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Supplementary figure 1. Simple somatic mutations and structural variant counts of NPC and
other human cancers. Black dots: NPC clinical samples; Blue dots: NPC cell lines and PDXs.



Simple somatic mutations and structural variant counts of other human cancers were reported by
Campbell et al. (1). The dataset is available in:
https://www.biorxiv.org/content/10.1101/162784v1.supplementary-material,
(doi:https://doi.org/10.1101/162784).



https://www.biorxiv.org/content/10.1101/162784v1.supplementary-material

Significantly mutated non-coding variants chr2:10097565C>T
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Supplementary figure 2. Comparison between NFKB1 binding site motif of the wild-type
and mutant sequences at the non-coding variant locus. Red; significant motif match (q < 0.05).

The NFKBL1 binding site motif is available in: http://jaspar.genereg.net/matrix/MA0105.1/.



http://jaspar.genereg.net/matrix/MA0105.1/
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Supplementary figure 3. Global chromosomal gains and losses in 70 NPC tumors. Global
chromosomal gains (shown in red) and losses (shown in blue) across 70 NPC genomes showing
recurrent arm-level CNV events. Percent genome altered (PGA) of each tumor is also indicated.
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Supplementary figure 4. Somatic alterations in PI3K and RTK signaling pathways. (A)
Somatic gene aberrations altering the PI3K and RTK signaling pathways and LMP1 expression in
NPC. (B) The correlation of somatic gene alterations of the PTEN, PIK3CA, PIK3R1, AKT3, TSC1,
TSC2, STK11 genes involved in PI3K signaling pathway and LMP1 expression was analyzed by
two-sided Wilcoxon signed-rank test. Mutually exclusive relationship between LMP1 expression



and somatic aberrations altering the PI3K signaling pathway is shown (p = 0.012). Boxplot of the
PI3K-altered (n=22) and PI3K-wild type (n=38) NPC cases is defined as follows: centre upper
whisker = min(max(x), Q_3 + 1.5 * IQR), lower whisker = max(min(x), Q_1 — 1.5 * IQR); where
IQR =Q_3-Q_1, the bounds of the box. (C) Correlation of these somatic aberrations altered PI3K
signaling pathway and patients’ overall and disease-specific survivals (Two-sided Log-rank test
p=0.45 and p=0.097 respectively). PI3K-altered (Positive: n=22) and PI3K-wild type (Negative:
n=38) NPC cases were included in the analysis.
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Supplementary figure 5. Structural alterations of CD274/PDL1 in 2 NPC cases. (A) IGV
alignment colored by insert size and pair orientation demonstrating the complex rearrangement
involving CD274/PDL1 in case NPC24T. Panel two shows the putative impact of this complex
rearrangement deconvulted by ARC-SV [https://doi.org/10.1101/200170]. (B) IGV alignment
demonstrating partial duplication of the CD273/PDL1 gene in NPC57T. Panel two shows a cartoon
depiction of the expected resulting gene structure.
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Supplementary figure 6. Loss of MHC-class | and MHC-class 11 expression are demonstrated
in NPC cases with somatic alterations of NLRC5 and CIITA respectively. (A) In a NPC case
with NLRC translocation (NPC31T), loss of MHC-class | expression was shown. (B) Reduced
MHC-class 1l expression was detected in NPC59T, a NPC case with CIITA translocation.
Expression of MHC-class I (A) and MHC-class Il (B) was shown in two NPC cases with wild type
NLRC5 and CIITA genes (NPC53T and NPC62T). Each tumor was subjected to IHC staining twice
and similar results were found. Representative images of MHC-class | and MHC-class 1l
expression in the NPC cases with wild type or somatic alterations of NLRC5 and CIITA genes are
illustrated. Replication n=2 independent experiments. Scale bar: 20um.
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Supplementary figure 7. BNLF2a and LMP1 transcripts in NPC xenografts and tumor
samples. In the upper panel, the partial EBV transcription profiles illustrating the expression of
BNLF2a in C666-1 and C15 (2). The RISH probe targeted regions (BNLF2a, LMP1, LMP1BS) in
EBV genome are indicated. Lower panels: representative images of RISH results of BNLF2a and
LMP1 in NPC tumors are illustrated. By RISH, specific signals of BNLF2a transcripts were shown



in the NPC xenografts (Xeno-47 and Xeno-32) and primary tumor NPC-51T using BNLF2a probe,
but not the LMP1 and LMP1BS probes targeted 5’region of exon3 and exon junctions of LMP1
gene respectively. In the LMP1 expressing NPC xenograft C15, signals for BNLF2a, LMP1,
LMP1BS probes were detected. Each tumor was subjected to RISH analysis twice and similar
results were found. Representative images of the three probes are shown. No signal of both three
probes were detected in a BNLF2a negative NPC tumor, NPC-30T. Scale Bar: 20um.
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Supplementary figure 8. Expression of TGFBR2 in NPC and immortalized nasopharyngeal
epithelial cells. (A) Loss of TGFBR2 protein expression is shown in a panel of EBV-positive NPC
cell lines (C666-1, NPC43, C17C) and PDXs (X666, X2117, C15, C17). Weak expression of
TGFBR2 was shown in a EBV-negative NPC cell line HK1. As control, expression of TGFBR2
in immortalized nasopharyngeal epithelial cells NP69, NP460, NPC550 and NP361 is indicated.
(B) TGFBR2 protein expression in the TGFBR2 transfected NPC43 cells was similar to that in the
immortalized normal NP cell lines (NP460, NP550, NP361 and NP69). The protein expression
data in these panels is representative of 3 independent experiments with similar results. Source



