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Supplementary Note 1: Classical Doppler effect based on scalar optical fields 

In the classical Doppler velocimetry based on scalar optical fields, two light beams as cross-reference are usually 

used for illumination on a moving object, as shown in Supplementary Fig. 1a. For the convenience of analysis, we 

assume that the direction of observation is perpendicular to the motion direction. Firstly, we derive the field 

distribution of interference between two cross-reference light beams along the motion direction of a moving particle. 

Generally, the complex electric-field function of one light beam projecting in the motion direction can be written by 

   0
expE A r i t      k x ,                              (S1) 

where  0
A r  is the complex amplitude of electric-field as a function of the spatial position, and   is the angular 

frequency of light. k  is the wave vector. For the conventional plane wave, the magnitude of the wave vector is the 

wavenumber defined as 2k    with   being the wavelength, and its direction determines the propagation 

direction of light or Poynting vector p . Here the particle moves along the x  direction. 

As for one of the cross-reference light beams, this projected electric-field in the region of interference can be 

further written by 

   exp + cos
j j j j

E A r i t k x          ,                          (S2) 

where 1,  2j   represents the beam1 and beam2, respectively.  j
A r  is the real amplitude of electric-field, and 

j
  is the initial phase of light beams. x  is the position along the motion direction. 

j
  denotes the angle between 

the wave vector 
j

k  and the motion direction x . For simplicity, here we set 
1

2     for beam1, and 

2
2     for beam2, where   is a small angle ( sin  ) between the direction of incident light beams and the 

normal (observation) direction with respect to the trajectory of the moving particle. Thereby, the resulting interference 

fields between these two cross-reference light beams in Supplementary Fig. 1b can be written by 

     
2

1 2 1 2 0
2 1 cos2I E E E E A k x  



            ,                    (S3) 

where  2 1
2    , and the superscript ‘  ’ stands for complex conjugation. Note that here the complex 

amplitudes of two cross-reference light beams are approximated as 
1 2 0
A A A  . From Eq. (S3), the period of 

interference fringes can be deduced as 2Λ    indicated in Supplementary Fig. 1b. 

Actually, when a particle moves within one light beam at the velocity of v  along the x , it can scatter light 

into the detector. Because of normal detection with respect to the motion direction, the Doppler shift of the detected 

light is just induced by the interaction between the moving particle and the projecting field expressed by Eq. (S1). In 
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this case, the displacement x  can be replaced by = tx v , so from Eq. (S1), the frequency of the scatted light 

becomes     k v , and thus the Doppler shift is        k v . Note that this Doppler shift has a sign of 

plus or minus corresponding to Doppler blue or red shift, respectively, which is determined by the relative direction 

of velocity v  with respect to the wave vector k . 

Because of the ultra-high angular frequency   of light, it is difficult to directly detect the shifted frequency 

of the scattered light (  ), and the Doppler shift is usually indirectly extracted by the interference with a reference 

wave (e.g. two cross-reference light beams). Here, the local frequency   is removed by the beating of two cross-

reference light beams, leaving the relatively low frequency Doppler shift. When considering the synchronous 

interaction of the moving particle with two projecting fields of the cross-reference light beams ( 1j  and 2) given by 

Eq. (S2), substituting x  with x v t  , where v  v , the Doppler signal of the scattered light from interference 

fields given by Eq. (S3) can be written by 

   
2

, 2 1 cos 2I v t A k vt       ,                           (S4) 

where A  denotes the complex amplitude of the scattered light into the detector from each of two cross-reference 

light beams. Thereby, by fast Fourier transform (FFT) for this Doppler signal, the classical linear Doppler shift can 

be easily extracted as /f kv   . 

It should be stressed that the case of classical Doppler velocimetry used for detection of the above translational 

or linear motion can also be extended to the rotational Doppler velocimetry when superposing two beams with 

orthogonally twisted components � , where �  represents the topological charge number in Supplementary Fig. 

1d. In this case, the conventional Poynting vector p  should be modified by adding an azimuthal component, i.e. 

r k   
0 0

p z�   in the cylindrical coordinate (
1

p  and 
2

p  for � ), giving the twisted Poynting vector with a 

skew angle kr  � , with respect to the wave vector k , where 
0

  is the unit vector along the azimuthal direction, 

0
z  is the unit vector along the wave vector (k ) direction, r  is the radial position away from the axis. Note that the 

linear motion can be linked to the rotational motion by a relationship of v r  . According to the Doppler signal 

given by Eq. (S4), linear Doppler shift is evolved into the rotational Doppler shift, i.e. /f kv     � . 

