
Supplementary methods 
 

I. Morbidostat experiment conditions 
 

1. MORBIDOSTAT RUN CEC-2 
Parental strain: Escherichia coli BW25113.  
MIC for CIP in parental strain: 0.016 mg/L 
Media without drug (Feed Bottle 1): MHB 
Media with drug (Feed Bottle 2): Step 1 (24hrs) – MHB with CIP 0.16 mg/L (10xMIC); Step 2 (44hrs) – MHB 
with CIP 0.48 mg/L (30xMIC);  Step 3 (51hrs) – MHB with CIP 2.4 mg/L (150xMIC). 
Dilution factor: 20% (4 mL added to 20 mL at each dilution cycle) 
OD thresholds: LT = 0.15; DT= 0.30 
Dilution cycle: 15 min at OD>LT; 60 min at OD≤LT 
Sampling: 10 mL samples taken at time points indicated on the Supplementary Figure S2 
 

2. MORBIDOSTAT RUN CEC-4 
Parental strain: Escherichia coli BW25113.  
MIC for CIP in parental strain: 0.016 mg/L 
Media without drug (Feed Bottle 1): MHB, 2% DMSO 
Media with drug (Feed Bottle 2): Step 1 (47hrs) – MHB/2% DMSO with CIP 0.01 mg/L (0.625xMIC); Step 2 
(7hrs) – MHB/2% DMSO with CIP 0.02 mg/L (1.25xMIC); Step 3 (39hrs) – MHB/2% DMSO with CIP 0.08 mg/L 
(5xMIC); Step 4 (24hrs) – MHB/2% DMSO with CIP 0.32 mg/L (20xMIC); Step 5 (26hrs) – MHB/2% DMSO 
with CIP 1.28 mg/L (80xMIC);  
Dilution factor: 20% (4 mL added to 20 mL at each dilution cycle) 
OD thresholds: LT = 0.15; DT= 0.30 
Dilution cycle: 15 min at OD>LT; 60 min at OD≤LT 
Sampling: 10 mL samples taken at time points indicated on the Supplementary Figure S3 
 
3. MORBIDOSTAT RUN CAB-1 
Parental strain: Acinetobacter baumannii ATCC17978.  
MIC for CIP in parental strain: 0.156 mg/L 
Media without drug (Feed Bottle 1): MHB, 2% DMSO 
Media with drug (Feed Bottle 2): Step 1 (7 hrs) – MHB/2% DMSO with CIP 0.195 mg/L (1.25xMIC); Step 2 
(43hrs) – MHB/2% DMSO with CIP 0.78 mg/L (5xMIC); Step 3 (20hrs) – MHB/2% DMSO with CIP 1.56 mg/L 
(10xMIC); Step 4 (23hrs) – MHB/2% DMSO with CIP 6.24 mg/L (40xMIC); 
Dilution factor: 20% (4 mL added to 20 mL at each dilution cycle) 
OD thresholds: LT = 0.15; DT= 0.30  
Dilution cycle: 15 min at OD>LT; 60 min at OD≤LT 
Sampling: 10 mL samples taken at time points indicated on the Supplementary Figure S4 
 
4. MORBIDOSTAT RUN PAC-1 
Parental strain: Pseudomonas aeruginosa ATCC27853  
MIC for CIP in parental strain: 0.16 mg/L 
Media without drug (Feed Bottle 1): MHB 
Media with drug (Feed Bottle 2): MHB with CIP. 



In the PAC-1 run we used a morbidostat modification allowed to set changes of dilution concentrations 
independently. 

CIP Concentration Time of concentration change, hours after the run start 
mg/L xMIC Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Reactor 6 
0.35 5 69 67 58 69 67 69 
0.525 7.5 0 2 11 - 2 - 
0.7 10 7 6 5 5 2 15 
1.4 20 4 14 7 11 14 4 
2.8 40 3 10 2 4 4 11 
3.5 50 16 - 16 10 10 - 

 
Dilution factor: 20% (4 mL added to 20 mL at each dilution cycle) 
OD thresholds: LT = 0.15; DT= 0.30  
Dilution cycle: 15 min at OD>LT; 60 min at OD≤LT 
Sampling: 10 mL samples taken at time points indicated on the Supplementary Figure S5 
 
5. MORBIDOSTAT RUN PAC-2 
Parental strain: Pseudomonas aeruginosa ATCC27853  
MIC for CIP in parental strain: 0.16 mg/L 
Media without drug (Feed Bottle 1): MHB 
Media with drug (Feed Bottle 2): MHB with CIP. 
In the PAC-2 run we used a morbidostat modification allowed to set changes of dilution concentrations 
independently. 

