

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Seasonality of mortality in Japan: the role of temperature, influenza and other local characteristics

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044876
Article Type:	Original research
Date Submitted by the Author:	18-Sep-2020
Complete List of Authors:	Madaniyazi, Lina; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Ng, Chris Fook Sheng; Nagasaki University, School of Tropical Medicine and Global Health Seposo, Xerxes; Nagasaki University, School of Tropical Medicine and Global Health Toizumi, Michiko; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Honda, Yasushi; National Institute for Environmental Studies, Center for Climate Change Adaptation; University of Tsukuba Faculty of Health and Sport Sciences Armstrong, Ben; London School of Hygiene & Tropical Medicine, Department of Social and Environmental Health Research Hashizume, Masahiro ; The University of Tokyo, Department of Global Health Policy; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, PREVENTIVE MEDICINE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Seasonality of mortality in Japan: the role of temperature, influenza and other local characteristics

Lina Madaniyazi^{1,2*}, Chris Fook Sheng Ng², Xerxes Seposo², Michiko Toizumi^{1,2}, Lay-Myint Yoshida^{1,2}, Yasushi Honda^{3,4}, Ben Armstrong⁵, Masahiro Hashizume^{1,2,6}

- 1. Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
- 2. School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
- 4. Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, London, UK.
- 6. Department of Global Health Policy, The University of Tokyo, Tokyo, Japan.

*Corresponding author:

Lina Madaniyazi, lina.madaniyazi@nagasaki-u.ac.jp

Department of Pediatric Infectious Diseases,

Institute of Tropical Medicine, Sakamoto Campus, Nagasaki University,

1-12-4, Sakamoto, Nagasaki 852-8523, Japan

Phone: +81 95 819 7763

Fax: +81-95-819-7844

Abstract

Objectives: To investigate the extent to which temperature and influenza explained seasonality of mortality in Japan and to examine modifications of the seasonality by prefecture-specific characteristics.

Design: We collected daily mortality from all-cause, circulatory, and respiratory disease in 47 prefectures in Japan between 1972 and 2015 and conducted time-series analysis to estimate the peak-to-trough ratio (PTR, a measure of seasonal amplitude) before and after adjusting for temperature and/or influenza. Next, we applied linear mixed effect models to investigate the association of PTR with each indicator on prefecture-specific characteristics.

Results: The nationwide unadjusted-PTRs for all-cause, circulatory and respiratory mortality were 1.29 (95% Confidence Intervals (CI): 1.28, 1.31), 1.53 (95%CI: 1.51, 1.56) and 1.51 (95%CI: 1.49, 1.54), respectively. These PTRs reduced substantially after adjusting for temperature but very little after a separate adjustment for influenza. However, in certain early years, adjusting for influenza led to larger PTR reductions in respiratory mortality. Before any adjustments, a larger PTR was associated with increases in averaged annual mean temperature, whereas a higher Gini index was surprisingly linked with a decreased PTR. Adjusting for temperature in PTR estimation reversed these associations.

Conclusion: Seasonality of mortality is primarily driven by temperature, with occasionally irregular seasonal patterns associated with influenza. Locations with warm climate and low inequality showed a large seasonal variation in mortality. Our findings can help us gain a better understanding of the mechanisms underlying seasonality of mortality and also provide important information for the management of seasonal risks.

Strengths and limitations of this study

- We investigated the contributions of temperature versus influenza to seasonal variation of different types of mortality by a common study design and statistical framework.
- We used indicators on a range of location-specific characteristics to identify locations that have larger seasonal variations in mortality.
- The study was conducted in Japan characterized by distinct seasonal weather conditions, so our results may not be generalized to locations with different climate (e.g., tropical countries).
- Our results on the contribution of influenza to seasonality of mortality can be complemented by including data on influenza subtypes and vaccination coverage.

ierez oni

Introduction

Seasonality of mortality is among the oldest observation across a broad range of population and geographical locations, typically entailing higher mortality in cold seasons than in warm seasons.^{1–6} This epidemiological phenomenon reflects a complex interaction between environment and human.² The understanding of its underlying drivers is yet to be elucidated.