When taking the opposite velocity for the Doppler signal in Eq. (S4), the resulting Doppler signal becomes 

   
2

, 2 1 cos 2 +I v t A k vt       .                           (S5) 

Obviously, the classical Doppler effect based on scalar optical fields shows the symmetry of the Doppler 

intensity signal, regardless of the phase term  . This makes the directional ambiguity when detecting the moving 
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object with either linear or rotational motion by the corresponding linear or rotational Doppler effect. Hence, the one-

dimensional Doppler signals in Supplementary Fig. 1c and 1e do not carry any direction information of the moving 

object. Thus, the classical Doppler effect based on scalar optical fields can be regarded as scalar Doppler effect. 

 

Supplementary Figure 1. Classical Doppler effect based on scalar optical fields in the conventional Doppler velocimetry. a Two 

cross-reference light beams are used for detection of translational or rotational motion of a moving particle. 
1

k  and 
2

k  are wave 

vectors of two plane-phase beams. 
1

p  and 
2

p  are Poynting vectors of two twisted-phase beams. b Two plane-phase beams produce 

straight interference fringes for interaction with translational motion of the particle. c Doppler signal of the scattered light by the moving 

particle with translational motion in interference fields corresponding to (b). d Two twisted-phase beams produce rotational interference 

fringes for interaction with rotational motion of the particle. e Doppler signal of the scattered light by the moving particle with rotational 

motion in interference fields corresponding to (d). Note that the motion direction of the moving particle cannot be distinguished based 

on the one-dimensional Doppler signals in (c) and (e) that are direction ambiguous. 

Supplementary Note 2: Vectorial Doppler effect based on vectorial polarization fields (VPFs) 

The classical Doppler effect by scalar optical fields discussed above is not associated with the polarization degree of 

freedom. In this section, we take consideration of the polarization into the system of Doppler velocimetry. By the 

same way as the analysis of scalar Doppler effect above, firstly we present how to produce the vectorial polarization 

fields (VPFs) and then discuss how a moving object interacts with the VPFs, as illustrated in Supplementary Fig. 2a. 

As for one of two cross-reference light beams with orthogonal circular state of polarization (SoP), the polarized 

electric-fields of light projecting in the motion direction of the moving object can be expressed using Jones vector as 

follows 
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   
1

exp cos
j j j j

j

A r i k x
i

 


 
        

 
E ,                         (S6) 

where 1    and 1  describes the left-handed and right-handed circular SoP, respectively, and other parameters 

are the same as those in Eq. (S2). 

 

Supplementary Figure 2. Vectorial Doppler effect based on vectorial polarization fields (VPFs). a Two cross-reference light beams 

with orthogonal circular state of polarization (SoP) are used for detection of velocity vector or pseudovector (magnitude and direction) 

of a moving isotropic particle. 
1

k  and 
2

k  are wave vectors of two plane-phase beams. 
1

p  and 
2

p  are Poynting vectors of two 

twisted-phase beams. b Two plane-phase beams superpose into the VPFs along the x  direction for interaction with translational motion 

vector of the particle. c Doppler polarization signals (DPSs) of the scattered light by the moving particle with translational motion vector 

(opposite directions) in VPFs corresponding to (b). d Two twisted-phase beams superpose into the cylindrical VPFs for interaction with 

rotational motion vector of the particle. e DPSs of the scattered light by the moving particle with rotational motion vector (opposite 

directions) in cylindrical VPFs corresponding to (d). The motion direction of the moving isotropic particle can be clearly distinguished 

based on the two-dimensional DPSs in (c) and (e) of which the chirality is inversed when reversing the velocity vector. 

