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SUPPLEMENTARY TABLES

Supplementary Table S1. Variants used to train the classification models

Model Benign [n] Deleterious [n]

variants 11168768 236400 all variants

without_aae 30984304 81843 non-coding 

simple_aae 507702 270634 affecting a single amino acid

complex_aae 32432 349660 affecting more than one amino acid

3utr 415995 816 located in the 3' UTR

5utr 112176 923 located in the 5' UTR

This table shows the number of cases used to train the five different models used by MutationTaster2021. It
should be noted that due to the existence of multiple transcripts, a variant can lead to more than one training
case. For variants that could be assigned to either the simple_aae or the complex_aae model, all non-coding
cases (i.e. intron locations in other transcripts) were removed.

MutationTaster2021 – Supplement 1



Supplementary Table S2. Predictive performance of MutationTaster2021

without_aae simple_aae complex_aae 3utr 5utr

Training cases [n] 23299610 583752 286569 312608 84824

Test cases [n] 7766537 194584 95523 104203 28275

Deleterious test cases [n] 20461 67658 87415 204 231

NPV 0.999 0.966 0.975 0.999 0.995

PPV (precision) 0.979 0.962 0.988 0.980 0.990

Sensitivity (recall) 0.939 0.935 0.998 0.716 0.446

Specificity 0.999 0.980 0.868 0.999 0.999

Balanced accuracy 0.970 0.958 0.933 0.858 0.723

Presented is the predictive performance of MutationTaster2021 for the five different models. Results were
obtained  with test  cases that  were not  used for  training (NPV:  negative predictive  value,  PPV:  positive
predictive value).

The  actual  performance  of  MutationTaster2021  is  even  better,  as  common polymorphisms  and  known
disease mutations are automatically detected and categorised. 

Supplementary Table S3. Predictive performance of MutationTaster2

without_aae simple_aae complex_aae

NPV 0.957 [0.003] 0.877 [0.008] 0.869 [0.032]

PPV (precision) 0.888 [0.006] 0.895 [0.005] 0.944 [0.004]

Sensitivity (recall) 0.954 [0.004] 0.879 [0.007] 0.879 [0.026]

Specificity 0.895 [0.005] 0.893 [0.004] 0.939 [0.005]

Balanced accuracy 0.922 [0.004] 0.886 [0.004] 0.907 [0.017]

This  table  depicts  the  results  of  the  cross-validation  of  the  three  different  models  of  MutationTaster2
(standard deviation in brackets).

Supplementary Table S4. Characteristics of the Random Forest models

Model without_aae simple_aae complex_aae 3utr 5utr

Training [n] 23299610 583752 286569 312608 84824

RF trees [n] 100 100 200 100 300

Split criterion entropy entropy gini gini entropy

AUC-ROC 0.990 [<0.001] 0.987 [<0.001] 0.993 [<0.001] 0.942 [0.015] 0.893 [0.008]

Balanced accuracy 0.959 [0.001] 0.940 [<0.001] 0.907 [0.002] 0.826 [0.014] 0.709 [0.007]

These are characteristics of the different Random Forest (RF) models used  in the five prediction models,
determined in a grid search to find the best models (see Random Forest model selection in the Methods
part  below for  a description).  Area under  the  curve /  receiver  operating characteristics  (AUC-ROC) and
balanced  accuracy  were  measured  in  a  threefold  cross-validation  of  the  complete  data  set,  standard
deviation in brackets.
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Supplementary Table S5. External data sources used by MutationTaster2021

Software Description

Ensembl(1)
general genetic data

NCBI Entrez(2)

dbSNP(2) dbSNP IDs of known variants

ClinVar(3) pathogenicity and disease reports for variants

HGMD public(4) position of public disease mutations from HGMD

1000 Genomes Project(5)

genotype counts in in healthy controlsExAC(6)

gnomAD(7)

PhastCons(8)
phylogenetic conservation (DNA level)

PhyloP(9)

UniProt(10) protein domains

Supplementary Table S6. External software used by MutationTaster2021

Software Description

blast2(11) conservation at protein level

MaxEntScan(12) splice site prediction

polyadq(13) test for poly-adenylation signals
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SUPPLEMENTARY FIGURES