Some of the postulated contributors to seasonality of mortality include temperature, infectious disease, air pollution, physiological responses, and human behaviors.^{1,2,7–9} Temperature is of most profound interest, with overwhelming evidence on its cold and hot effect on mortality.¹⁰ Another well recognized contributor to seasonality is influenza, due to its strong seasonal cycle and association with inflammatory process.¹¹ A number of studies demonstrated an association between influenza and mortality in cold seasons.^{11–15} Some of them focused on its role in temperature-mortality associations.^{11,12} Other publications assessed its contribution to winterseason increase in mortality.^{13–15} Although consensus exists that both temperature and influenza contribute to winter-season increase in mortality, ^{11–14,16} has focused on either temperature or influenza only, and few studies have comparatively assessed their contribution to seasonality of mortality. We are aware of only one study that has compared their contributions to seasonality of all-cause mortality among people aged ≥ 75 years in Britain and suggested more seasonality was explained by temperature than influenza.¹⁴

The strength of seasonality in mortality varies geographically.⁸ For example, a smaller seasonal amplitude was observed in areas with milder climates, suggesting that individuals living in warm areas might be more vulnerable to seasonal variations in mortality.² Several local characteristics on climate, demographic and socioeconomic factors, and adaptations have been linked with such spatial variation. However, only a few studies have evaluated their modifying effect on seasonality of mortality.^{1,17} Another question remains unclear is if these modification

effect will remain when we remove the effect of temperature and influenza from seasonal variations in mortality, given that the same local characteristics can also modify associations between influenza, temperature and mortality.^{18–23}

In the current study, we collected daily mortality data between 1972 and 2015 from 47 prefectures in Japan to investigate the contribution of temperature and influenza to seasonality of mortality and to study its modifying factors by a range of prefecture-specific indicators. This study will strengthen our understanding of seasonality of mortality and provide important evidence to associate managements of seasonal risk factors to local conditions.

Method

Data collection

Hourly mean temperature (°C) and relative humidity (%) measured at a single monitoring site in the capital city of each prefecture were obtained from 1972 to 2015 from the Japan Meteorological Agency. We computed daily mean value of temperature and relative humidity for our analysis.

Daily mortality (counts) from all-cause, circulatory, respiratory disease and influenza were obtained from the Ministry of Health, Labor and Welfare of Japan between 1972 and 2015 for each prefecture in Japan. The principal cause of death statistics has been coded using the International Statistical Classification of Diseases and Related Health Problems, 8th version (ICD-8) from 1972 to 1978, the ICD-9 from 1979 to 1994, and the ICD-10 since 1995. Cause-specific mortality was defined according to the ICD system: circulatory mortality (ICD-8 codes 390-458, ICD-9 codes 390-459, ICD-10 codes I00-I99), respiratory mortality (ICD-8 and ICD-9 codes 460-519, ICD-10 codes J00-J99), mortality due to influenza (ICD-8 codes 470-474, ICD-9 codes 487-488, ICD-10 codes J09-J11). Weekly number of influenza like illness (ILI)

BMJ Open

were also obtained for each prefecture from April 1999 to 2015 from National Institute of Infectious Diseases, Japan.

Yearly data on prefecture-specific indicators was collected over the study period for each prefecture, including mean temperature, relative humidity, population density, the proportion of population aged ≥ 65 years, saving, income, Gini index (a measure of income inequality), consumer price index (CPI), economic power index (EPI, a measure of the wealth of a prefecture), the prevalence of air conditioning for households, and the number of registered physicians, nurses and hospital beds per 10K population. The details for data collection were described in previous studies ^{24,25} and summarized in supplementary material.

Data analysis

We conducted our data analysis in three steps. First, we assessed seasonality of mortality without adjustments for temperature or influenza. Then, we examined the changes in the seasonality after adjusting for temperature and influenza separately, as well as both at the same time. Lastly, we evaluated the associations between each indicator and seasonality estimates before and after adjustments.

