Mut: ]
MutationTaster2021

Supplement

Robin Steinhaus'?, Sebastian Proft'? , Markus Schuelke®**, David N. Cooper®, Jana Marie
Schwarz?®, and Dominik Seelow?”
! Berliner Institut fir Gesundheitsforschung in der Charité — Universitatsmedizin Berlin, Berlin, 10117, Germany

2|nstitut fir Medizinische Genetik und Humangenetik, Charité — Universitatsmedizin Berlin, corporate member of Freie
Universitat Berlin and Humboldt-Universitat zu Berlin, Berlin, 10117, Germany

*Klinik fur Padiatrie m.S. Neurologie, Charité — Universitatsmedizin Berlin, corporate member of Freie Universitéat Berlin
and Humboldt-Universitéat zu Berlin, Berlin, 10117, Germany

“NeuroCore Clinical Research Center, Charité — Universitatsmedizin Berlin, corporate member of Freie Universitét Berlin
and Humboldt-Universitat zu Berlin, Berlin, 10117, Germany

®Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK

* To whom correspondence should be addressed. Tel: +49 30 450 543684; Fax: +49 30 7543906; Email:
dominik.seelow@charite.de

SUPPLEMENTARY TABLES
Supplementary Table S1. Variants used to train the classification models
Model Benign [n] Deleterious [n]
variants 11168768 236400 all variants
without_aae 30984304 81843 non-coding
simple_aae 507702 270634 affecting a single amino acid
complex_aae | 32432 349660 affecting more than one amino acid
3utr 415995 816 located in the 3' UTR
Sutr 112176 923 located in the 5' UTR

This table shows the number of cases used to train the five different models used by MutationTaster2021. It
should be noted that due to the existence of multiple transcripts, a variant can lead to more than one training
case. For variants that could be assigned to either the simple_aae or the complex_aae model, all non-coding
cases (i.e. intron locations in other transcripts) were removed.
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Supplementary Table S2. Predictive performance of MutationTaster2021

without_aae| simple_aael complex_aae 3utr| Sutr
Training cases [n] 23299610 583752 286569| 312608 84824
Test cases [n] 7766537 194584 95523| 104203| 28275
Deleterious test cases [n] 20461 67658 87415 204| 231
NPV 0.999 0.966 0.975/ 0.999| 0.995
PPV (precision) 0.979 0.962 0.988/ 0.980| 0.990
Sensitivity (recall) 0.939 0.935 0.998/ 0.716| 0.446
Specificity 0.999 0.980 0.868, 0.999| 0.999
Balanced accuracy 0.970 0.958 0.933) 0.858| 0.723

Presented is the predictive performance of MutationTaster2021 for the five different models. Results were
obtained with test cases that were not used for training (NPV: negative predictive value, PPV: positive
predictive value).

The actual performance of MutationTaster2021 is even better, as common polymorphisms and known
disease mutations are automatically detected and categorised.

Supplementary Table S3. Predictive performance of MutationTaster2

without_aae simple_aae complex_aae
NPV 0.957 [0.003] 0.877 [0.008] 0.869 [0.032]
PPV (precision) 0.888[0.006]  0.895 [0.005] 0.944 [0.004]
Sensitivity (recall) 0.954[0.004]]  0.879 [0.007] 0.879 [0.026]
Specificity 0.895 [0.005] 0.893 [0.004] 0.939 [0.005]
Balanced accuracy 0.922 [0.004] 0.886 [0.004] 0.907 [0.017]

This table depicts the results of the cross-validation of the three different models of MutationTaster2
(standard deviation in brackets).

