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1 Pathway Analysis Methods

Pathway analysis methods can be categorized into three classes. The earliest approaches use Over-
Representation Analysis (ORA) [1–6] that identify the pathways in which the DE genes are over- or
under-represented. Functional Class Scoring (FCS) approaches [7–11] have been developed to address
some of the issues raised by ORA approaches. The main improvement of FCS is based on the observation
that small but coordinated changes in expression of functionally related genes can have significant impact
on pathways. However, both ORA and FCS still ignore the direction and type of the signals between
genes, the positions and roles of the genes on each pathway, as well as all the other information captured
by the topology of the pathway. Topology-based (TB) approaches [12–19] which fully exploit all the
knowledge about how gene interact as described by pathways, have been developed more recently.

Our website implements eight pathway analysis methods. They can be categorized into the above three
categories: i) Over-representation analysis; ii) Functional Class Scoring: Gene set enrichment analysis
(GSEA), Gene set analysis (GSA), Fast Gene Set Enrichment Analysis (FGSEA), Pathway analysis with
down-weighting overlapping genes (PADOG), Kolmogorov-Smirnov (KS) test, and Wilcoxon (Wilcox)
test; and iii) Topology-based: Impact Analysis. The detail about these methods are described in the
following subsections.

1.1 Over-representation analysis (ORA)

Over-representation analysis (ORA) [20] is a method that tests whether the number of differentially
expressed genes are over-represented in a gene set. The null hypothesis is that genes in the uploaded
list of differentially expressed (DE) genes are sampled from the same general population as genes from
the reference set, i.e. the probability of observing a DE gene from a particular gene set GS is the
same as observing at other genes in the reference list. The alternative hypothesis is that the differentially
expressed genes are over- or under-represented in the gene set. ORA uses hypergeometric test to calculate
the p-value that represents how likely one can observes that many DE gene in the gene set just by chance.

1.2 Gene set enrichment analysis (GSEA)

The null hypothesis of GSEA [7, 21] is that “the rank ordering of genes in a given comparison is random
with regard to the diagnostic categorization of the samples”. The alternative hypothesis is that “the rank
ordering of the pathway members is associated with the specific diagnostic criteria used to categorize the
groups of affected individuals” [21].

Denote N as the total number of genes, GSi as the ith gene set, ni as the number of genes in the
ithgeneset, (z1, z2, . . . , zni

) as the t-statistic of genes in the ith gene set. For gene set GSi, GSEA computes
a score S(GSi) which essentially equals to a signed version of the Kolmogorov-Smirnov statistic between
the values zj (j ∈ GSi) and their complement. The samples then are permuted many times to build the
empirical null distribution of the score for each gene set. The significance of the ith gene set is determined
by the fraction of the distribution that is more extreme than the observed S(GSi).

1.3 Gene set analysis (GSA)

GSA [8] differs from GSEA mainly in two ways: the summary statistic and the re-standardization of gene
set scores based on row randomization. First, the score of the gene set is the maxmean statistic:

Smax(GSi) = max(

∑
z

(+)
j

ni
,

∑
z

(−)
j

ni
) (1)

where the (+) and (-) signs identify the positive and negative t-scores, respectively, and ni is the number of
genes in the gene set. Second, GSA re-standardizes the gene set scores by taking into account scores from
sets formed by random selection of genes. GSA then permutes the samples to compute the significance
of the standardized gene set scores.
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1.4 Fast Gene Set Enrichment Analysis (FGSEA)

Fast Gene Set Enrichment Analysis (FGSEA) [22, 23] has the same null and alternative hypotheses as
GSEA. FGSEA differs from GSEA in the idea of reusing sampling for different query gene-sets. Instead
of generating n independent random gene sets for each of M input pathways (total of n ∗M), FGSEA
will generate only n random gene sets of size K. K is equal to the size of the biggest pathway. Let gi
be an ith random gene set of size K. From that gene set we can generate gene sets for all the query
pathways Pj by using its prefix: gi,j = gi[1..Kj ], where Kj is the size of pathway Pj . The next step is to
calculate the enrichment scores for all gene sets gi,j . Instead of calculating Enrichment Scores separately
for each gene set, FGSEA will calculate simultaneously scores for all gi,j for a fixed i.

Another improvement of FGSEA is that given a gene set sample gi of the size K, the Enrichment Score
values for all the prefixes gi,1..j can be calculated in an efficient manner using a square root heuristic.
Briefly, a variant of an enrichment curve is considered: the genes are enumerated starting from the most
up-regulated to the most down-regulated, with the curve going to the right if the gene is not present in
the pathway, and the curve goes upward if the gene is present in the pathway.

With these two improvements, the time complexity of the calculating P-values for the set of M
pathways is O(n(K

√
K+M)), which gives around O(

√
K log(K)) speed up compared to a naive approach.

