Two human metabolites rescue a *C. elegans* model of Alzheimer's disease via a cytosolic unfolded protein response

Priyanka Joshi^{1,4,*}, Michele Perni¹, Ryan Limbocker^{1,3}, Benedetta Mannini¹, Sam Casford¹, Sean Chia¹, Johnny Habchi¹, Johnathan Labbadia², Christopher M Dobson¹ and Michele Vendruscolo^{1,*}

¹Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
²Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
³Current address: Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA

⁴Current address: The California Institute for Quantitative Biosciences (QB3-Berkeley), University of California, Berkeley, CA 94720, USA

Supplementary Information

*Correspondence to: prijoshi@berkeley.edu, mv245@cam.ac.uk

Figure S1. (**a-f**) Effects of the six metabolites identified in this work on *C. elegans* GMC motility at various stages (day 1, 3, 4 and 5) of adulthood at concentrations 0, 1, 5 and 10 μ M. (**g**) Effects of metabolites at day 5 of adulthood at 10 μ M metabolites or 200 μ M ThT. (**h-i**) Extended data from Figure 3(d-e) shows a dose-dependent effect (at concentrations 5, 10, 15 and 25 μ M) of carnosine and kynurenic acid treatment on *C. elegans* GMC motility at day 5 of adulthood. Error bars indicate SEM. Statistics were preformed using one-way ANOVA, Dunnett's multiple comparisons against the untreated A β 42 group using GraphPad Prism; ****, p<0.0001; ***, p<0.001; **, p<0.05).

Figure S2. The amyloid-binding dye thioflavin T (ThT) increases motility in *C. elegans* by reducing A β 42-associated toxicity. ThT increases lifespan in *C. elegans* by reducing A β 42-associated toxicity [1]. Here, we see a dose-dependent increase in worm motility (0, 50, 100 and 200 μ M) at day 5. X-axis depicts days of adulthood and y axis bends per minute (BPM).

Figure S3. Kinetic profiles of the aggregation of a 2μ M A β 42 sample in the absence (black) and the presence of 20 μ M, 50 μ M, 100 μ M and 500 μ M concentrations of carnosine or kynurenic acid (represented in different colours). Note that this experiment was performed at the same time as shown in Fig. 4, and the kinetic profiles of A β 42 only has been repeated on this plot for the purpose of clarity. Error bars are expressed as the standard deviations from 3 technical replicates.

Figure S4. Carnosine and kynurenic acid do not show overt effects on the motility of normal wild type N2 worms. We tested a range of concentrations of carnosine (**a**) and kynurenic acid (**b**) on worm (N2) motility as a function of age (Days 3, 5 and 7), and did not observe any overt changes in motility. For clarity, total fitness score of Day 5 N2 worms is shown in (**c**).

С

Figure S5. Carnosine and kynurenic acid activate a cytosolic unfolded protein response through a HSF-1 dependent mechanism. Uncropped full blots supporting data in Figure 5. (a) HSF-1 (b) HSP-90 (c) HSP-70 (d) DNJ-12 (e) DNJ-13 (f) DNJ-19.

References

[1] Alavez, S., et al., Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature, 2011. **472**(7342): p. 226-9.