Supplementary Table S4. Characteristics of the Random Forest models

Model without_aae] simple_aae complex_aae 3utr 5utr
Training [n] 23299610 583752 286569 312608 84824
RF trees [n] 100 100 200 100 300
Split criterion entropy entropy gini gini entropy
AUC-ROC 0.990 [<0.001]| 0.987 [<0.001]/ 0.993 [<0.001]| 0.942 [0.015] 0.893 [0.008]
Balanced accuracy | 0.959 [0.001]| 0.940 [<0.001]| 0.907 [0.002]| 0.826 [0.014]| 0.709 [0.007]

These are characteristics of the different Random Forest (RF) models used in the five prediction models,
determined in a grid search to find the best models (see Random Forest model selection in the Methods
part below for a description). Area under the curve / receiver operating characteristics (AUC-ROC) and
balanced accuracy were measured in a threefold cross-validation of the complete data set, standard
deviation in brackets.
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Supplementary Table S5. External data sources used by MutationTaster2021

Software Description
Ensembl(1) .

general genetic data
NCBI Entrez(2)
dbSNP(2) dbSNP IDs of known variants
Clinvar(3) pathogenicity and disease reports for variants
HGMD public(4) position of public disease mutations from HGMD
1000 Genomes Project(5)
EXAC(6) genotype counts in in healthy controls
gnomAD(7)
PhastCons(8) . .

phylogenetic conservation (DNA level)
PhyloP(9)
UniProt(10) protein domains

Supplementary Table S6. External software used by MutationTaster2021

Software Description

blast2(11) conservation at protein level
MaxEntScan(12) splice site prediction
polyadq(13) test for poly-adenylation signals
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SUPPLEMENTARY FIGURES

Supplementary Figure S1. New landing page

Mute Old interface MutationTaster API Other apps ~ 1

mutation t sting

"2 Chromosomal position
w3 Specific transcript
& VCFfile Gene symbol Transcript
Gene symbol, Entrez ID or Ensembl ID Ensembl transcript ID

Show available transcripts

Variant by sequence snippet

Enter a few bases around your alteration (e.g. ACTGTC[AG/T]IGTGTF)

Variant by position Reference

= Coding sequence (c.)
Transcript (cDNA)
Gene (genetic sequence)

SNV: | Position New base

Position of last wild-type base before alteration
Indel: | Position of first wild-type base after alteration
Inserted bases (optional)

Show sequence snippet

Analyse Clear all input Show an example

This website is free and open to all users and there is no login requirement.

This version: GRCh37, Ensembl 102 Scientific articles ~ Documentation Examples ~ Imprint

Landing page of MutationTaster2021. The three different modes (analysis of a variant based on its physical
position, analysis of a single variant based on a transcript/CDS position, and analysis of complete VCF files)
are now shown in the same interface.

https://www.genecascade.org/MutationTaster2021/
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Supplementary Figure S2. MT2021 Results for a known disease mutation

Muta

§ i mutation t  sting

Prediction: Deleterious Permalink
Summary: « Amino acid sequence changed « Model: simple_aae

« Known disease mutation at this position (HGMD CM081556)
« Known disease mutation: ClinVar ID 18371 (pathogenic)
« Protein features (might be) affected

« Tree vote: 955 (del | benign)
* Automatic classification due to Clinvar

Analysed issue
Phys. location

Gene symbol

EXAC LOF metrics
Ensembl transcript ID

Genbank transcript ID

Analysis result
chr2:233391374T>C show variant in all transcripts 1GYV
CHRND

LOF: 0.00, misssense: 0.60, synonymous: 0.19
ENST00000258385

UniProt peptide Q07001
Variant type Single base exchange
Gene region cps
DNA changes .188T>C
9.672T>C
AA changes L63P Score: 98
Explain score(s)
Frameshift No
Length of protein Normal

Known variant

Phylogenetic conservation

Allele 'C' was neither found in EXAC, 1000G nor gnomAD.

Known disease mutation: ClinVar variation ID 18371 (pathogenic for Congenital myasthenic syndrome 38)

oMM

Known disease mutation at this position, please check HGMD for details (HGMD ID CM081556)