CIP Concentration Time of concentration change, hours after the run start 
mg/L xMIC Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Reactor 6 
0.8 5 29 58 21 56 22 43 
1.28 8 34 7 97 3 11 18 
1.92 12 33 27 6 34 65 7 
2.88 18 20 24 6 3 18 5 
4.32 27 2 2 2 10 2 36 
6.56 41 2 5 8 3 1 7 
8 50 21 18 1 32 22 25 

 
Dilution factor: 20% (4 mL added to 20 mL at each dilution cycle) 
OD thresholds: LT = 0.10; DT= 0.20  
Dilution cycle: 15 min at OD>LT; 60 min at OD≤LT 
Sampling: 10 mL samples taken at time points indicated on the Supplementary Figure S6 
 

 

II. Sequencing data analysis 
 
1. Software list 

All computations were made on CentOS v.7.6. 
 

• R v. 3.6.0 (https://www.r-project.org/) 
• Python 3.6.7 (https://www.python.org/) 



• FastQC v. 0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 1 
• Trimmomatic v. 0.36 (http://www.usadellab.org/cms/?page=trimmomatic) 2 
• BWA v. 0.7.13 (http://bio-bwa.sourceforge.net/) 3 
• Picard v. 2.2.1 (https://broadinstitute.github.io/picard/) 
• LoFreq v. 2.1.3.1 (https://csb5.github.io/lofreq/) 4 
• Samtools + bcftools v. 1.3 (http://www.htslib.org/) 3, 5 
• Genome analysis Toolkit (GATK) v. 3.5 (https://software.broadinstitute.org/gatk/) 6, 7 
• Qualimap v. 2.2 (http://qualimap.bioinfo.cipf.es/) 8 
• snpEff v. 4.3 (http://snpeff.sourceforge.net/) 9 
• breseq v. 0.33.2 (http://barricklab.org/breseq) 10 
• CNOGpro (R package, installation through CRAN) 11 
• Albacore v. 2.3.4 (https://community.nanoporetech.com/; Customer login required) 
• Prechop v. 0.2.4 (https://github.com/rrwick/Porechop) 
• MinionQC v. 1.3.0 (https://github.com/roblanf/minion_qc) 12 
• SPAdes v. 3.13.0 (http://cab.spbu.ru/software/spades/) 13 
• MUMmer v. 3.1 (http://mummer.sourceforge.net/) 14 
• iJump (https://github.com/sleyn/ijump) 

 
Custom scripts (available on GitHub): 

• timeline.py 
• CNOGpro.R 
• breseq_parser_confident.py 
• spread_gd_tsv.R 
• make_repeats.pl 

 
2. Reads quality control 

We accessed read quality with FastQC software 1. The Q-scores in all samples had a 
very good distribution across all positions in reads and we did not trim reads based on Q-
scores. The adapters were trimmed with Trimmomatic 2: 

 
java -jar trimmomatic-0.36.jar PE \ 
    -phred33 \ 
    [Input reads 1] \ 
    [Input reads 2] \ 
    [Trimmed output paired reads 1] \ 
    [Trimmed output single reads 1] \ 
    [Trimmed output paired reads 1] \ 
    [Trimmed output single reads 2] \ 
    ILLUMINACLIP:adapters.fasta:2:30:10 
    MINLEN:65 
 
The adapter sequences used for trimming were copied from the Illumina Adapter 

Sequences document for the corresponding library preparation kit. Additionally, we added 



overrepresented sequences to the adapters fasta file as we found that it improves read 
quality. These overrepresented sequences in most cases were adapters with barcodes. 
 