Along the motion direction of a moving object, these two cross-reference light beams can superpose into the 

VPFs in Supplementary Fig. 2b as follows 

         

 
 

 

1 2 1 1 2 2 2 1

1 2

0

1 1 1
exp cos exp cos exp

2

cos

sin

A r i k x A r i k x i
i i

kx
A r

kx

     
 

 

  

       
                        

      

 
   

    

E E E

,   (S7) 
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where the phase difference  2 1
2     determines the initial polarization orientation of VPFs, and the spatial 

functions with respect to real amplitudes are also approximated as 
1 2 0

/ 2A A A  , and 
1 2

     . Note that the 

phase term of  2 1
exp 2i      in Eq. (S7) can be disregarded when deriving the final expression, because it does 

not affect the polarization distribution of VPFs. Even though the synthesized VPFs (superposed field) shown in 

Supplementary Fig. 2b may not stably propagate over a long distance in free space because of not satisfying 

Maxwell's equations, it does not affect the analysis of general VPFs to realize determination of motion vector as a 

conceptual illustration of vectorial Doppler velocimetry. For these VPFs, the period of spatial polarization variation 

is also    2Λ= k    . Similar to Supplementary Fig. 1d, for the case of superposition of two twisted-phase 

light beams, kr  �  and x r , where   is the azimuthal position in the cylindrical coordinate, the general 

VPFs expressed in Eq. (S7) are simplified to the cylindrical VPFs as 

 
 

 
0

cos

sin
A r

 

  

 
   

   
E

�

�
,                               (S8) 

where 1    describes the cylindrical VPFs analogous to 
1,1

HE
�

 vector mode, whereas 1    denotes those 

analogous to 
1,1

EH
�

 vector mode, as shown in Supplementary Fig. 2d. Note that it features the spatial polarization 

orientation inversion between these two kinds of cylindrical VPFs ( = +1 and -1). 

In accordance with Supplementary Note 1, also considering a particle moving at the velocity of v  along the 

x  within the general VPFs given by Eq. (S7), as shown in Supplementary Fig. 2a. Here isotropic particle is 

considered. It will scatter the polarized light into the detector. The detected polarized light as two-dimensional 

Doppler polarization signal (DPS) can be written by 

 
 

 

cos
,

sin

k vt
v t A

k vt

 

  

 
   

    
E ,                              (S9) 

where A  is the real amplitude of the detected polarized light. If the moving particle reverses its velocity vector 

( v v ), the resulting DPS becomes 

 
 

 

cos
,

sin

k vt
v t A

k vt

 

  

 
    

   
E .                             (S10) 

One can clearly see    , ,v t v t E E . The DPS shows chirality inversion when reversing the motion direction 

of the particle within the VPFs, as shown in Supplementary Fig. 2c. 
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For a particle in rotational motion ( Ω ) within the cylindrical VPFs given by Eq. (S8), as shown in 

Supplementary Fig. 2d, the reflected/scattered DPS can be given by 

 
 

 

cos
,

sin

t
t A

t

 


  

 
   

    
E

�

�
.                             (S11) 

If the moving particle reverses its velocity vector (  Ω Ω ), the resulting DPS becomes 

 
 

 

cos
,

sin

t
t A

t

 


  

 
    

   
E

�

�
.                             (S12) 

One can also see    , ,t t  E E . The DPS also shows chirality inversion when reversing the motion 

direction of the rotating particle within cylindrical VPFs, as shown in Supplementary Fig. 2e. Apparently, the chiral 

DPS based on VPFs is a two-dimensional signal, carrying full information (magnitude and direction) of motion vector, 

belonging to the distinct feature of the vectorial Doppler effect. By using the FFT method and analyzing the relative 

phase difference (RPD) between the detected intensity signals after two polarizers, the magnitude of the velocity can 

be deduced and the motion direction can be determined based on the vectorial Doppler effect with spatially variant 

polarized light fields. By contrast, the direction of the motion vector is not achievable by the one-dimensional Doppler 

intensity signal from the classical scalar Doppler effect, as shown in Supplementary Fig. 1c and 1e. 

