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Fig. S1: Pareto optimal frontiers for GFP libraries. Pareto frontiers at mutational loads of 10 (red), 

15 (green), and 20 (blue), using (a) specific point mutations and (b) degenerate oligos. The insets 

zoom in on the regions where the slope starts ramping up. 

 
 

Fig. S2: Pareto optimal frontiers for P450 libraries. Pareto frontiers at mutational loads of 10 (red), 

15 (green), and 20 (blue), using (a) specific point mutations and (b) degenerate oligos. The insets 

zoom in on the regions where the slope starts ramping up. 
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Data preprocessing: The sequence potential and sequence-based allowed mutations for each of 

the proteins were derived from a set of homologs (Table S1), filtered to eliminate gappy members 

of a multiple sequence alignment (at most 25% gaps) and to be sufficiently similar to the wild type 

(at least 35% identity), and sub-selected to be sufficiently different from each other (at most 95% 

identity). A background distribution [1] provided threshold for considering an amino acid as a 

mutational choice only if its MSA frequency exceeded the background frequency for the amino 

acid type.  

The homology-based allowed mutations were augmented with structure-based allowed 

mutations whose secondary structure Chou-Fasman propensities [2] were similar enough 

(propensity cutoff of 1.50 or more) to those of the corresponding wild-type residues in the target 

structure. Mutations that could introduce major structural changes, such as proline and cysteine, 

were excluded from the list.  

Structure potentials were derived from the PDB structures listed in Table S1. A training set 

of randomly mutated structures was produced with Rosetta [3], and the energies were used for 

fitting a Cluster Expansion (CE) [4] based potential that could be computed from the amino acid 

sequence. The model accuracy was verified on a randomly chosen unique test set of structures; 

correlations are listed in Table S1. The complete process of CE training and modeling for each 

target requires less than 24 hours on a compute cluster. 

 

Table S1: Preprocessing data for extracting sequence and structure potentials. 
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Target 

protein 
Organism UniProt ID 

Number of sequence 

homologs 

Filtered 

sequence 

representatives 

Structure 

(PDB) 

Random 

structures for 

CE training 

CE Predicted 

energy 

correlation 

GFP 
Aequorea 

victoria  
GFP_AEQVI 

243 

(from Pfam PF01353)  
44 1GFL 24000 0.80 

P450 
Bacillus 

Subtilis  
CYPC_BACSU 

238 

(from BLAST) 
160 2ZQJ 36000 0.70 

β-lactamase  
Escheridia 

coli  
BLAT_ECOLX 

148 

(from BLAST) 
42 1BT5 36000 0.75 


