j for j ∈ GY 1. We reject the null hypothesis of no association

with E if pCE,j ≤ α∗E,j and the null hypothesis of no association with Y if pCY,j ≤ α∗Y,j. Here, we propose

to define α∗E,j =
(
γ̂2
j /
∑

j∈GE2
γ̂2
j

)
α/2 = mE,jα/2 for j ∈ GE2 and α∗E,j = 0 otherwise. Similarly, α∗Y,j =(

β̂2
j /
∑

j∈GY 2
β̂2
j

)
α/2 = mY,jα/2 for j ∈ GY 2 and α∗Y,j = 0 otherwise. We note that these thresholds are

functions of γ̂ = (γ̂1, ..., γ̂q)
′ or β̂ = (β̂1, ..., β̂q)

′ for the candidate biomarkers. We define the number

of falsely discovered sets as
∑

s∈H0 rs, where rs = 1 if TS rejects H0 for set s and 0 otherwise. Now, in

this section, we demonstrate asymptotic control of FWER (i.e. P (
∑

s∈H0
rs > 0)), under the following

assumption.

Assumption 1, Block Independence For any s, s′ ∈ {1, ..., q}, M s is independent of M s′ given Ei.

5



Theorem 1, FWER Control

If assumption 1 holds then limn→∞ FWER ≤ α.

Proof. Clearly, P (W = 1) → 1 as sample size n → ∞. The number of falsely discovered biomarkers R is

calculated as sum of rejected tests in selected groups:

R =

q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

 =

q∑
s=1

Rs

(1.10)

We can then demonstrate asymptotic control of FWER, P (
∑

s∈H0
rs > 0) ≤ P (

∑
s∈H0

Rs > 0) ≤ P (R > 0),

using assumption 1 and propositions 1 and 2. It follows from the Bonferroni inequality that

FWER = P (R > 0) ≤ E

 q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j , p
C
Y,j < α∗Y,j)




Then, we split this expectations into two parts and bound it using our observations that P (W = 1)→ 1

as sample size n→∞:

= E

 q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j , p
C
Y,j < α∗Y,j)

 |W = 1

Pw

+E

 q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j , p
C
Y,j < α∗Y,j)

 |W = 0

 (1− Pw)

< E

 q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j , p
C
Y,j < α∗Y,j)

 |W = 1

+ ε,

where ε = o(1) as n → ∞. Next, we split the above expectation into three components (i.e. w∅ =
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w01 ∪ w10 ∪ w00)

E

 q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w∅

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

 |W = 1

 =

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w01

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]
+

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w10

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]
+

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w00

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]
.

For set w01 (and similarly for set w10), we bound expectation

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w01

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]

≤ E

[
q∑
s=1

{
I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w01

I(pCE,j < α∗E,j)

}
|W = 1

]

≤ E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

E
[
I(pCE,j < α∗E,j)|psE,γ < 0.025, psY,1 < 0.1,P E,γ,P Y,1, γ̂

]
|W = 1

]
,

where P E,γ = (p1
E,γ, ..., p

q
E,γ) and P Y,1 = (p1

Y,1, ..., p
q
Y,1). Because conditional p-values are uniformly dis-

tributed given all group test p-values (see Assumption 1 and Proposition 2)

E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

E
[
I(pCE,j < α∗E,j)|psE,γ < 0.025, psY,1 < 0.1,P E,γ,P Y,1, γ̂

]
|W = 1

]

≤ E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

α∗E,j|W = 1

]
.

7



Similarly for the second set w10, we bound

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w10

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]

≤ E

[
q∑
s=1

I(psY,β < 0.025, psE,1 < 0.1)
∑

j∈Gs∩w10

α∗Y,j|W = 1

]
≤ α/2 as n→∞,

with the last inequality coming from the definition of α∗Y,j (i.e. α∗Y,j =
(
β̂2
j /
∑

j∈GY 2
β̂2
j

)
α/2). For equation

(4.8), we derive similar inequalities,

E

[
q∑
s=1

{
I(psY,β < 0.025, psE,1 < 0.1)I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w00

I(pCE,j < α∗E,j, p
C
Y,j < α∗Y,j)

}
|W = 1

]
≤

E

 q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w00,pY,j<0.025

I(pCE,j < α∗E,j)

 |W = 1

 ≤
E

 q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w00,pY,j<0.025

α∗E,j|W = 1

 .
By adding inequalities for w01 and w00 we observe that

E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

α∗E,j|W = 1

]