This allows FGSEA to perform analysis with much higher number of permutation, which leads to the
ability to estimate lower value of p.

1.5 Pathway analysis with down-weighting overlapping genes (PADOG)

The null hypothesis of Pathway analysis with down-weighting overlapping genes (PADOG) [10, 24] is that
the mean of the (weighted) absolute differences between the phenotypes for the genes on a given pathway
is zero. The alternative hypothesis is that this mean is different from zero. An alternative formulation
is that the null hypothesis states that no gene on the pathway is a DEG, with the alternative stating
that there is at least a gene that is a differentially expressed gene (DEG) on the given pathway. This
formulation of the null hypothesis belongs to the self-contained category of null hypotheses according
to [25] and in the second type of null hypotheses according to [26]. The statistic for the gene set GSi is
as follows:

S(GSi) =
1

ni

ni∑
j=1

|T (gj)| · w(gj) (2)

where ni is the number of genes in the gene set, gj (j ∈ [1..ni]) are the genes in the gene sets, T (gj) is
the moderate t-score of the gene gj , w(gj) is the weight for gene gj . A gene is weighted less if it appears
in more gene sets. The score is then standardized based on row randomization. PADOG then permutes
the samples to compute the significance of the standardized gene set scores.

1.6 Kolmogorov-Smirnov (KS) test

Kolmogorov-Smirnov (KS) [27] test compares two empirical distributions to determine whether they differ
significantly. It is a non-parametric test that does not make any assumptions about the distributions of
the given data sets. In the context of pathway analysis, the two empirical distributions are the scores
of the DE genes inside (denoted as DE-hit) and outside (denoted as DE-miss) a pathway. The null
hypothesis here is that there is no association between DE genes and the given pathway, and therefore,
there is no significant difference between the two empirical distributions of DE-hit and DE-miss. The
alternative hypothesis is that there is a difference between the two empirical distribution of DE-hit and
DE-miss.

1.7 Wilcoxon test

Wilcoxon (Wilcox) test [28] is a non-parametric statistical test generally used to determine whether or
not there is a significant difference in the medians of two given populations. In the context of pathway
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Figure S1: Input types in the CPA websites. Supported input include: 1) a list of differentially expressed genes, 2) a list of genes
and their fold changes, and 3) a full expression matrix.

analysis, Wilcox test can be used to compare the ranks or p values (derived from a statistical test, such
as a t-test) of the DE genes inside and outside a pathway. Wilcox takes the list of DE genes, their fold
changes, and a list of genes of a given pathway as input. The null hypothesis here is there is no significant
difference between the statistics medians of the DE genes inside and outside a pathway. The alternative
hypothesis is that the statistics median of DE genes inside a pathway is different from that of DE genes
outside that pathway.

1.8 Impact analysis

Impact analysis [13] performs two simultaneous tests: one is focused on the number of differentially
expressed genes (DEGs) that fall on a given pathway, while the other one focuses on the amount of
perturbation accumulation observed on a pathway. The first p-value aims to characterize the enrichment
of the pathway in DEGs. The null hypothesis for this test is that the proportion of DEGs on the pathway
is less than or equal to the overall proportion of DEGs. The alternative hypothesis is that the proportion
of DEGs on the pathway is higher than the overall proportion of DEGs (one-tail test for enrichment).
The second test is concerned with the location, magnitude and sign of DEGs on the given pathway. The
null hypothesis is that the DEGs appear at random positions in the pathway and that they have random
differential expression. The alternative hypothesis is that these DEGs are not randomly distributed on
the pathway and their direction of change is somewhat coherent with the direction of change of upstream
genes and the previously known type of relations between genes. The null distribution of the overall
pathway perturbation accumulation is obtained by randomly permuting the DEG at different locations
in the pathway graph. The two types of evidences captured in the form of p-values (enrichment and
topological) are then combined using Fisher’s method.

2 CPA Interface

The CPA website supports three different types of input: a gene list, a gene list and their fold changes, or a
gene expression matrix (Figure S1). The GUI interfaces for different input types are shown in Figures S2-
S4. Figure S5 shows the GUI interface of choosing samples for each group (control vs. condition).
Figure S6 shows the parameter setting for ORA. Figure S7 show the drop-down box for selecting the
database for visualization.
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Figure S2: The interface that allows users to input a list of differentially expressed genes.

Figure S3: The interface that allows users to input a list of genes and their fold changes.
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Figure S4: The interface that allows users to input a gene expression matrix.

Figure S5: Interface for choosing samples of each sample group (controls vs. condition).
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Figure S6: Gene filtering options for ORA method.

Figure S7: Database seletion for pathway visualization. If a database is selected, the graph will only show pathways that belong
to that database.
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