We applied a generalized linear model with a quasi-Poisson family to assess seasonality of mortality in each prefecture without any adjustment for temperature and influenza. Day-of-year was treated as an indicator for seasonality, taking values from 1 to 366 corresponding to Jan 1st through Dec 31st for both common and leap years (from 60th day to 365th day in common years, values were taken from 61 to 366). We used a cyclic cubic spline with 4 degrees of freedom (*df*) for day of year to estimate seasonality. The days-of-year with maximum and minimum predicted mortality were identified as the peak and trough days, respectively, and were subsequently used to calculate the peak-to-trough ratio (PTR) to provide a measure of seasonality. Indicators for year, day-of-week and their interaction were used to control for the

long-term trend and the effect of day-of-week. We excluded the data of the two days in our seasonality assessment: 17 January 1995 and 11 March 2011, the day of the Great Hanshin-Awaji Earthquake and Great East Japan Earthquake, respectively.

To assess the contribution of temperature and influenza to seasonality of mortality, we attempted three types of adjustment. First, we added temperature to our main model using a bidimensional cross-basis function to account for its non-linear and delayed effect on mortality. We modeled the exposure-response curve with a natural cubic B-spline with three internal knots at 25th, 50th, and 75th percentiles of temperature distribution, and the lag-response association with another natural cubic spline basis with 3 *df* with extended lags up to 21 days.^{10,25}

Second, we removed temperature and adjusted for influenza in main model. We used as explanatory variable the count of daily deaths due to influenza as a measure of severe influenza circulating in the population, by incorporating natural log-transformed daily influenza mortality count with a natural cubic spline with 3 *df*. Third, adjustment was made using both temperature and influenza.

The prefecture-specific PTR was pooled for the whole of Japan for all-cause, circulatory and respiratory mortality, respectively, by meta-analysis with prefecture as a random factor. To explore if patterns of interest varied over time, we conducted yearly analyses for the entire country using separate quasi-Poisson regression model for each year with prefecture as a random factor.

To evaluate the modification of seasonal variation in mortality by prefecture-specific indicators, we applied linear mixed effects models (LMEMs) to investigate associations of PTR with each prefecture-specific indicator separately. We fitted LMEMs with random intercepts for prefectures and the inverse of squared SE as weight. The longitude and latitude for the capital

BMJ Open

city of each prefecture were included to reduce spatial correlation, except for when we investigated annual mean temperature as the indicator, due to their high correlation. We conducted the analysis for all-cause, circulatory, and respiratory mortality in separate LMEMs. Results are expressed as the log(PTR) variation for a standard deviation increase of the indicator.

We performed a series of sensitivity analysis to confirm our findings. In particular, we repeated main analysis using weekly ILI cases instead of influenza mortality counts for influenza adjustment. See supplementary material for a description of modelling details.

Patient and public involvement

There was no patient or public involvement.

Results

This study included 39 913 020 deaths from all causes, 13 628 846 deaths from circulatory diseases, 5 027 271 deaths from respiratory diseases, and 32 582 deaths from influenza. Daily mean temperature for the whole country between 1972 and 2015 ranged from -14.1°C to 33.8°C, with a mean value at 15.7°C (Table 1). Daily deaths from influenza showed a large variation, ranging from 0 case to 77 cases with a median value at 0 (Table 1). Prefecture-specific summary was provided in Table S1.

The nationwide monthly summary of daily mean temperature and daily mortality showed a significant seasonal pattern (Figure S1). The most cases for mortality were found in cold season with a slight difference: mortality from influenza from January to March were much higher than that in December, while no significant difference from December to March was found for all-cause, circulatory and respiratory mortality.