+E

 q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w00,pY,j<0.025

α∗E,j|W = 1

 ≤
E

 q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)

 ∑
j∈Gs∩w00,pY,j<0.025

α∗E,j +
∑

j∈Gs∩w01

α∗E,j

 |W = 1

 ≤ α/2,

with n→∞ the last inequality coming from the definition of α∗E,j. Final inequality concludes the proof.
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2 Multivariate settings (i.e. n > p)

2.1 Notation

Again, we classify the m biomarkers into q predefined disjoint sets, where the ms biomarkers of set s ∈

{1, ..., q} are indexed by Gs = {s1, ..., sms} ⊂ {1, ...,m}, and define s(j) to be the set containing biomarker

j. Moreover, let M i\j = {Mij′ : j′ 6= j}, a vector of all biomarkers without jth. We will say that a

biomarker j is a mediator if Mij is associated with Ei and, conditional on both Ei and other bomarkers

M i\j, Mij is associated with Yi. To formalize this statement, we define the two null hypotheses

Hj
0E : Ei ⊥Mij (2.1)

Hj
0Y : Yi ⊥Mij|Ei,M i\j, (2.2)

and say that a biomarker j is a mediator if and only if the two null hypotheses are false. Under

assumption of n > p, we denote the MLE for m bioamrkers obtained from joint model with all biomarkers

M , β̂ = (β̂1, ..., β̂m)′ and γ̂ = (γ̂1, ..., γ̂m)′. Both vectors asymptotically distributed as multivariate normal,

β̂ ∼ N(β,Σβ) and (2.3)

γ̂ ∼ N(γ,Σγ), (2.4)

with corr(β̂j, γ̂j′) = 0 for all j, j′ = 1, ...,m. Here, we consider three types of null hypotheses for each set

s ∈ {1, ..., q}:

H0
Es : βs = 0,

H0
Y s : γs = 0

and

H0
s : βsjγsj = 0 for j = 1, ...,ms.
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We use the same group tests (MIN, LIN, QUAD, MARG and TS) defined in the Supplemental Section

(1.2) with β̂s = (β̂s1, ..., β̂sm) and γ̂s = (γ̂s1, ..., γ̂sm), sj ∈ Gs and β̂sj and γ̂sj are MLE estimates of (2.3 and

2.4). Similarly to the Supplemental Section 1.2, under models (2.3) and (2.4), the test statistics T sE,γ,

T sE,1, T sY,β and T sY,1 also have the following properties Proposition 3, Independence under joint model :

1) Under H0
Es: T

s
E,γ and T sY,1 are independent.

2) Under H0
Y s: T

s
Y,β and T sE,1 are independent.

3) T sY,1 and T sE,1 are independent.

2.2 Post-selection adjustment of p-values

In this section, we relax our assumption of independence between any two vectors M is and M is′ condi-

tioning on Ei. Here, we extend our post-selection testing approach (see Section 1.3) to recalculate pCE,j for

j ∈ Gs, the p-values conditioned on all selected sets (i.e. Gss) with psE,γ < 0.025 and psY,1 < 0.1 (with an

equivalent proposition for pCY,j).

Proposition 4, Post-selection distribution under joint model

1. For j ∈ Gs,

β̂j |
{
T s

′
E,γ > C(0.025,Σβs′

, γ̂s′ ), T
s′
Y,1 > C

(
0.1,Σγs′ ,1

)
, γ̂s′ ,V β,s′ (j) for s′ ∈ {1, ..., q}

}
∼ TN

(
βj , σ̂

2
βj , Cβ

(
V β(j)

))

and

2. For j ∈ Gs,

γ̂j |
{
T s

′
Y,β > C(0.025,Σγs′ , β̂s′ ), T

s′
E,1 > C

(
0.1,Σβs′

,1
)
, β̂s′ ,V γ,s′ (j) for s′ ∈ {1, ..., q}

}
∼ TN

(
γj , σ̂

2
γj , Cγ (V γ(j))

)

where TN(µ, σ2, c) is truncated normal distribution with mean µ and variance σ2 with only possible values

from the set c. Orthogonal vectors V β,s(j), V γ,s(j) (i.e. independent of β̂j and γ̂j) and

Cβ (V β(j)) = ∩s′∈{1,...,q}(− inf, Aβ (V β,s′(j))] ∪ [Bβ (V β,s′(j)) ,+ inf).
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Values Aγ (V γ,s′(j)) and Bγ (V γ,s′(j)) are functions of V β,s′(j) and V γ,s′(j) defined in Theorem 3.1 of

Heller et al. [5] and Section 1.3.