Supplementary Note 3: Influence of anisotropic particles on rotation measurement 

Remarkably, the above analyses for isotropic particles are based on the assumption that a particle without 

birefringence does not change the polarization of the reflected/scattered light. This assumption is not rigorous for the 

more general case of anisotropic particles. As for the interaction between the polarized light and the anisotropic 

particle, the SoP of the reflected/scattered light from a moving particle is dependent on the anisotropy of the particle 

such as its shape and birefringence, as well as the spin of the particle around its center of mass in this case. Therefore, 

the Jones matrix of a spinning anisotropic particle can be given as 

  0
, ( ) ( )

cos sin 0 cos sin

sin cos 0 sin cosi

t t t

t t m t t

t t n e t t


  

   

   

   

     
            

M R M R

,                     (S13) 

where ( )tR  is the rotation matrix,   denotes the spin speed of the anisotropic particle, m  and n  are the real 

scatter/reflection coefficients along the short (fast) and long (slow) axes of the anisotropic particle, respectively, as 

shown in Supplementary Fig. 2a,   is the optical phase retardation between these two polarization components. 
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When considering a moving anisotropic particle in both rotational motion and spinning motion (rotational 

velocity:  , spin speed:  ) within the cylindrical VPFs in Eq. (S8), as shown in Supplementary Fig. 3, the 

reflected/scattered light by the moving particle features the time-varying SoP (polarization oscillation). It can be 

understood that the moving particle modulates the polarization of the reflected/scattered light, which can be 

interpreted as DPS expressed as 

 
 

 
, ( , )

( ) cos( ) cos[2 ]

2 ( ) sin

cos
,

sin

( ) ( )

( ) sin) ([2 ])(

i i

i i

t
t A

t

t tnA

t

e e t

e e tt t

 

 


  



    

  



 

  

    

 
   

    

    



   
 
  


     

ME

�

�

� �

� �

,               (S14) 

where m n  , A  is the real amplitude of the reflected/scattered light. Especially, when 1   and 0  , it is 

simplified to the case of the isotropic particle. It is worth noting that for an isotropic particle, whether it spins or not, 

there is no influence on the rotation measurement. 

 

Supplementary Figure 3. Illustration of a moving anisotropic particle in both rotational motion and spinning motion (rotational 

velocity:  , spin speed:  ) within the cylindrical vectorial polarization fields (VPFs). 

Here we focus on the influence of anisotropy (  and  ) and spin ( ) of the moving particle on the rotation 

measurement, as shown in Supplementary Fig. 3. We introduce a method of monitoring the Stokes parameters of 

DPS reflected/scattered from the cylindrical VPFs for measurement. In general, the Stokes vectors of DPS expressed 

in Eq. (S14) can be given as 

22

0 x y
S E E  ,                                   (S15) 

22

1 x y
S E E  ,                                   (S16) 

2
2 cos

x y
S E E   ,                                (S17) 

3
2 sin

x y
S E E   ,                                (S18) 
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where 
x

E  and 
y

E  are the electric field components polarized along the x and y directions, respectively, given in 

Eq. (S14), and the phase difference   between 
x

E  and 
y

E  is 

 

 

 
 

1 1

1

1

ImIm
tan tan

Re Re

sin [cos( ) cos[2 ( )]]
tan

( cos ) cos( ) ( cos ) cos[2 ( )]

sin [ sin( ) sin[2 ( )]]
tan

( cos ) sin(

yx

x y

EE

E E

Ωt Θt Ωt

Ωt Θt Ωt

Ωt Θt Ωt

Ωt



   

      

    

   

 





  
    
     

     
  

        

    


  

� �

� �

� �

� ) ( cos ) sin[2 ( )]Θt Ωt   

 
 

     �

.             (S19) 

When substituting the 
x

E  and 
y

E  components of Eq. (S14) to Eqs. (S15)-(S18), the time-varying Stokes 

parameters can be simplified as 

2 2

2 2

0
1 ( 1)cos[2 2 ( )]

2

n A
S Θt Ωt          � ,                     (S20) 

 22 2

1
2 2

(1 2 cos ) cos 4 2 ( )

4 (1 2 cos ) cos2( ) 2( 1)cos2

Θt Ωn A
S

Ω Θt

t

t

   

   





     
  

      



 

�

�
,               (S21) 

 22 2

2
2 2

( 1 2 cos ) sin 4 2 ( )

4 (1 2 cos ) sin 2( ) 2( 1)sin 2

Θt t

t

Ωn A
S

Ω Θt

   

    





     



 
  

       

�

�
,               (S22) 

 2 2

3
sin sin 2 2S tn A Θt Ω        � ,                        (S23) 

where 2 2 2 2

0 1 2 3
S S S S   . From these equations, one can see that the Stokes parameters (S1, S2 and S3) are the 

functions of not only the targeted  , but also  ,   and  . Especially, for S1 and S2, there are three frequency 

components, 
1

2   � , 
2

2    and 
3

4 2      � . Obviously, the three parameters (  ,   and  ) 

related to the anisotropy and spin of the particle would affect the measurement of the rotational velocity. When 

analyzing the influence of these parameters on the rotation measurement, two cases could be discussed. One is the 

general case where the anisotropic parameters ( ,  ) of the particle are unknown, and the other is the special case 

with known anisotropy. 