3. Population sequencing data analysis 

3.1. Align reads on reference 

Processed reads were aligned to a reference genome with BWA-MEM 15. First, we should 
create read group header that is required for Genome Analysis Toolkit (GATK) 6: 

 
read1=[trimmed paired reads 1] 
rgid=$(echo $read1) 
rgid=${rgid/_1_trimmed.fq.gz/}  # Leave only ID 
rg="@RG\\tID:$rgid\\tSM:S1\\tPL:illumina\\tLB:L001\\tPU:R1" 
 
Then run BWA-MEM itself: 
 
bwa mem \ 
    -t [Number of CPUs] \ 
    -M \       # Parameter used for Picard compatibility 
    -R "$rg" \ # Read group header 
    -Y \       # Write all split hits as soft clipped 
    [path to the reference fasta] \ 
    [Trimmed paired reads 1] \ 
    [Trimmed paired reads 2] > Sample.sam 
 
Sort SAM file, save it as BAM and create index with Picard tools 

(https://broadinstitute.github.io/picard/): 
 
java -jar ~/ngsbin/picard-tools-2.2.1/picard.jar SortSam \ 
    I=Sample.sam \ 
    O=Sample.bam \ 
    SO=coordinate \ 
    CREATE_INDEX=true 
 

3.2. Alignment recalibration 

Realign reads with LoFreq Vitebri algorithm 4. As reads positions could be changed, we 
repeat sorting on the output bam: 

 
lofreq viterbi \ 
    --ref [Path to the reference fasta] \ 
    --keepflags \ 
    -o Sample_v.bam \ 
    Sample.bam 
samtools sort -o Sample_i.bam Sample_v.bam 
samtools index -b Sample_i.bam 

 



We performed the recommended Base Quality Score Recalibration (BQSR) with GATK. 
However, as there is no database of know SNP for A. baumannii and E. coli are available. The 
official advise from GATK is to make a first round of calling first and choose the most trusted 
mutations. However, as we have a high coverage samples and most trusted mutations would 
be anyway with high frequency we decided to skip it and make BQSR with the empty SNP 
database: 

java -jar ~/ngsbin/GATK-3.5/GenomeAnalysisTK.jar \ 
    -T BaseRecalibrator \ 
    -R Path to the reference fasta] \ 
    -I Sample_i.bam \ 
    -knownSites known.vcf \ 
    -o Sample_re.bqsr.grp 
 
java -jar ~/ngsbin/GATK-3.5/GenomeAnalysisTK.jar \ 
    -T PrintReads \ 
    -R [Path to the reference fasta] \ 
    -I Sample_i.bam \ 
    -BQSR Sample_re.bqsr.grp \ 
    -o Sample_r_bqsr.bam 

 
To assess alignment quality we used Qualimap 8: 
 
qualimap bamqc \ 
    -bam Sample_r_bqsr.bam \ 
    -outfile BamQC.pdf 

 
3.3. SNP and indel variant calling 

The variant calling of SNP and indels was performed with LoFreq: 
 
lofreq call-parallel \ 
    --pp-threads [Number of CPUs] \ 
    --call-indels \ 
    -f [Path to the reference fasta] \ 
    -o variants.lofreq.vcf \ 
    Sample_r_bqsr.bam 

 
3.4. IS elements rearrangement 

• The search of mobile elements rearrangement was done with iJump 
(https://github.com/sleyn/ijump) – the software that we developed to search for IS 
elements rearrangements in a population sequencing data. In general algorithm of iJump is 
following: 

 
1. Find soft-clipped reads near boundaries of mobile elements. 
2. Extract unaligned part of reads. 
3. BLAST unaligned parts against the reference. 



4. Find best hits with >90% identity to the reference with unique highest bitscore. If two or 
more hits share the same bit score - the junction considered as ambiguous and skipped. 
Usually this is happening because aligner maps reads to several copies of mobile element. 

5. Assess frequency of insertion by a formula:  
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where: 
Rl – a number of reads that support junction to the target on the "left" side 
of mobile element. 
Rr – a number of reads that support junction to the target on the "right" side 
of mobile element. 
Dt – average depth of coverage of the target region. 
Bmin – a threshold for the minimum length for unaligned parts of the reads 
used in the BLAST step. In algorithm we used 10nt. 
Arlen – an average read length; 
mmatch – a minimum length of the read part that could be aligned to 
reference. The mmatch parameter is accessed from the data as a minimum 
of longest clipped part of the read (e.g. for read in the SAM file with CIGAR 
string 10S120M30S mmatch is 30). 