We observed a high variability for healthcare capacity (Table S2 & S3), while a low variability for socioeconomic indicators. Most of the indicators are correlated (Figure S2). In particular,

BMJ Open

EPI was highly correlated with population density, proportion of individuals aged over than 65 years old, and numbers of physicians, nurses and hospital beds (correlation>0.70). In addition, saving is highly correlated with income (correlation>0.70). For the sake of brevity, we excluded population density, proportion of individuals aged over 65 years old, numbers of physicians, nurses and hospital beds, and saving in main analysis.

Figure 1 and Table 2 show the pooled results for the whole of Japan for seasonality of allcause, circulatory, and respiratory mortality before and after adjustments for temperature and/or influenza. We observed a clear seasonal pattern with higher numbers of deaths in cold seasons than in warm seasons. Before any adjustments, the nationwide pooled PTR for allcause, circulatory and respiratory mortality were 1.29 (95% confidence intervals (CI): 1.28, 1.31), 1.53 (95% CI: 1.51, 1.56) and 1.51 (95% CI: 1.49, 1.54), respectively. After adjustments for temperature and influenza, the shape of seasonality remained (Figure 1), but its amplitude reduced to different extents. Adjusting for just temperature reduced PTRs substantially in particular for all-cause and circulatory mortality to 1.08 (95% CI: 1.075,1.09) and 1.10 (95% CI: 1.08, 1.11). Adjusting for just influenza reduced PTRs only very slightly to 1.28 (95% CI: 1.27,1.30), 1.53 (95% CI: 1.50,1.55), and 1.46 (95% CI: 1.44, 1.48) for all-cause, circulatory and respiratory mortality, respectively. Notably, adjusting for temperature and influenza did not flatten the seasonal pattern or reduce the PTR to 1.

Similarly, prefecture-specific PTRs also showed a substantial reduction with temperature adjustment while a slight reduction when influenza was adjusted only, although an apparent reduction was observed in influenza-adjusted PTR for respiratory mortality (Figure 2). Furthermore, PTR for all mortality types varied across prefectures, and the spatial variation after adjustments was less apparent in particular for all-cause and circulatory mortality. Prefectures with higher latitude (northern areas), including Hokkaido, Aomori, and Akita, as

BMJ Open

well as the southernmost prefecture- Okinawa, showed a lower unadjusted-PTR and a smaller reduction after adjustments for temperature.

Our yearly analyses for the entire country showed a large reduction after adjusting for temperature while a small reduction after adjusting for influenza only for most of the years (Figure S3). For the year of 1975 and 1976, however, a larger reduction in PTR for respiratory mortality was observed when only the influenza was adjusted. Unexpectedly, PTR for all mortality types in several years, e.g., 1983, 1995 and 1999, increased when temperature was adjusted.

Figure 3 shows associations between selected indicators and PTR. Before any adjustments, PTR for all-cause mortality was positively associated with 44-year averaged annual mean temperature, whereas a negative association was observed for Gini index. After a separate adjustment for influenza, these associations remained. Adjusting for temperature, however, reversed the associations with a large confidence interval.

Similar results were observed for cause-specific mortality, with the exception of income and air conditioning prevalence: income was positively associated with unadjusted-PTR for circulatory mortality, and air conditioning prevalence was negatively associated with unadjusted-PTR for respiratory mortality. These associations remained similar when adjusting for just influenza, while moved towards null after including temperature in the adjustment.

Figures S4-S5 and Table S3 showed the results by using mortality data between 1999 April and 2015 and weekly ILI cases for influenza adjustment. The results after a separate adjustment for influenza were robust to different indicators for seasonal influenza infections. However, the results for respiratory mortality before and after any adjustments seems to be sensitive to the study period: both unadjusted- and adjusted- PTR were lower when using the subset of data between 1999 April and 2015 than by using the data between 1972 and 2015.

Discussion

In this study, we investigated the contribution of temperature and influenza to seasonal variation of mortality in 47 prefectures of Japan and evaluated the modifications of seasonality by a range of prefecture-specific indicators. Our findings show that temperature contributed substantially to seasonality of mortality in general, while influenza explained seasonal variations in certain years. In addition, seasonal amplitudes varied between prefectures. Our results suggest that individuals living in prefectures characterized by warm climate and low inequalities experienced larger seasonal variations of mortality, which may be controlled by the preventive strategies targeting the impact of temperature on mortality.