PhyloP PhastCons
(flanking) 4.101 1
4743 1

(flanking) 1.009 1

Explain score(s) and/or inspect your position(s) in in UCSC Genome Browser

Splice sites No abrogation of potential splice sites

Distance from splice site 1

Kozak consensus sequence altered? No

Protein conservation Species Match Gene AA Alignment
Human 63 VDVALALTLSNLISLKEVEETLTT
mutated not conserved 63 SNPISLKEVEETLT
Ptroglodytes  allidentical  ENSPTRGO0000013040 63 SNEISLKEVEETLT
Mmulatta allidentical ~ ENSMMUG00000022147 76 SNEISLKEVEETLT
Featus allidentical  ENSFCAG00000030943 63 SNEISLKEVEETLT
Mmusculus all identical ENSMUSG00000026251 6 LTLSNEISLKEVEETLT
Ggallus allidentical  ENSGALG00000007899 63 VDVYLALTLSNJISLK
Trubripes no alignment  ENSTRUG00000026623
Drerio allidentical  ENSDARGO00000019342 63 VDIYLALTLSNIISLKEVDETLL
Dmelanogaster no homologue
Celegans no homologue
Xtropicalis allidentical  ENSXETG00000027884 63 VNVSLALTLSNIISLKEADETLT

Protein features

Start (aa) End (aa) Feature  Details
22 245  TOPO_DOM Extracellular lost

AA sequence altered Yes
Chromosome 2
strand 1

Original gDNA sequence snippet
Altered gDNA sequence snippet
Original cDNA sequence snippet

Altered cDNA sequence snippet

GGCCCTCACACTCTCCAACCTCATCTCCCTGGTGAGAGGCC
GGCCCTCACACTCTCCAACCCCATCTCCCTGGTGAGAGGCC
GGCCCTCACACTCTCCAACCTCATCTCCCTGAAAGAAGTTG
GGCCCTCACACTCTCCAACCCCATCTCCCTGAAAGAAGTTG

Wildtype AA sequence MEGPVLTLGL LAALAVCGSW GLNEEERLIR HLFQEKGYNK ELRPVAHKEE SVDVALALTL
SNLISLKEVE ETLTTNVWIE HGWTDNRLKW NAEEFGNISV LRLPPDMVWL PEIVLENNND
GSFQISYSCN VLVYHYGFVY WLPPAIFRSS CPISVTYFPF DWONCSLKFS SLKYTAKEIT
LSLKQDAKEN RTYPVEWIII DPEGFTENGE WEIVHRPARV NVDPRAPLDS PSRODITFYL
TIRRKPLFYI INILVPCVLI SFMVNLVFYL PADSGEKTSV AISVLLAQSY FLLLISKRLP
ATSMATPLIG KFLLFGHVLY TMVVVICVIV LNTHFRTPST HVLSEGVKKL FLETLPELLH
MSRPAEDGPS PGALVRRSSS LGYISKAEEY FLLKSRSDLM FEKQSERHGL ARRLTTARRP
PASSEQAQQE LFNELKPAVD GANFIVNHMR DQNNYNEEKD SWNRVARTVD RLCLFVVTPV
MVVGTAWIFL QGVYNQPPPQ PFPGDPYSYN VODKRFI*

Mutated AA sequence MEGPVLTLGL LAALAVCGSW GLNEEERLIR HLFQEKGYNK ELRPVAHKEE SVDVALALTL
SNPISLKEVE ETLTTNVWIE HGWTDNRLKW NAEEFGNISV LRLPPDHVWL PEIVLENNND
GSFQISYSCN VLVYHYGFVY WLPPAIFRSS CPISVTYFPF DWONCSLKFS SLKYTAKEIT
LSLKQDAKEN RTYPVEWIII DPEGFTENGE WEIVHRPARV NVDPRAPLDS PSRODITFYL
TIRRKPLFYI INILVPCVLI SFMVNLVFYL PADSGEKTSV AISVLLAQSY FLLLISKRLP
ATSMATPLIG KFLLFGHVLV TMVVVICVIV LNIHFRTPST HVLSEGVKKL FLETLPELLH
MSRPAEDGPS PGALVRRSSS LGYISKAEEY FLLKSRSDLM FEKQSERHGL ARRLTTARRP
PASSEQAQQE LFNELKPAVD GANFIVNHMR DQNNYNEEKD SWNRVARTVD RLCLFVVTPV
MVVGTAWIFL QGVYNQPPPQ PFPGDPYSYN VQDKRFI*

