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Summary statistics for the eight additional diseases can be downloaded from the websites of the corresponding studies: asthma (www.ebi.ac.uk/gwas/studies/
GCST006862), atrial fibrillation (www.ebi.ac.uk/gwas/studies/GCST004296), breast cancer (bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray), inflammatory bowel
disease (www.ibdgenetics.org/downloads.html), prostate cancer (http://practical.icr.ac.uk/blog/?page_id=8164), rheumatoid arthritis (plaza.umin.ac.jp/~yokada/
datasource/software.htm), schizophrenia (www.med.unc.edu/pgc/download-results/) and type 2 diabetes (diagram-consortium.org/downloads.html).

We first analysed data for 220k individuals for each of 14 phenotypes. This was the number of individuals that remained after strict quality
control of the UK Biobank data (we considered it appropriate to perform strict quality control because the performance of a prediction model
can be sensitive to genotyping errors, population stratification and familial relatedness). The aim of our work is to show that improving the
heritability model improves prediction, and it is clear from the results that 220k samples was sufficient to achieve this aim (for example, Figure
2 shows that the precision of results is sufficiently high to demonstrate the impact of improving the heritability model, while for the best-
performing method, the improvement is over 8 standard deviations). We subsequently extended the analysis to 225 phenotypes, with
average sample size 285k, finding that the results from the additional 211 phenotypes replicate those from the first 14.

We provide a full description of our quality control of UK Biobank data in Methods. In total, UK Biobank provides data for 487k individuals.
First we identified 419k individuals who were both recorded and inferred through principal component analysis to be white British, and who
had values recorded for the covariates age, sex and Townsend Deprivation Index. Then for each of the 14 phenotypes in turn, we filtered the
individuals with values for that phenotype so that no pair remained with allelic correlation >0.0325 (that expected for second cousins).
Depending on phenotype, 220,399-253,314 individuals remained (in total, 392,214 unique). From the individuals that remained for each
phenotype, we randomly picked 200,000 and 20,000 individuals to use for training and testing prediction models. When analysing all 225
phenotypes, we used summary statistics computed by the Neale Lab (www.nealelab.is/uk-biobank). In total, they provide results for 4,203
phenotypes. We downloaded results for the 283 phenotypes that were computed using both sexes (rather than only males or only females)
and that had estimated SNP heritability >0.05. We primarily focused on the 225 phenotypes for which it was possible to construct a prediction
model with R2 >0.01. We made this choice because it is difficult to reliably compare the performance of prediction tools using models with
low and often non-significant R2. However, we nonetheless confirmed the patterns we saw across the 225 phenotypes with R2 >0.01 were
replicated across the 58 phenotypes with R2 <0.01.

Our paper demonstrates that improving the heritability model leads to substantially improved prediction accuracy for a wide range of
phenotypes and prediction tools. We first considered 14 phenotypes and four prediction tools that use individual-level data. We showed that
improving the prediction model resulted in better prediction accuracy for all 14 phenotypes and all four prediction tools (i.e., for each of
14x4=56 analyses). We then considered 225 phenotypes and four prediction tools that use summary statistics. We showed that improving the
prediction model resulted in better prediction accuracy for 223-225 phenotypes (in total, for 898 out of 225x4=900 analyses). Therefore, our
result was replicated many times (i.e., for 100s of different phenotypes and for eight different prediction tools).

When dividing samples into training and test datasets, this was done at random.

Not applicable, as we did not collect the data ourself (instead, it came from the UK Biobank). Further, the phenotypes we considered are easy
to measure (e.g., height, BMI, forced vital capacity), meaning there is limited scope for experiemental error (and even were there, there is no
reason these would cause systematic bias in our results).