1) For the first case with unknown anisotropy ( ,  ) of the particle, one cannot distinguish the frequency 

component caused by rotation only (
1

2   � ) among the three Fourier frequencies in S1 and S2 (
1

2   � , 

2
2    and 

3
4 2      � ). To possibly solve this problem, a feasible method can be considered simply by 

doubling the topological number ( 2� � ) of the cylindrical VPFs when illuminating the moving particle in the 

experiment. Because in this case, the frequency component caused by rotation only doubles its value 

(
1 1

2 4       � � ), which can be identified from the three Fourier frequencies (
1

 , 
2

  and 
3

 ). 
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Accordingly, the magnitude of the rotational velocity can be deduced from the identified frequency component 

(  1
/ 2   � ). Meanwhile, the direction of the rotational velocity can be determined through the RPD of the 

identified frequency component (
1

 ) between S1 and S2. Therefore, despite the unknown anisotropy of the particle, 

one can still extract the contribution of the rotation movement and measure the rotational velocity (magnitude and 

direction) of the anisotropic particle simply by switching the mode order of the cylindrical VPFs. Similarly, one can 

also identify the frequency component caused by spin only (
2

2   ). The magnitude of the spin speed can be 

deduced from the identified frequency component (
2
/ 2   ). The direction of the spin speed can be determined 

through the RPD of the identified frequency component (
2

 ) between S1 and S2. 

 

Supplementary Figure 4. Analyses of Stokes parameters (S1, S2) for determination of the moving (rotation, spin) particle with 

known anisotropy (e.g. 0.6  , = / 3  ) within the HE41-like VPF ( 3� ). a-d Rotational velocity: 40 Ω rad/s; spin speed: 

160 Θ rad/s. e-h Rotational velocity: 40Ω rad/s; spin speed of 160Θ rad/s. a, e Time-varying Stokes parameters S1 and S2. 

b, f The Fourier amplitude-frequency spectra of S1. c, g The Fourier amplitude-frequency spectra of S2. There are three frequency components 

( 2
i i
f     , i  1, 2, 3), which are distinguishable from their relative amplitudes. 

1
f  and 

2
f are only rotation- and spin-dependent, 

respectively. d, h The RPD spectra (difference of Fourier phase-frequency spectra between S1 and S2). The RPDs of all three frequency 

components reverse their signs under opposite rotational velocities and spin speeds. RP: relative power; RPD: relative phase difference; a.u.: 

arbitrary unit. 

2) For the second case with known anisotropy ( ,  ) of the particle, one can easily measure the rotational 

velocity (magnitude and direction) by distinguishing and analyzing the frequency component caused by rotation only 
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(
1

2 Ω  � ) in S1 and S2. The spin speed (magnitude and direction) can be also measured with distinguished 

frequency component caused by spin only (
2

2   ) in S1 and S2. Because in this case, different frequency 

components (
1

2   � , 
2

2    and 
3

4 2      � ) in the Fourier frequency spectra of S1 and S2 feature 

different relative amplitudes that can be easily distinguished, as expressed in Eqs. (S21) and (S22) and shown in 

Supplementary Fig. 4. However, there are some special cases of 1   and (2 1)n    ( 0,1,2...n  ), where the 

amplitudes of 
1

2   �  and 
2

2    become zero and the rotational velocity ( Ω ) cannot be distinguished 

from the spin speed (Θ ) of the moving particle, because the rotation and spin of the particle give the equivalent 

contribution to the only one Fourier frequency (
3

4 2      � ) in S1 and S2. Nevertheless, this problem could be 

also solved simply by shifting the laser wavelength in practical measurements so as to avoid these special phase 

retardations, because the phase retardation ( ) is usually wavelength-dependent for a specific anisotropic particle. 

If the wavelength-dependent anisotropy is not obvious, we can return to the first case to distinguish and measure the 

rotational velocity by doubling the mode order of the cylindrical VPFs. 