Position of stopcodon in wt/ mu CDS 1554/ 1554

Position (AA) of stopcodon in wt / mu 518/518

AA sequence

Position of stopcodon inwt/ mu cDNA 1586/ 1586

Position of start ATG inwt/mucDNA  33/33

Last intron/exon boundary 1403

Theoretical NMD boundary in CDS 1320

Length of CDS 1554

Coding sequence (CDS) position 188

CcDNA position 220

gDNA position 672

Chromosomal position 233391374

Speed 0165

Al positions are in basepairs (bp) if not explicitly stated differently. cONAIGDNA/chromosomal position: Ins/del are shown as 'last normal base  first normal base'.
AAlaa: amino acid; CDS: coding sequence; mu: mutated; NMD: nonsense-mediated mRNA decay; nt: nucleotide; wt: wildtype; TGP: 1000 Genomes Project

The SNV chr2:233391374T>C (GRCh37) in the CHRND gene is listed in NCBI ClinVar as a known disease-
causing variant for Myasthenic syndrome.
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METHODS

Selection of variants

Benign variants were selected from the gnomAD genotype repository (version 2.1.1). We
considered all intragenic variants found in at least one individual in the homozygous state as
benign. Variants without any allele frequency specifications were discarded.

We obtained deleterious intragenic variants from ClinVar (version 2020-12-08) and HGMD Pro
(Version 2020Q03). ClinVar variants were included when they were annotated as 'pathogenic’ or as
'likely pathogenic'; variants with other or conflicting labels were excluded. HGMD variants were
used when they were labelled as 'DM' (disease mutation).

Variants found in both training sets were removed. The training data comprise single nucleotide
variants as well as small insertions/deletions.

Selection of training cases

All variants were sent to MutationTaster. The results of MutationTaster's analyses were saved in
dedicated database tables. These results comprised information such as outcome (deleterious vs.
benign), affected transcripts, pre-mRNA localisation of the variant, conservation at the protein and
DNA level and many more (see Supplementary Table S5 for the data sources and
Supplementary Table S6 for the external software). A complete list of the features can be found at

https://www.genecascade.org/downloads/MutationTaster2021/SupplementaryData/.

Depending on effect and pre-mRNA localisation of the variant within a transcript, the
variant:transcript pair was assigned to the suitable model (see Supplementary Table S1).

Data pre-processing for the classification
The steps listed below were used to train the classifier but are also used for the classification of
variants within MutationTaster2021.

Changes in the amino acid sequence

A variant can cause one (simple_aae model) or more (complex_aae) changes to the amino acid
sequence. In the Random Forest models, each observed amino acid substitution in the whole
training data set (including insertions, deletions, or nonsense variants, e.g. 'AP', -A', 'A-' or 'A*) is
treated as a single feature. In the simple_aae model, only one of these features can be true for a
single variant; in the complex_aae model many features can be true.

phyloP | phastCons

We use the phyloP and phastCons values to reflect the phylogenetic conservation of a variant. In
addition to the position at the variant site(s) itself, we assess the conservation at both flanking
bases. Whilst the latter always contains two values per variant and metric (phyloP and phastCons),
the variant sites may have multiple values in case of deletions of more than a single base.

After trying different models, we determined that using four different attributes (mean phyloP score
of flanking bases, mean phastCons score of flanking bases, mean phyloP score of affected bases,
mean phastCons score of affected bases) yielded the highest accuracy.
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Protein features

Each variant can hit one or more functional domains in the protein. Our training data includes a
column for each feature that could be lost due to the mutation (e.g. DISULFID). The entries in
these columns are binary and specify whether the feature has been lost at least once for each
variant.

Splicing

We prepared two features to handle the effect of a variant on splicing, "splice_quot_A”" and
“splice_quot_D”". These scores are calculated as the absolute ratio of the absolute difference
between the wild-type score and the mutation score (mt) with the wild-type score (wt) for the
acceptor and donor site, respectively, e.g. for a donor site:

splice_quot_D=abs(abs(mt_D-wt_D)/wt-D)

If the first/last base of an exon or the first/last two intronic bases are changed, we consider a splice
site as lost and set the splice_quot to 10. If there is no effect of a variant on a nearby splice site,
then the score is set to O instead.