Proof. For β̂j (and similarly for γ̂j), the conditional distribution is adjusted for all selected sets with

psE,γ < 0.025 and psY,1 < 0.1

β̂j|
{
T s

′

E,γ > C(0.025,Σβs′
, γ̂s′), γ̂s′ ,V β,s′(j) for s′ ∈ {1, ..., q}

}
,

as T sY,1 =
∑

j∈Gs γ̂
2
j . Event

{
T s

′
E,γ > C(0.025,Σβs′

, γ̂s′), γ̂s′ ,V β,s′(j) for s′ ∈ {1, ..., q}
}

is equivalent to

∩Selected s′

{
T s

′

E,γ > C(0.025,Σβs′
, γ̂s′), γ̂s′ ,V β,s′(j)

}
= ∩Selected s′(− inf, Aβ (V β,s′(j))] ∪ [Bβ (V β,s′(j)) ,+ inf).

Values Aβ (V β,s′(j)) and Bβ (V β,s′(j)) are defined in the Section 1.3.

We denote the conditional p-values for testing βj = 0 and γj = 0 for j ∈ Gs by pCE,j and pCY,j. Note,

derived post-selection inference is also valid when sets are disjoint.

2.3 FWER control under joint model

We define the number of falsely discovered sets as
∑

s∈H0 rs, where rs = 1 if TS rejects H0 for set s and

0 otherwise. Now, in this section, we demonstrate asymptotic control of FWER (i.e. P (
∑

s∈H0
rs > 0)),

under general settings.

Theorem 2 FWER Control under joint model : limn→∞ FWERTS ≤ α

Proof. The proof follows the same steps of Theorem 1, with slight modification. For example, for the set

11



w01 (and similarly for other sets), we bound expectation

E

[
q∑
s=1

{
I(psE,γ < 0.025, psY,1 < 0.1)

∑
j∈Gs∩w01

I(pCE,j < α∗E,j)

}
|W = 1

]

≤ E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

E
[
I(pCE,j < α∗E,j)|psE,γ < 0.025,P E,γ,P Y,1, γ̂

]
|W = 1

]

≤ E

[
q∑
s=1

I(psE,γ < 0.025, psY,1 < 0.1)
∑

j∈Gs∩w01

α∗E,j|W = 1

]
≤ α/2.

where P E,γ = (p1
E,γ, ..., p

q
E,γ), P Y,1 = (p1

Y,1, ..., p
q
Y,1) and pCE,j is conditional p-value on all selected sets.

The last equality holds because conditional p-values are uniformly distributed given all selected sets (see

Proposition 4).

3 Additional simulation studies

3.1 Sensitivity analysis for presence of latent confounder

We compared the performance of five previously defined procedures (MIN, LIN, QUAD, MARG, TS) for

testing sets of biomarkers under null model without and with latent confounder. Simualtion model without

confounders is described in the Section 3 of the main paper. For the sensitivity analysis of the confounder

effects, we conducted the following set of simulations to estimate the FWER to detect a mediating set of

biomarkers:

1. Latent confounder C effecting exposure E and outcome Y , Figure S2A.

2. Latent confounder C effecting E and all biomarkers M , Figure S2B.

3. Latent confounder Ceffecting Y and all biomarkers M , Figure S2C.

4. Latent confounder C effecting all biomarkers M , Figure S2D.

In all these simulation scenarios, we used the same parametric model and parameters as in the main paper

without mediating set (i.e., qm = 0 and see Table 1 and Section 3.1). For sensitivity analysis, we assumed

12



that the size of the confounder effect on E, Y or M is equal to 0.065 in the simulations with the continuous

outcome and 0.045 in the simulations with the binary outcome. We generated 10000 simulations per

scenario to estimate empirical FWER at a nominal level of FWER = α = 0.05.