Remarkably, it is a two-step measurement for the first case with unknown anisotropy ( ,  ) of the particle by 

switching the mode order of the cylindrical VPFs, while a single-step measurement for the second case with known 

anisotropy ( ,  ) of the particle. 

In the practical measurement, the Stokes parameters (S0, S1 and S2) of DPS can be simultaneously obtained by 

two groups of polarizers and photodetectors, which are used to detect two paths of the divided DPS as follows, 

0 x y
+S I I ,                                    (S24) 

1 x yS I I  ,                                    (S25) 

2 45 45
S I I



 
� �

,                                  (S26) 

where 
x
I  and 

y
I  are the measured light intensity signals by two photodetectors when the first path of DPS passes 

through two polarizers with their optical axes along the x and y directions, respectively. 
45
I

�
 and 

45
I


�
 are the 

measured light intensity signals by another two photodetectors when the second path of DPS passes through another 

two polarizers with their optical axes along the 45° and -45° directions, respectively. 

Based on the above analyses, one can conclude that it is possible to distinguish the rotational motion and 

spinning motion of the anisotropic particle and determine the rotational velocity (magnitude and direction) and spin 

speed (magnitude and direction) by analyzing Stokes parameters, as briefly summarized in Supplementary Tab. 1. 
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Supplementary Table 1. A summary of determining the rotational velocity and spin speed (magnitude and direction) of a particle 

based on the time-varying Stokes parameters (S1 and S2). 

 

In addition to the analyses of Stokes parameters, we also study the moving anisotropic particle with only two 

polarizers and two photodetectors (similar method in the main text). When the DPS (  , ,t E ) in Eq. (S14) passes 

through the polarizer with the polarizing angle 
j

  (with respect to the x  axis), the obtained intensity signal with 

oscillation can be deduced as 

   

     

   

       

2

2 2 2 2

2 2

2 2

2

2 2 2 2

2 2

cos sin1 0
, , = , ,

sin cos0 0

1 1 2 cos cos2
4 8

1 2 cos cos2 2
8

1 cos2 1 cos2
4 4

j j

j

j j

j

j

j

I t t

n A n A
t

n A
t t

n A n A
t t t

 
 

 

     

  

 



  

 



    

  
        

     

     

      

E

�

�

�

,                 (S27) 

where j  = 1, 2 denotes polarizer 1 and 2, respectively. 

The detected intensity signal in Eq. (S27) has four frequency components, i.e. 
1

2   � , 
2

2   , 

3
4 2     �  and 

4
2 2     � . Note that 

1
  is caused by rotational motion only, while 

2
  by 

spinning motion only. The phases of three frequency components (
1

 , 
2

  and 
3

 ) are associated with the 

polarizing angle 
j

 . When using two polarizers with a polarizing angle difference 
2 1

2        , one can 

determine the sign of these frequency components (
1

 , 
2

  and 
3

 ) by analyzing their RPD between the two 

detected intensity signals (  1
, ,I t  ,  2

, ,I t  ) after two polarizers, which can be used to further determine the 

direction of the rotational motion and spinning motion. Following the above similar analyses (Stokes parameters) for 

the first case with unknown anisotropy ( ,  ) of the particle and second case with known anisotropy ( ,  ) of 
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the particle, one can also distinguish the rotation and spin of the anisotropic particle and measure the rotational 

velocity (magnitude and direction) and spin speed (magnitude and direction). 

According to the analyses above, it is shown that the moving anisotropic particle with rotational motion and 

spinning motion can be measured using the method of analyzing Stokes parameters or the method of two polarizers. 

By comparison, the method of two polarizers is simple with less components (polarizers and photodetectors). The 

four frequency components may bring a certain degree of disturbance when distinguishing the one caused by 

rotational motion only and the one by spinning motion only. In a sense, the method of using two polarizers can be 

regarded as a simplified version of the method of analyzing Stokes parameters. The latter one measuring Stokes 

parameters gives the complete information of state of polarization (full Poincaré sphere), as clearly listed in Eqs. 

(S15)-(S18). There are only three frequency components in S1 and S2, which make it relatively easier to distinguish 

the one caused by rotational motion only and the spinning motion only. In addition, for the case with unknown 

anisotropy of the particle, one might measure the anisotropic parameters ( ,  ) by amplitude ratios of different 

frequency components in S0-S3 based on comprehensive analyses of Stokes parameters in Eqs. (S15)-(S18). 