Temperature and influenza have been among the most studied drivers of seasonality of mortality.^{13–16} However, most of the investigations focused on either temperature or influenza. How much of seasonality of mortality is dependent on temperature versus influenza remain unsolved. Our finding showed that most of seasonality of mortality in Japan was attributable to temperature while little was driven by influenza. Consistent with our findings, a population based cohort study in elderly British people examined month to month variation in mortality and its relationship with temperature and influenza A, and discovered that most of seasonal fluctuation was associated with cold temperature and a small component related with influenza A. Despite the smaller contribution of influenza to seasonal variation of mortality than temperature, our single-year analysis suggested that influenza was accountable for the irregularities of seasonality over years. A study¹¹ in 48 U.S. cities observed a link between influenza epidemic and the irregularly high winter mortality in some certain years. Evidence thus far implies that temperature contributes substantially to seasonality of mortality in general, while influenza is related with seasonal variations of mortality in certain years.

Notably, removing the effect of temperature and influenza from seasonal variation in mortality did not completely flatten the seasonal pattern of mortality, in particular, respiratory mortality.

Page 13 of 36

BMJ Open

Seasonality of mortality is resulted from complex interaction between human behavior and environment. In addition to temperature and influenza, other infectious diseases (e.g., respiratory syncytial virus), air pollutants, behavioral changes based on a seasonal basis (e.g., dietary pattern and physical activities) have been linked with seasonal variation of diseases and mortality. However, there is no direct evidence assessing their contribution to seasonality of mortality.

Our sub-period analysis suggests that seasonal amplitudes of respiratory mortality were lower in recent years. This finding may be related with changes in influenza vaccination policy in Japan: the policy from 1962 to 1987 required Japanese schoolchildren to be vaccinated against influenza, and in 1977, such vaccination policy became obligate, which was relaxed in 1987 and repealed in 1994, resulting in a substantial reduction in vaccination coverage.^{26,27} In recent decade, the widespread use of neuraminidase inhibitors and increasing vaccination rates in schoolchildren and especially the elderly have led to a substantial decrease in respiratory mortality.²⁶ Further investigation should be conducted to confirm our hypothesis.

Despite of a similar seasonal shape across prefectures, seasonal amplitudes varied across 47 prefectures. Our findings showed that this spatial variation was related with averaged annual mean temperature and Gini index, and that these associations were reversed after adjusting for temperature. Individuals living in cold prefectures show less seasonal variation in mortality, which may be partially explained by a better cold acclimatization from the combination of habituation, metabolic adjustment, and insulative acclimatization. ^{8,28,29} Counterintuitively, our results suggest individuals living in prefectures with low inequality experienced larger seasonal variations in mortality. A recent multi-country analysis found a positive association between Gini index and heat effect of temperature on mortality, whereas no evidence was observed for its association with cold effect. Therefore, prefectures characterized by low inequality may be more vulnerable to heat effect, leading to a higher mortality in summer and subsequently

BMJ Open

attenuating the seasonal difference in mortality between winter and summer. Although our findings suggested averaged annual mean temperature and Gini index as the potential effect modification, adjusting for temperature reversed their associations, suggesting that the preventive strategies targeting the impact of temperature may reduce the vulnerability of individuals living in prefectures characterized by warm climate and low inequality. It is worth noting, however, that we did not consider potential confounding between indicators due to their high correlations. Therefore, our results need to be interpreted carefully, and further research at individual level or by including areas with large variation in these indicators, is merited to confirm our findings.