3.2 Power comparisons with varying proportions of mediators in a set and

proportions of variation in outcome explained by mediators

We evaluated the properties of the five testing procedures when the overall effect of exposure on mediators

and mediators on outcome was constant while the proportion of mediators in a set was varied. We used

the same simulation model as in the main paper with various values of γj and βj and mM , the number

of mediators in a mediating set (with ms biomarkers). Specifically, we kept the sum of squared effects

constant,

EV1 =

mM∑
j=1

β2
j = mMβ

2 = 0.01, EV2 =

mM∑
j=1

γ2
j = mMγ

2 = 0.01 for continious outcome

and

EV1 = mMβ
2 = 0.005, EV2 =

mM∑
j=1

γ2
j = mMγ

2 = 0.015 for binary outcome,

Specific values of γj and βj were obtained from above equations. It was previously shown that sum
∑mM

j=1 β
2
j

is equal to the proportion of variation in outcome explained by mM uncorrelated biomarkers [2, 3]. This

quantity with mM and ms determine the power of group tests studied here [2, 3].

In the second set of scenarios, we evaluated the properties of the five testing methods when the pro-

portion of mediators in the set was constant and overall effects (i.e. EV1 and EV22) were varied. We used

the same simulation model as in the main paper with various values of γj and βj, while proportion of

mediators in a mediating set, mM/ms was set to 0.1. Overall effects EV1 and EV2 were set to be the same

in simulations with continuous outcome and the relationship EV2 = 3EV1 was assumed in simulations with

binary outcome.

We generated 1000 simulations per scenario to estimate relationship between power, EV1, EV2 and

pM = nM/ms at nominal level FWER = α = 0.05.
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3.3 FWER and power comparisons with JTV − comp method

We compared the FWER and power of four previously defined procedures (MIN, LIN, MARG, TS) and

JTV − comp, a joint significance test of variance components for composite null [6]. We evaluated propri-

eties of this test by applying JTV − comp code to the same data simulated as in a main paper (continuous

outcome only). JTV − comp is new method that is similar to our MARG procedure. First, it conducts

group testing with E and Y using two marginal variance component tests. Then, composite test is con-

ducted on marginal p-values. However, this test is a marginal test, and it does not ensure that there is a

common set of mediating biomarkers associated with both exposure and outcome.

3.4 Results

We describe the sensitivity of the procedures to the presence of an unmeasured (latent) confounder affecting

biomarkers, exposure, and outcome in Supplemental Figures S4-S7 and S9-S12. The key result is that for

all scenarios, TS, MIN, LIN, and QUAD control FWER in the presence of confounder. MARG does

not control FWER when one-dimensional sets are present, because confounder transforms these sets into

two-dimensional sets.

We describe the power comparison of the procedures when the overall effects of exposure on mediators

and mediators on the outcome are constant in Supplemental Figures S17 and S18. We note that the power

of TS and MIN decreases as the proportion of mediators in a set increases, and MARG and LIN have

constant power. Both TS and MIN test individual markers in a set, thus decrease of effects due to the

increase of the proportion of mediators (note: the overall effect of the set is constant) Finally, we use

these simulations to compare these procedures with JTV-comp [6] in Supplemental Figures S21 and S22.

We note that JTV-comp does not control FWER in the presence of one and two-dimensional sets. This

may be due to the small number of sets in the analysis (q = 20) making procedure unreliable. JTV-comp

has the best power in many simulation settings, but control of FWER makes these results questionable.
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4 Supplemental Figures and Tables

Here, we present following additional figures and tables:

Figue S1: Type of sets used in the simulation study.

Figue S2: Simulation models with latent confounder.

Figue S3: FWER comparisons for continuous outcome and no latent confounders.

Figue S4: FWER comparisons for continuous outcome and latent confounder effecting E and Y .

Figue S5: FWER comparisons for continuous outcome and latent confounder effecting E and M .

Figue S6: FWER comparisons for continuous outcome and latent confounder effecting M and Y .

Figue S7: FWER comparisons for continuous outcome and latent confounder effecting M .

Figue S8: FWER comparisons for binary outcome and no latent confounders.

Figue S9: FWER comparisons for binary outcome and latent confounder effecting E and Y .

Figue S10: FWER comparisons for binary outcome and latent confounder effecting E and M .

Figue S11: FWER comparisons for binary outcome and latent confounder effecting M and Y .

Figue S12: FWER comparisons for binary outcome and latent confounder effecting M .

Figue S13: Simulations for continuous outcome with γj = βj = 0.075 and q = 100 disjoint sets as the baseline.

Figue S14: Simulations for binary outcome with γj = 0.1, βj = 0.05 and q = 100 disjoint sets as the baseline.

Figue S15: Simulations for continuous outcome with γj = βj = 0.065 and mM = 5 mediating biomarkers as the

baseline.