 
Before using iJump we made a BLAST search of reference genomes against ISFinder 

database 16. The output HTML files were processed with the isfinder_parse.py script that 
comes with the iJump. 

 
python3 isfinder_parse.py \ 
    -i [ISFinder BLAST HTML page] 
 
The script filters BLAST output and creates a table of IS elements boundaries that is used 

by iJump. The iJump is running with the following command: 
 
 python3 isjump.py \ 
    -a [Alignment BAM of SAM file] \ 
    -r [Reference FNA file with nucleotide FASTA] \ 
    -g [Reference GFF file with annotations] 
    -i [IS coordinates] 
 
Detailed description of iJump usage and input data formats could be on the GitHub page 

(https://github.com/sleyn/ijump). 
 

3.5. Variant annotation and mutational dynamics analysis 

To annotate variant calling results we used snpEff 9 and custom scripts. All VCF files from 
LoFreq output were copied to one directory and merged into one VCF file using bcftools: 

 



for file in *.vcf 
do 
    gz=${file/.vcf/.gz} 
    bgzip -c $file > $gz 
    tabix -p vcf $gz 
done 
 
bcftools merge \ 
    -m none \ 
    -o merged.vcf \ 
    *.gz 
snpEff was applied on the merged file: 
 
java -jar ~/ngsbin/snpEff/snpEff.jar \ 
    -ud 100 \ 
    -no-downstream \ 
    -no-upstream \ 
    -v [database for the selected reference genome] \ 
    merged.vcf > ann.vcf 
 
Results of the LoFreq variant calling were combined into one comparative table using 

custom timeline.py script. 
 
python3 timeline.py \ 
    -g [Reference GFF file with annotations] \ 
    -a ann.vcf \ 
    -r [File with repeats (see below)] \ 
    -v [Path to the directory with VCF files] \ 
    -o summary_table.txt 
 
Additionally, to manual curation of the variant list we mark two cases of suspicious 

variants: 
1. Variants in the potential repetitive regions where mapped reads could be attributed 

to the wrong copy of the region by error. 
To do this we followed instructions from MUMmer 14 manual to find repeats in 

the reference genome: 
 
prefix=[Prefix of the output files] 
 
nucmer \ 
     -p $prefix \ 
     -nosimplify \ 
     --maxmatch \ 
     [Reference FNA file] \ 
     [Reference FNA file] 
show-coords \ 



    -clrT \ 
    -I 90 \ 
    -L 65 \ 
    $prefix".delta" > \ 
    $prefix".aln" 
 
make_repeats.pl $prefix 
 
This procedure will create file with potential repeated regions in the genome with 

identity 90% or more and length at least 65nt. 
 

2. Variants that have stable less than 100% frequency in the population. It is another 
sign that alignment software has troubles with this region. 

To test uniformity of frequencies of a variant across samples for each reactor we 
preform chi-squared test for uniform distribution. This test id done automatically 
with the timeline.py script. 

 
Results of the iJump IS element rearrangement calling were combined to a comparative 

table using combine_results.py script from the iJump package. 
 
python3 combine_results.py \ 
    -d [Path to the directory with iJump report files] 
 

4. Clonal sequencing data analysis 

4.1. Variant calling 

We used the breseq software 10 to call variants in clonal data: 
 
breseq \ 
    -j [number of CPUs] \ 
    -n [Clone ID] \ 
    -r [Reference GBK file] \ 
    --require-match-length 40 \ 
    [Trimmed paired reads 1] \ 
    [Trimmed paired reads 2] 
 
The Copy Number Variation analysis was done using CNOGpro package for the R 

programming language. The CNOGpro package uses GBK files but it is limited for using files 
with one contig only. To use CNOGpro it is necessary to split multiple contigs GBK file to 
the separate files for each contig. For each contig the hitsfile containing coordiantes of 
mapped reads should be generated (for details see CNOGpro manual): 

