Supplementary information

Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium

Zhen Hu¹, Xiongjian Huang², Zhengwen Yang^{1*}, Jianbei Qiu¹, Zhiguo Song¹, Junying Zhang^{3*}, Guoping Dong^{2*}

¹College of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, China.

²State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China. ³School of Physics, Beihang University, 100191, Beijing, China.

Corresponding Author e-mails: yangzw@kust.edu.cn; zjy@buaa.edu.cn; dgp@scut.edu.cn

Fig. S1. a, Excitation spectrum by monitoring 614 nm emission of glass with the molar composition of 50WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃-1EuF₃. **b**, Luminescence spectra of glasses with the molar compositions of 50WO₃-(40.5-y)NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃-yEuF₃ (y=0, 0.25, 0.5, 1.0, 1.5 and 2.0) under the excitation of 465 nm.

Figure S1a exhibits the excitation spectrum of glasses with the molar composition of $50WO_3$ - $39.5NaH_2PO_4$ - $8BaF_2$ - $0.5Na_2CO_3$ - $1Sb_2O_3$ - $1EuF_3$. The three excitation peaks of Eu³⁺ can be observed by monitoring 614 nm emission, which are located at 393, 465 and 533 nm. Under the excitation of 465 nm, the glass without Eu³⁺ has no luminescence. The typical luminescence peaks at 593, 614, 650 and 700 nm of Eu³⁺ were observed in the glasses with the molar compositions of $50WO_3$ -(40.5-y)NaH₂PO₄- $8BaF_2$ - $0.5Na_2CO_3$ - $1Sb_2O_3$ - $yEuF_3$ (y=0, 0.25, 0.5, 1.0, 1.5 and 2.0), as shown in Fig. S1b. The luminescence significantly increases with increasing Eu³⁺ concentration from 0.25 to 1 mol%, and then slowly increases with increasing Eu³⁺ concentration from 1 to 2 mol%. Doping concentration of Eu³⁺ in the glass was selected as 1 mol% in the following research.

Fig. S2. a, b, Luminescence spectra of glasses with molar composition of 50WO₃-40.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃ without Eu³⁺ doping before and after photochromism of 473 nm laser. (a) the excitation wavelength for luminescence measurement is 473 nm laser, (b) the excitation wavelength for luminescence measurement is 465 nm light from xenon lamp.

Figure S2 exhibits the luminescence spectra of glasses without Eu³⁺ doping. It is shown that the defect luminescent centers are not generated by intense blue irradiation in the tungsten phosphate glass. Therefore, the fluorescence signal of glass with rare earth ions will not be influenced after intense blue irradiation.

Fig. S3. a, Transmission spectra and photos of the glasses with the molar compositions of (51-x)WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-xSb₂O₃-1EuF₃ (x=0, 0.5, 1 and 2). **b,** Luminescence spectra of the (51-x)WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-xSb₂O₃-1EuF₃ (x=0, 0.5, 1 and 2) glasses under 465 nm excitation. **c, d,** XPS spectra of W element in the glass without (**c**) and with (**d**) the addition of 1 mol% Sb₂O₃.

The glasses with the molar compositions of $(51-x)WO_3$ -39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-xSb₂O₃-1EuF₃ (x=0, 0.5, 1 and 2 mol%) were designed and prepared. As shown in Fig. S3a, the Sb₂O₃ addition has significant influence on the transparency of the tungsten phosphate glasses. The glass without Sb₂O₃ addition is blue. While the glasses including 0.5 or 1 mol% Sb₂O₃ exhibit the excellent transparency in the region from 450 nm to 1800 nm in contrast to the glass including 2 mol% Sb₂O₃, and the optimum concentration of Sb₂O₃ is 1 mol%. Figure S3b exhibits the luminescence spectra of glasses with various concentrations of Sb₂O₃ upon 465 nm excitation. The four luminescence peaks of Eu³⁺ were observed, locating at 593, 614, 650 and 700 nm. Compared with the glasses with Sb₂O₃, the glass without Sb₂O₃ exhibits low luminescence intensity. The luminescence of Eu³⁺ overlaps with the absorbance of the glass without Sb₂O₃. Thus the luminescence of Eu³⁺ can be absorbed by the blue glass host, resulting in luminescence decreasing. The blue color of glass without Sb₂O₃ is attributed to the hopping of polarons from W⁶⁺ to W⁵⁺. Two 35.7 and 37.8 eV XPS peaks of W⁶⁺ have been observed, and the intensive 34.7 and 36.8 eV XPS peaks are from W^{5+} in the blue glass without Sb₂O₃ (Fig. S3c). It is obvious that the XPS peaks of W^{5+} significantly decrease in the glasses after the addition of 1 mol% Sb₂O₃ (Fig. S3d). The Sb₂O₃ addition stabilizes the valence state of W⁶⁺, preventing the transformation from W⁶⁺ to W⁵⁺, and thus the transparent tungsten phosphate glasses were obtained.

Fig. S4. a, Transmission spectra and photos of WPG-Sb1 glass scanned by unfocused 473 nm laser (spot size is 1 mm) with various power density for 15 min. **b,** Luminescence spectra of WPG-Sb1 before and after 473 nm laser irradiation with various power densities for 15 min upon 465 nm excitation. **c,** Modulation degree (ΔR_m) of luminescence as a function of laser power density.