Supplementary Figure S1. New landing page

Landing page of MutationTaster2021. The three different modes (analysis of a variant based on its physical
position, analysis of a single variant based on a transcript/CDS position, and analysis of complete VCF files)
are now shown in the same interface.

https://www.genecascade.org/MutationTaster2021/
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Supplementary Figure S2. MT2021 Results for a known disease mutation

 

The SNV chr2:233391374T>C (GRCh37) in the CHRND gene is listed in NCBI ClinVar as a known disease-
causing variant for Myasthenic syndrome.
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METHODS

Selection of variants
Benign  variants  were  selected  from  the  gnomAD  genotype  repository  (version  2.1.1).  We
considered all  intragenic  variants found in  at  least  one individual  in  the homozygous state as
benign. Variants without any allele frequency specifications were discarded.

We obtained deleterious intragenic  variants from ClinVar (version 2020-12-08) and HGMD Pro
(Version 2020Q03). ClinVar variants were included when they were annotated as 'pathogenic' or as
'likely pathogenic'; variants with other or conflicting labels were excluded. HGMD variants were
used when they were labelled as 'DM' (disease mutation).

Variants found in both training sets were removed. The training data comprise single nucleotide
variants as well as small insertions/deletions.

Selection of training cases
All variants were sent to MutationTaster. The results of MutationTaster's analyses were saved in
dedicated database tables. These results comprised information such as outcome (deleterious vs.
benign), affected transcripts, pre-mRNA localisation of the variant, conservation at the protein and
DNA  level  and  many  more  (see  Supplementary  Table  S5 for  the  data  sources  and
Supplementary Table S6 for the external software). A complete list of the features can be found at
https://www.genecascade.org/downloads/MutationTaster2021/SupplementaryData/.

Depending  on  effect  and  pre-mRNA  localisation  of  the  variant  within  a  transcript,  the
variant:transcript pair was assigned to the suitable model (see Supplementary Table S1).

Data pre-processing for the classification
The steps listed below were used to train the classifier but are also used for the classification of
variants within MutationTaster2021.

Changes in the amino acid sequence

A variant can cause one (simple_aae model)  or more (complex_aae) changes to the amino acid
sequence.  In the Random Forest models,  each observed amino acid substitution in the whole
training data set (including insertions, deletions, or nonsense variants, e.g. 'AP', '-A', 'A-' or 'A*') is
treated as a single feature. In the simple_aae model, only one of these features can be true for a
single variant; in the complex_aae model many features can be true.

phyloP / phastCons

We use the phyloP and phastCons values to reflect the phylogenetic conservation of a variant. In
addition to the position at the variant site(s) itself,  we assess the conservation at both flanking
bases. Whilst the latter always contains two values per variant and metric (phyloP and phastCons),
the variant sites may have multiple values in case of deletions of more than a single base.

After trying different models, we determined that using four different attributes (mean phyloP score
of flanking bases, mean phastCons score of flanking bases, mean phyloP score of affected bases,
mean phastCons score of affected bases) yielded the highest accuracy.

MutationTaster2021 – Supplement 6

https://www.genecascade.org/downloads/MutationTaster2021/SupplementaryData/


Protein features

Each variant can hit one or more functional  domains in the protein. Our training data includes a
column for each feature that could be lost due to the mutation (e.g. DISULFID). The entries in
these columns are binary and specify whether the feature has been lost at least once for each
variant.

Splicing

We prepared  two  features  to  handle  the  effect  of  a  variant  on  splicing,  "splice_quot_A”  and
“splice_quot_D”.  These  scores  are  calculated as  the  absolute  ratio  of  the  absolute  difference
between the wild-type score and the mutation score (mt)  with the wild-type score (wt)  for  the
acceptor and donor site, respectively, e.g. for a donor site: 

splice_quot_D=abs(abs(mt_D-wt_D)/wt-D)

If the first/last base of an exon or the first/last two intronic bases are changed, we consider a splice
site as lost and set the splice_quot to 10. If there is no effect of a variant on a nearby splice site,
then the score is set to 0 instead.