Supplementary Note 4: Experimental setup for the generation of VPFs 

 

Supplementary Figure 5. Experimental setup and the generation of cylindrical VPFs for the detection of motion vector using 

vectorial Doppler effect. a Experimental setup. A Sagnac interferometer configuration incorporating an SLM is used to generate VPFs. 

SMF: single-mode fiber; M: mirror; Pol.: polarizer; HWP: half-wave plate; BS: beam splitter; PBS: polarization beam splitter; SLM: 

spatial light modulator; QWP: quarter-wave plate; AP: aperture; DMD: digital micromirror device; L: lens; PD: photodetector. b-g 

Measured intensity and polarization distributions of TM01-like (b), HE21-like (c), EH21-like (d), HE41-like (e), EH41-like (f) and HE61-

like (g) cylindrical VPFs. 
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Supplementary Note 5: Additional measured results 

In the main text, we present the experimental results for detecting rotational velocities under opposite directions using 

the cylindrical VPF analogous to HE41 vector mode. As well known, this cylindrical VPF consists of light components 

with the same twisted-phase basis as the EH21 vector mode. The cylindrical VPF analogous to EH21 vector mode can 

be generated simply by exchanging the circular SoP between two twisted-phase components used for synthesizing 

HE41-like VPF. In the experiment, we also employ EH21-like VPF to detect the same angular velocities, as shown in 

Supplementary Fig. 6. Compared to the measured results using HE41-like VPF in Supplementary Fig. 3d and 3e, the 

measured two Doppler intensity signals using EH21-like VPF in Supplementary Fig. 6a and 6d just reverse the relative 

phase difference that is clearly shown in the relative phase spectra in Supplementary Fig. 6c and 6f. The full 

information (magnitude and direction) detection of motion vector is also achievable using EH21-like VPF. 

 

Supplementary Figure 6. Measured results for vectorial Doppler effect based on cylindrical VPFs analogous to EH21 vector mode. 

a, d Measured Doppler intensity signals by two photodetectors after filtering the DPS through two polarizers. b, c, e, f Doppler frequency 

spectra acquired by fast Fourier transform (FFT) of the recorded Doppler intensity signals in (a) and (d). b, e Amplitude spectra. c, f 

Relative phase spectra showing relative phase difference between two path frequency signals. a-c 40Ω rad/s. d-f 40 Ω rad/s. 

 
Supplementary Figure 7. Measured results (Doppler frequency shifts and phase shifts) for vectorial Doppler effect based on 

cylindrically VPFs analogous to HE61 vector mode under different rotational velocities. The dots represent measured results and 

the dashed lines denote theories. 
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We also experimentally demonstrate the variance of the Doppler shift and the invariance of the relative phase 

difference under different rotational velocities of the rotating particle using the cylindrical VPF analogous to HE61 

vector mode, as shown in Supplementary Fig. 7. 

It clearly shows that the Doppler shift is proportional to the magnitude of motion velocity, while the relative 

phase difference depends on the direction of motion vector. 

Moreover, we further present the experimental results of real-time angular position and velocity determination 

of a moving particle in random rotation around an axis using the cylindrical VPF analogous to HE19,1 (Supplementary 

Fig. 8). The intensity spectra with relative phases are measured in Supplementary Fig. 8a. With the knowledge of 

knowing the starting position and continuous tracking, by counting the peaks and meanwhile estimating the relative 

phase, according to Eqs. (9) and (10) in the main text, the instantaneous angular positions and rotational velocities 

can be acquired in Supplementary Fig. 8b and 8c. All experimental results of these additional dates in this section are 

in good agreement with the theoretical prediction. 

 

Supplementary Figure 8. Real-time tracking of angular position and rotational velocity for a moving particle in random rotation 

around an axis using the cylindrical VPF analogous to HE19,1, provided that the starting position of the particle is given and the 

particle is continuously tracked. a The measured intensity signals with relative phases after filtering this DPS through two polarizers. 

b Acquired instantaneous angular positions. c Acquired instantaneous rotational velocities. The instantaneous angular positions (b) and 

rotational velocities (c) are obtained based on the measured intensity signals with relative phases, which are in good agreement with the 

predicted values. 