data are provided as a Source Data file. (C) The gating strategy for FACS sorting and analysis for
Figure 5F. For detecting and isolating the EBV-positive cells, the gating strategy is P1: SSC-A vs
FSC-A (for identifying cell population), P2: FSC-W vs FSC-H (for identifying single cell
population), P3: SSC-W vs SSC-H (for identifying cell population), and P4: SSC-A vs GFP-A (for
gating cells with high GFP signals).
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Supplementary figure 9. Somatic alteration of TP53 and double-strand DNA repair (DDR)
genes in NPC. (A) The presence of HR-signature is significantly associated with somatic
alterations of double-strand DNA repair (DDR) genes in NPC (n=63 tumors, two-sided Wilcoxon
signed-rank test p=0.016). Boxplot is defined as follows: centre upper whisker = min(max(x), Q_3
+ 1.5 * IQR), lower whisker = max(min(x), Q_1—1.5* IQR); where IQR=Q_3-Q_1, the bounds
of the box. Circos plots of 2 NPCs (NPC-24T and NPC-38T) with the highest SV counts and DDR
gene alterations are shown. (B) Somatic alterations of TP53 gene (n=8), but not other DDR genes
(n=7), correlated with poor disease-free survival in NPC patients (two-sided log-rank test
p=0.034). Wild type: n=38. No significant correlation of TP53 gene alterations with overall
survival was detected (two-sided log-rank test p=0.13). Source data are provided as a Source Data
file.
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Supplementary figure 10. Chromothripsis of chromosome 13 in NPC. Chromothripsis analysis
results using ShatterSeek [https://github.com/parklab/ShatterSeek] of chromosome 13 in NPC-
38T depicting a cluster of rearrangements in this area (upper panel) as well as characteristic highly
variable segmented copy number (CN) (middle panel). Lower panel indicate the details of structure
alterations.
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Supplementary figure 11. Somatic gene alterations disrupt cell cycle regulation in NPC.
Frequent somatic aberrations impairing cell cycle regulation were detected in NPC tumors.
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Supplementary figure 12. Somatic gene aberrations altered NOTCH pathways and

chromatin modification machinery in NPC. Somatic gene alterations in (A) NOTCH pathways

and (B) chromatin modification machinery were commonly detected in 70 NPC tumors.
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Supplementary figure 13. Somatic gene alterations of NOTCH1 and MAMLZ2 identified in NPC.

(A) LOF gene rearrangement and deletion of NOTCH1 and MAML2 and (B) missense mutations of
NOTCH1 identified in NPC tumors are shown.
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Supplementary figure 14. MTAP deletion is a therapeutic target of NPC. (A) Homozygous
deletion of MTAP are significant correlated with loss of MTAP expression in recurrent NPC
tumors (n=50). (Unpaired two tailed t-test, ****p<0.0001, mean values of the data are presented).
Immunohistochemistry staining was performed twice in the tumors. Source data are provided as a
Source Data file. (B) MTAP and CDKN2A co-deletions were identified in 2 of 12 NPC cases in a



public available whole-genome sequencing dataset (3). The black bars indicate the deletion regions
detected in two NPC tumors. (C) By IHC, increased expression of involucin and p53 were shown
in FIDAS-5 treated Xeno-76 tumors. Immunohistochemistry staining was performed twice in the
tumors and similar results were observed. Representative images of NPC tumors treated with
FIDAS-5 (n=8) or vehicle (n=8) are illustrated. Scale bar: 20um.



Supplementary Methods:

ATAC-Seq (Assay for Transposase-Accessible Chromatin using sequencing)

50K cells each of two NPC cell lines (C666-1, NPC43) and two immortalized
nasopharyngeal cell lines (NP460, NP69) were used for ATAC-seq library preparation as
described by Buenrostro et al. (4). Briefly, cells were lysed for 5 min followed by transposase
reaction and library amplification. Libraries were then size selected (240-360 bp) and sequenced
using 50 bp single reads. Reads were aligned to hg38 with bowtie2 (v2.0.5) using default
parameters (5). Aligned reads were then filtered by removing duplicated and mitochondrial reads
using samtools (v0.1.18). MACS2 (v 2.0.10) was then use to call open chromatin peaks using the
following parameters (6):
macs2 callpeak -t {input.bam} -g hs --keep-dup all -n {sample-name} -B --nomodel --SPMR -q
0.05 --outdir {OutputDir}

The union of peaks in all 4 cell lines was then used for downstream analysis of somatic variants.