It should be noted that MutationTaster2021 does not search for activated cryptic splice sites but
only predicts the effect on known splice sites..

Dichotomisation

All other categorical (non-numeric or non-binary) attributes in the data were dichotomised to obtain
features with a binary value (true/false).

Random Forest models

Feature removal

For each model, we separately checked the training data and removed columns and entries with
no information. First, we removed all columns that did not contain any entries for any of the
variants for that model. We then removed the columns with identical values for all variants.

In addition to the feature removal, we also removed training cases containing at least one column
without any value.

Model generation and selection

We used the Python sklearn package to generate Random Forest models. We decided to train our
models for the highest balanced accuracy as a trade-off between specificity (low false positive rate)
and sensitivity (correct identification of disease-causing variants).

We started with the default parameters and performed a grid search for each of the five models to
find the optimal hyperparameters for the number of trees used in each Random Forest and the
criteria to find the optimal split for each of the nodes within each tree (either gini index or entropy),
which are measures of impurity or information gain of a node in the tree. A detailed list of the
combinations tested and the description of the Random Forest development are provided at

https://www.genecascade.org/downloads/MutationTaster2021/SupplementaryData/.
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To avoid overfitting, we performed 3-fold cross-validations for each of our five models to select the
best parameters for the number of trees in the Random Forest and the best criterion for
determining the optimal split at each node. For this purpose, we randomly extracted 25% of our
training data to withhold for the final performance test, while ensuring that the extracted samples
followed the same distribution of positive and negative samples as present in the entire dataset.
We trained the classifier on the remaining variants. The models were trained within a grid search,
with possible hyperparameters set so that the number of trees within the Random Forest was
either 100, 200, or 300 and the criterion for splits could be either the gini index or entropy. Three
validation cycles were performed for each model (see Supplementary Table S4 for the
characteristics of the chosen models).

We additionally decided to not only select for models with a high predictive performance, but also
for run-time performance, i.e. for small models. Therefore, we opted to pick the models with only
100 trees for simple_aae and without aae. This decision resulted in a marginal decrease of
balanced accuracy of 0.12% (simple_aae) and 0.05% (without aae) compared to the 'perfect
models', whilst leading to a size reduction of 67.1% (simple_aae) and 68.0% (without_aae), giving
us an equivalent boost in classification speed. Final performance was then calculated on the test
data set (see Supplementary Table S2). The classification uses the weighted prediction of the
result leaf of each Random Forest tree, i.e. the fraction of deleterious cases vs. all cases for leaves
predicting deleteriousness. Please note that most leaves give a binary result (i.e. all cases left are
either benign or deleterious). The trees are available on our website.

We were thus able to improve the accuracy in all classification models, with a drastic increase in
the simple_aae model (MutationTaster2 88.6%, MutationTaster2021 95.8%) and substantial
changes in the without_aae model from 92.2% to 97.0% and in the complex_aae model from
90.7% to 93.3% (see Supplementary Table S3 for MutationTaster2's performance).

IMPLEMENTATION

Data are stored in a PostgreSQL database. MutationTaster2021 is programmed in Perl and runs
under mod_perl in an Apache web server. All user interfaces are written in HTML (with JavaScript
and AJAX functions) and are developed for the Firefox browser under Linux, Mac OS, and
Microsoft Windows and are regularly tested with Google Chrome, Safari and Microsoft Edge. We
employ TORQUE (version 4.2) as job scheduling software. External tools used by
MutationTaster2021 (MaxEntScan(12), bl2seq(11), polyadq(13)) run on a RAM disk to increase
speed.

The Random Forests were trained in Python 3.6.12 using scikit-learn 0.23.2 and numpy 1.17.3,
data preprocessing was done using pandas 1.1.5. Plots (downloadable from our website) were
created using matplotlib 3.2.2. We used a Perl script to transform the Random Forest models into
Perl data structures which can be accessed by the MutationTaster2021 software.
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