 
# in breseq data directory for each contig: 
export CONTIG=[Contig name] 
samtools view reference.bam | \ 
    perl -lane \ 



        'print "$F[2]\t$F[3]" \ 
        if $F[2] =~ m/$ENV{CONTIG}/' \ 
    > out.hits 

 
CNOGpro was wrapped by us into an R script. Script filters out IS elements and outputs 

only CDS: 
 
Rscript --vanilla CNOGpro.R \ 
    [Reference GBK file with the selected contig] \ 
    [Contig name] \ 
    [iJump IS elements coordinates table to filter out 

them] \ 
    [Clone ID used for output file name] 

 
4.2. Mutational data comparison 

To collect breseq results in the table format we used custom script that makes TSV table 
from the annotated GD files ([breseq work directory]/output/evidence/annotated.gd): 

 
python3 breseq_parser_confident.py \ 
    -g [directory with annotated gd files] \ 
    -o [output file] 

 

To make a comparison table for variants found in the clonal sequencing data we used 
gdtools with a custom script for reformatting the gdtools output: 

 
gdtools ANNOTATE \ 
    -r [Reference GBK file] \ 
    -o [Output file] \ 
    -f TSV \    # TSV format 
    [Directory with GD files]/*.gd 
 
Rscript --vanilla spread_gd_tsv.R \ 
    [gdtools output file] \ 
    [Output table] 

 
To make a comparison table for copy number variations found with CNOGpro we used 

a custom script: 
 
Rscript --vanilla Reshape_cnv.R \ 
    [Directory with the CNOGpro outputs] \ 
    [Output table] \ 
    [Minimum difference from 1 to show gene in the output. 

We used 0.3] 
 

5. Novel assembly of Acenitobacter baumannii ATCC 17978 genome 



Initial variant calling against public reference revealed high number of variants in 
unevolved culture of Acinetobacter baumannii ATCC 19978 (number of variants with 
frequency >85%: 16 variants against GCA_001593425.2, 98.46% mapped reads; 87 variants 
against GCA_000015425.1, 98.97% mapped reads). To improve variant calling we decided to 
make a hybrid assembly with Oxford Nanopore long reads. 

 
One clone of unevolved Acinetobacter baumannii ATCC 19978 was sequences with ONT 

MinION sequencer using Nanopore Rapid Barcoding gDNA Sequencing kit (SQK-RBK004). 
Raw sequencing data QC was performed with MinionQC. 

 
Reads were demultiplexed with Albacore basecaller (ONT community site): 
read_fast5_basecaller.py \ 
    -i [Path to the FAST5 files directory] \ 
    -t [Number of CPUs] \ 
    -s [Path to the directory for output FASTQ file] \ 
    -f FLO-MIN106 \ 
    -k SQK-RBK004 \ 
    -r \ 
    -o fastq \ 
    -q 0 
 
As in the library all barcoded samples were from the same organism to increase 

coverage, we decided to make second round of demultiplexing on unclassified reads with 
Porechop (https://github.com/rrwick/Porechop): 

 
porechop \ 
    -i [Path to the unclassified/ folder] \ 
    -b Porechop_barcodes/ \ 
    --threads [Number of CPUs] \ 
    --untrimmed \ 
    --discard_middle 
 
Adapters from the reads demultiplexed by Albacore were trimmed by Porechop: 
 
porechop \ 
    -i [FASTQ file] \ 
    -o [Output trimmed FASTQ file] \ 
    --discard_middle \ 
    --threads [Number of CPUs] 
 
Both reads demultiplexed by Albacore and Porechop were combined by simple cat 

command.  The hybrid assembly of Acinetobacter baumannii ATCC 19978 genome was 
performed using SPAdes assembler 13: 

 
spades.py \ 
    -k 21,33,55,77 \ 



    --careful \ 
    --nanopore [Nanopore fasta files] \ 
    [Trimmed Illumina paired reads 1] \ 
    [Trimmed Illumina paired reads 2] 
 
Assembled genome was annotated by RASTtk pipeline on the corresponding web 

server (https://rast.nmpdr.org/) 17. 
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