Somatic variant calling and filtering

Somatic single nucleotide variants (SNV) and small insertions and deletions were detected
using MuTect (v1.1.4), MuTect2 (GATK v3.6-0), Strelka (v 1.0.14), and Varscan2 (v2.3.8). Indels
were then left aligned (GATK v3.8) and all somatic calls passing default filters for each caller
were then compared using bcftools isec (v 1.2-4) (7-10). Variants called by at least 2 callers were
then further filtered to remove calls in repeat regions with poor mapability and variants specific
only to PDX samples (11). To identify significantly mutated coding genes and non-coding
regulatory elements we used ActiveDriverWGS (v0.0.1) in combination with the following
parameters. For coding genes: i) above background mutation rate (FDR < 0.05); ii) greater than 3
non-synonymous mutations; iii) excluding notorious passenger genes (12). For non-coding
regions: i) above background mutation rate (FDR < 0.05); ii) within a previously annotated
regulatory element (Ensembl regulatory release 94); iii) within open chromatin regions (ATAC-

Seq described above).

The proportional contribution of each of the mutation signatures (COSMIC signatures v2)
contribution was estimated for each sample using the deconstructSigs (v1.8.0) R package (13-14).
The sum-squared error (SSE) of the inferred mutational profiles ranged from 0.03 - 0.15 with a
mean SSE of 0.06.



Structural variants (SV) were called using Manta (v1.2.2), DELLY (v 0.7.7) and
NovoBreak (v1.1.3) (15-17). SVs from individual callers were merged, annotated and illustrated
using MAVIS (v1.8.5) (18). SVs called by at least 2/3 callers were kept and then the following
filters were applied i) calls in repeat regions with poor mapability, ii) Identical Breakpoints called
in 2+ Normal samples iii) Breakpoints called in >5% of the entire cohort, indicating probably
artifacts iv) SVs in genes and loci recurrently called (> 2 times) only in PDX samples in order to

eliminate potential mouse sequence artifacts (11).

Copy number calling

Allele specific copy-number (CN) profiles were generated using Varscan2 (v2.3.6) and the R
(v3.3.0) package, Sequenza (v2.1.0) (10, 19). Significantly amplified and deleted regions were
detected using GISTIC2 (v2.0.23) (20). Gene specific copy number calls were generated by
overlapping absolute segments with a gene reference (gencode v26). If greater than diploid (2
copies) estimated sample ploidy as called by Sequenza was subtracted from the absolute copy
number for each gene to avoid over calling of amplifications. Calls were then made using the
following conditionals (in order): Genes with i) absolute value > 4: “amplified”; ii) 2 > absolute
value < 4: “gain”; iii) absolute value = 2: neutral iv) 2 > absolute value > 0: “heterozygous loss”;
v) absolute value = 0: “homozygous loss”. By copy number calling, the homozygous deletion of
MTAP has been validated in a WGS dataset from a cohort of 12 NPC samples deposited at the
Sequence Read Archive (SRA, https://submit.ncbi.nlm.nih.gov/subs/sra/) (3) (DOIL:
10.1093/carcin/bgy108). The accession codes of NPC and corresponding normal blood samples
are: SRR6431671, SRR6377819, SRR6431672, SRR6377820, SRR6431673, SRR6377821,
SRR6431674, SRR6377822, SRR6431667, SRR6377823, SRR6431670, SRR6377824,
SRR6431677, SRR6377825, SRR6431678, SRR6377826, SRR6431668, SRR6377827,
SRR6431669, SRR6377828, SRR6431675, SRR6377829, SRR6431676, SRR6377830.

Establishment of MTAP-deleted NPC cells and TGFBR2-knockout NP cells

MTAP-deleted C666-1 cells were established from the parental C666-1 by CRISPR-Cas9 knockout
system (Lipofectamine™ CRISPRMAX™ Cas9 Transfection Reagent, Invitrogen, USA) using


https://submit.ncbi.nlm.nih.gov/subs/sra/

guide RNA (5’-GCCTGGTAGTTGACCTTTGA-3") targeting exon 4 of MTAP gene. NPC460-
KO cells were established by TGFBR2 gene knockout in the telomerase-immortalized
nonmalignant human nasopharyngeal epithelial cell line NP460 using CRISPR-Cas9 system and
two guide RNAs (gRNA-1, 5’AGTGAGTCACTCGCGCGCA3> and gRNA-2,
5’ GAAGGAAAGTTCAGTTGCA3’) targeting exon 1 of the TGFBR2 gene. Both MTAP-deleted
C666-1 cells and NPC460-KO cells were validated by Sanger sequencing and immunoblotting of
MTAP and TGFBR2 protein expression, respectively. The NPC cell lines were maintained in

RPMI with 10% FBS and supplemented with 1% penicillin/streptomycin.
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