Fig. S5. a, Transmission spectra and photos of blue WPG-Sb1 heat-treated at 200 °C for various durations. **b**, **c**, Luminescence spectra (**b**) and recovery degree (ΔR_r) (**c**) of the glass bleached by 200 °C heat-treatment for various durations.

Fig. S6. 614 nm transmission (**a**) and luminescence intensity (**b**) of WPG-Sb1 glass by alternating 473 nm laser (151.26 W cm⁻², 15 min) and thermal stimulation (300 °C, 10 min) for 50 cycles.

Fig. S7. Raman spectra of raw, photochromic and decolorated WPG-Sb1 glasses.

Fig. S8. XPS spectra of Eu³⁺ element in the raw, photochromic and decolorated

WPG-Sb1 glasses.

Fig. S9. EPR spectra at room temperature of the raw, photochromic and decolorated WPG-Sb1 glasses.

Fig. S10. a, Optical microscopic image of photochromism in the WPG-Sb1 glass. The big rectangular identified by arrows was obtained by the irradiation of focused 473 nm laser (2058 kW cm⁻²). The rectangle blue region is the position of the irradiated regions of unfocused 473 nm laser (151.26 W cm⁻²). **b**, SEM image corresponding to **a**. **c-j**, Corresponding EDS elemental mapping images. Scale bar, 200 μm. No obvious element-migration can be observed in the photochromic regions.

Fig. S11. Transmission spectra and photos of WPG-Sb1 glass under irradiation of 473 nm (151.26 W cm⁻²) and 532 nm (284.19 W cm⁻²) laser for 15 min, and 808 nm (78.53 W cm⁻²), 980 nm (53.47 W cm⁻²) lasers and 465 nm xenon lamp for 1 h.

Fig. S12. Decay curves of 614 nm luminescence of the glass irradiated by 473 nm laser (151.26 W cm⁻²) for various durations.

Fig. S13. **a**, Luminescence mechanism of Eu³⁺ in the WPG-Sb1 glass. **b**, Luminescence modification mechanism of Eu³⁺.

The ⁵D₂ energy level of Eu³⁺ was populated upon 465 nm excitation, as shown in Fig. S13a. The electrons relaxed to the ⁵D₀ energy level. The radiative transitions from ⁵D₀ to ⁵F_n (n=1, 2, 3, 4) of Eu³⁺ produce luminescence peaking at 593, 614, 650 and 700 nm, respectively. The luminescence of Eu³⁺ overlaps with the absorbance of the photochromic glass, as shown in Fig. S13b. Thus the luminescence of Eu³⁺ can be absorbed by the blue glass host, resulting in the luminescence modulation.

Fig. S14. 473 nm laser was focused by a 50× (NA=0.55; WD=8.2 mm) objective lens (EPLE-50) on the glass. Damage of the glass was observed when the power density (2058 kW cm⁻²) of focused 473 nm laser is slightly greater than the power density for writing (1915 kW cm⁻²).

Fig. S15. Information was chronically stored under natural environment in the transparent glass. **a**, photo taken on January 16, 2020. **b**, photo taken on November 18, 2020 of the same sample in (**a**).

а	import javax.imageio.stream.FileImageInputStream; import java.io.ByteArrayOutputStream; import java.io.File; import java.io.IOException; import java.io.UnsupportedEncodingException; import static java.math.BigInteger.ZERO;	b	01001011 01010101 01010011 01010100	K U S T
	public class ImageToBinTool {			
	<pre>public static void main(String[] args) throws UnsupportedEncodingException { ImageToBinTool test = new ImageToBinTool(); test.stringToBin("KUST"); } public void stringToBin(String str) throws UnsupportedEncodingException { byte[] bs = str.getBytes("GB2312"); System.out.println(bs.length.+**); for (int i = 0; i < bs.length; i++) { String 15tring = Integer.toBinaryString((bs[i] & 0xFF) + 0x100).substring(1); System.out.println(tString); } }</pre>	С	11001100 11101100 10110101 11000000 10110011 11101010 11000111 110110	天道酬勤
	}			

Fig. S16. **a**, Information can be encoded to binary data by common computer programming file. **b**, **c**, Binary data of a "KUST" alphabet (**b**) and the Chinese idiom "tian dao chou qin" (**c**).

Fig. S17. Erasing and recovering photochromic and luminescent patterns by alternating focused 473 nm laser (1915 kW cm⁻², 250 μ m s⁻¹) and thermal stimulation (300 °C, 10 min).

Fig. S18. **a**, Transmission spectra and photos of the 50WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃-1DyF₃ glass scanned by unfocused 473 nm laser (151.26 W cm⁻²) for 15 min. **b**, Luminescence spectra of the 50WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃-1DyF₃ glass before and after photochromism. **c**, **d**, The photochromic (**c**) and photoluminescent (**d**) logo patterns of the 50WO₃-39.5NaH₂PO₄-8BaF₂-0.5Na₂CO₃-1Sb₂O₃-1DyF₃ glass by the focused 473 nm laser direct writing (1915 kW cm⁻²). Scale bars, 500 μm.