Figue S16: Simulations for binary outcome with γj = 0.06, βj = 0.04 and mM = 5 mediating biomarkers as the

baseline.
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Figue S17: Simulations for continuous outcome with ms = 15, ms = 20 and ms = 50 biomarkers per set and

constant proportion of variation explained by a set.

Figue S18: Simulations for binary outcome with ms = 15, ms = 20 and ms = 50 biomarkers per set and constant

proportion of variation explained by a set.

Figue S19: Simulations for continuous outcome with ms = 15, ms = 20 and ms = 50 biomarkers per set and

constant number of mediators in a set.

Figue S20: Simulations for binary outcome with ms = 15, ms = 20 and ms = 50 biomarkers per set and constant

number of mediators in a set.

Figue S21: FWER comparisons with JTV − comp for continuous outcome and no latent confounders.

Figue S22: Power comparisons with JTV − comp under continuous outcome.

Figue S23: Average number of biomarkers detected in continuous outcome simulations.

Figue S24: Average number of biomarkers detected in binary outcome simulations.

Table S1: KEGG pathways

Table S2: Individual biomarker results for Sterol/steroid pathway
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4.1 Graphical description of simulation models

Figure S1: Type of sets used in the simulation study. A) one-dimensional set with mD biomarkers
associated with exposure; B) two-dimensional set with mD/2 biomarkers associated with exposure and
mD/2 biomarkers associated with outcome; C) mediating set with mE ”noise” biomarkers associated with
only exposure.
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Figure S2: Simulation models with latent confouder C. A) confounder affects the exposure and
outcome; B) confounder affects the the exposure and all biomarkers; C) confounder affects all biomarkers
and the outcome; D) confounder affects all biomarkers.
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4.2 Empirical FWER Studies
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Figure S3: FWER comparisons for continuous outcome and no latent confounders. The bar-
plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD
(brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint sets,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We evaluate
the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S4: FWER comparisons for continuous outcome and latent confounder effecting E and
Y . The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red),
and QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20
disjoint sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0.
We evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline
value.
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Figure S5: FWER comparisons for continuous outcome and latent confounder effecting E and
M . The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN
(red), and QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20
disjoint sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0.
We evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline
value.
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Figure S6: FWER comparisons for continuous outcome and latent confounder effecting M
and Y . The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN
(red), and QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20
disjoint sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0.
We evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline
value.
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Figure S7: FWER comparisons for continuous outcome and latent confounder effecting M .
The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint
sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We
evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S8: FWER comparisons for binary outcome and no latent confounders. The bar-plots
show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD
(brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint sets,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We evaluate
the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S9: FWER comparisons for binary outcome and latent confounder effecting E and Y .
The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint
sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We
evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S10: FWER comparisons for binary outcome and latent confounder effecting E and M .
The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint
sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We
evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S11: FWER comparisons for binary outcome and latent confounder effecting M and Y .
The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint
sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We
evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S12: FWER comparisons for binary outcome and latent confounder effecting M . The
bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint
sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation of ρM = 0. We
evaluate the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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4.3 Empirical Power Studies
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Figure S13: Simulations for continuous outcome with γj = βj = 0.075 and q = 100 disjoint sets
as the baseline. The bar-plots show the power to detect the mediating set when using the TS (yellow),
MIN (green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline scenario includes
ms = 20 biomarkers per set, qm = 1 mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional
sets, mM = 3 mediating biomarkers, mE = 0 noise-biomarkers, and a correlation of ρM = 0. We evaluate
the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S14: Simulations for binary outcome with γj = 0.1, βj = 0.05 and q = 100 disjoint sets
as the baseline. The bar-plots show the power to detect the mediating set when using the TS (yellow),
MIN (green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline scenario includes
ms = 20 biomarkers per set, qm = 1 mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional
sets, mM = 3 mediating biomarkers, mE = 0 noise-biomarkers, and a correlation of ρM = 0. We evaluate
the effect of varying a single parameter, keeping all other parameters set to their baseline value.
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Figure S15: Simulations for continuous outcome with γj = βj = 0.065 and mM = 5 mediating
biomarkers as the baseline. The bar-plots show the power to detect the mediating set when using
the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline
scenario includes ms = 20 biomarkers per set, q = 20 disjoint sets as the baseline, qm = 1 mediating set,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and a correlation
of ρM = 0. We evaluate the effect of varying a single parameter, keeping all other parameters set to their
baseline value.
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Figure S16: Simulations for binary outcome with γj = 0.06, βj = 0.04 and mM = 5 mediating
biomarkers as the baseline. The bar-plots show the power to detect the mediating set when using
the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline
scenario includes ms = 20 biomarkers per set, q = 20 disjoint sets as the baseline, qm = 1 mediating set,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and a correlation
of ρM = 0.
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4.4 Power comparisons with varying proportions of mediators in a set
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Figure S17: Simulations for continuous outcome with ms = 15, ms = 20 and ms = 50 biomarkers
per set and constant proportion of variation explained by a set. The plots show the power
to detect the mediating set when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and
QUAD (brown) procedures. The baseline scenario includes q = 20 disjoint sets as the baseline, qm = 1
mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and
a correlation of ρM = 0. Overall effects of E on M and M on Y were set to EV = 0.01.
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Figure S18: Simulations for binary outcome with ms = 15, ms = 20 and ms = 50 biomarkers per
set and constant proportion of variation explained by a set. The plots show the power to detect the
mediating set when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD (brown)
procedures. The baseline scenario includes q = 20 disjoint sets as the baseline, qm = 1 mediating set,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and a correlation
of ρM = 0. Overall effects of E on M and M on Y were set to EV1 = 0.005 and EV2 = 0.015.
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4.5 Power comparisons with varying proportion of variation explained by