It should be noted that MutationTaster2021 does not search for activated cryptic splice sites but
only predicts the effect on known splice sites..

Dichotomisation

All other categorical (non-numeric or non-binary) attributes in the data were dichotomised to obtain
features with a binary value (true/false).

Random Forest models

Feature removal

For each model, we separately checked the training data and removed columns and entries with
no information.  First,  we removed all  columns that  did  not  contain  any entries  for  any  of  the
variants for that model. We then removed the columns with identical values for all variants. 

In addition to the feature removal, we also removed training cases containing at least one column
without any value.

Model generation and selection

We used the Python sklearn package to generate Random Forest models. We decided to train our
models for the highest balanced accuracy as a trade-off between specificity (low false positive rate)
and sensitivity (correct identification of disease-causing variants).

We started with the default parameters and performed a grid search for each of the five models to
find the optimal hyperparameters for the number of trees used in each Random Forest and the
criteria to find the optimal split for each of the nodes within each tree (either gini index or entropy),
which are measures of impurity or information gain of a node in the tree. A detailed list of the
combinations tested and the description of the Random Forest development are provided at

https://www.genecascade.org/downloads/MutationTaster2021/SupplementaryData/.
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To avoid overfitting, we performed 3-fold cross-validations for each of our five models to select the
best  parameters  for  the  number  of  trees  in  the  Random  Forest  and  the  best  criterion  for
determining the optimal split at each node. For this purpose, we randomly extracted 25% of our
training data to withhold for the final performance test, while ensuring that the extracted samples
followed the same distribution of positive and negative samples as present in the entire dataset.
We trained the classifier on the remaining variants. The models were trained within a grid search,
with possible hyperparameters set so that the number of  trees within the Random Forest  was
either 100, 200, or 300 and the criterion for splits could be either the gini index or entropy. Three
validation  cycles  were  performed  for  each  model  (see  Supplementary  Table  S4 for  the
characteristics of the chosen models).

We additionally decided to not only select for models with a high predictive performance, but also
for run-time performance, i.e. for small models. Therefore, we opted to pick the models with only
100  trees  for  simple_aae and  without_aae.  This  decision  resulted  in  a  marginal  decrease  of
balanced  accuracy  of  0.12% (simple_aae)  and  0.05% (without_aae)  compared  to  the  'perfect
models', whilst leading to a size reduction of 67.1% (simple_aae) and 68.0% (without_aae), giving
us an equivalent boost in classification speed. Final performance was then calculated on the test
data set (see  Supplementary Table S2). The classification uses the weighted prediction of the
result leaf of each Random Forest tree, i.e. the fraction of deleterious cases vs. all cases for leaves
predicting deleteriousness. Please note that most leaves give a binary result (i.e. all cases left are
either benign or deleterious). The trees are available on our website.

We were thus able to improve the accuracy in all classification models, with a drastic increase in
the  simple_aae model  (MutationTaster2  88.6%,  MutationTaster2021  95.8%)  and  substantial
changes in  the  without_aae model  from 92.2% to 97.0% and  in  the  complex_aae model from
90.7% to 93.3% (see Supplementary Table S3 for MutationTaster2's performance).

IMPLEMENTATION
Data are stored in a PostgreSQL database. MutationTaster2021 is programmed in Perl and runs
under mod_perl in an Apache web server. All user interfaces are written in HTML (with JavaScript
and  AJAX  functions)  and  are  developed  for  the  Firefox  browser  under  Linux,  Mac  OS,  and
Microsoft Windows and are regularly tested with Google Chrome, Safari and Microsoft Edge. We
employ  TORQUE  (version  4.2)  as  job  scheduling  software.  External  tools used  by
MutationTaster2021 (MaxEntScan(12),  bl2seq(11),  polyadq(13)) run on a RAM disk to  increase
speed. 

The Random Forests were trained in Python 3.6.12 using scikit-learn 0.23.2 and numpy 1.17.3,
data preprocessing was done using pandas 1.1.5. Plots (downloadable from our website) were
created using matplotlib 3.2.2. We used a Perl script to transform the Random Forest models into
Perl data structures which can be accessed by the MutationTaster2021 software.
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