mediators in a set (EV)
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Figure S19: Simulations for continuous outcome with ms = 15, ms = 20 and ms = 50 biomarkers
per set and constant number of mediators per set (i.e. mm). The plots show the power to detect the
mediating set when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD (brown)
procedures. The baseline scenario includes q = 20 disjoint sets as the baseline, qm = 1 mediating set,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and a correlation
of ρM = 0. Overall effects of E on M and M on Y were set to the EV .
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Figure S20: Simulations for binary outcome with ms = 15, ms = 20 and ms = 50 biomarkers per
set and constant number of mediators per set (i.e. mm). The plots show the power to detect the
mediating set when using the TS (yellow), MIN (green), MARG (orange), LIN (red), and QUAD (brown)
procedures. The baseline scenario includes q = 20 disjoint sets as the baseline, qm = 1 mediating set,
qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mE = 0 noise-biomarkers, and a correlation
of ρM = 0. Overall effects of E on M and M on Y were set to the EV1 = EV and EV2 = 3EV .

36



4.6 FWER and power comparison with JTV − comp
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Figure S21: FWER comparisons with JTV − comp for continuous outcome and no latent con-
founders. The bar-plots show the FWER when using the TS (yellow), MIN (green), MARG (orange),
LIN (red), and JTV-comp (brown) procedures. The baseline scenario includes ms = 20 biomarkers per
set, q = 20 disjoint sets, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, and a correlation
of ρM = 0. We evaluate the effect of varying a single parameter, keeping all other parameters set to their
baseline value.
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MIN TS MARG LIN JTV−comp
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Figure S22: Power comparisons with JTV − comp under continuous outcome simulations. The
bar-plots show the power to detect the mediating set when using the TS (yellow), MIN (green), MARG (or-
ange), LIN (red), and JTV-comp (brown) procedures. The baseline scenario includes ms = 20 biomarkers
per set, q = 20 disjoint sets, qm = 1 mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional
sets, and a correlation of ρM = 0. We evaluate the effect of varying a single parameter, keeping all other
parameters set to their baseline value.
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4.7 Detection of individual mediators in a mediation set

Figure S23: Average number of biomarkers detected in continuous outcome simulations. The
bar-plots show the average number of mediators detected the mediating set when using the TS (yellow) and
MIN (green) procedures. The baseline scenario includes ms = 20 biomarkers per set, q= 20 disjoint sets,
qm = 1 mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mM = 3 mediating
biomarkers, mE = 0 noise-biomarkers, and a correlation of ρM = 0. We evaluate the effect of varying a
single parameter, keeping all other parameters set to their baseline value.
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Figure S24: Average number of biomarkers detected in binary outcome simulations. The bar-
plots show the average number of mediators detected the mediating set when using the TS (yellow) and
MIN (green) procedures. The baseline scenario includes ms = 20 biomarkers per set, q = 20 disjoint sets,
qm = 1 mediating set, qOD = 0 one-dimensional sets, qTD = 0 two-dimensional sets, mM = 3 mediating
biomarkers, mE = 0 noise-biomarkers, and a correlation of ρM = 0. We evaluate the effect of varying a
single parameter, keeping all other parameters set to their baseline value.
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