This study has several limitations. First, our study was conducted in Japan that has distinct seasonal weather conditions, hence our results may not be applicable to other areas with different climate (e.g., tropical countries). Second, we assumed the association of mortality with influenza and temperature did not change between 1972 and 2015. Although our main conclusion remained in our sub-period analysis by using data between 1999 and 2015, seasonality estimates for respiratory mortality seems to be sensitive to study period, and our findings from single year analysis needs to be interpreted carefully. Future investigations should be conducted by extending current datasets to those areas with different climate, and also by including more details for influenza (e.g., influenza subtype and vaccination coverage). Results from these investigations would complement our findings in current analysis.

This study presents findings from an epidemiologic analysis investigating the role of temperature, influenza and other local characteristics on seasonality of mortality across multiple locations. A strength of current study was the investigation of contributions of temperature versus influenza to seasonal variation of different types of mortality by a common study design and statistical framework, while previous studies mostly focused on either temperature or influenza only. In addition, our analysis on the effect modification provides

BMJ Open

important information for the development of interventions to attenuate seasonal effect on mortality.

This study suggests that seasonality of mortality is primarily driven by temperature, with occasionally seasonal variations associated with influenza. Furthermore, our analysis identifies several prefecture-specific characteristics that may modify the seasonality of mortality. In sum, our findings can help us to gain a better understanding of seasonality of mortality and provide important information for the management of seasonal risks.

Contributors: LM conducted the study, analyzed the data and wrote the manuscript. CN and XS helped with the statistical analysis and the discussion of the text. MT, LY and YH contributed to the final version of the manuscript. BA helped with the data analysis and the interpretation of the results. MH contributed to the study design and the discussion of the results. **Funding:** This work was primarily supported by the Japanese Society for the Promotion of Science (JSPS) KAKENHI Grant Number 19K19461.

Disclaimer: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: None declared.

Ethics approval: This study used secondary data, with no possibility of personal identification, and an informed consent or an approval by a medical ethics board is not required.

Data availability statement: Data are available upon reasonable request. The technical appendix, statistical code and data set will be available upon request from the Corresponding author.

References

2	
3	
Λ	
-	
5	
6	
7	
/	
8	
0	
9	
10	
11	
10	
12	
13	
1/	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
20	
22	
23	
24	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
54	
35	
36	
27	
37	
38	
30	
40	
41	
40	
42	
43	
44	
45	
45	
46	
17	
47	
48	
49	
50	
50	
51	
50	
52	
53	
54	
54	
55	
56	
57	
57	
58	
50	
59	
60	

1. Healy, J. D. Excess winter mortality in Europe: a cross country analysis identifying key risk factors. *J. Epidemiol. Community Health* **57**, 784–9 (2003).

- Stewart, S., Keates, A. K., Redfern, A. & McMurray, J. J. V. Seasonal variations in cardiovascular disease. *Nat. Rev. Cardiol.* 14, 654–664 (2017).
- 3. Momiyama, M. Biometeorological study of the seasonal variation of mortality in Japan and other countries. *Int. J. Biometeor.* **12**, 377–393 (1968).
- 4. M. Momiyama, K. K. A medico-climatological study in the seasonal variation of mortality in USA (1). *Pap. Meteor. Geophys.* **17**, 279–286 (1967).
- M. Momiyama, K. K. A medico-climatological study in the seasonal variation of mortality in USA (2). *Pap. Meteor. Geophys.* 18, 209–232 (1968).
- Momiyama, M. A geographical study of seasonal disease calendar model by period and country. *Pap. Meteor. Geophys.* 14, 1–11 (1963).
- van Rossum, C. T. *et al.* Seasonal variation in cause-specific mortality: Are there high-risk groups? 25-year follow-up of civil servants from the first Whitehall study. *Int. J. Epidemiol.* 30, 1109–1116 (2001).
- Marti-Soler, H. *et al.* Seasonal Variation of Overall and Cardiovascular Mortality: A Study in 19 Countries from Different Geographic Locations. *PLoS One* 9, e113500 (2014).
- Tanner, L. M., Moffatt, S., Milne, E. M. G., Mills, S. D. H. & White, M. Socioeconomic and behavioural risk factors for adverse winter health and social outcomes in economically developed countries: a systematic review of quantitative observational studies. *J. Epidemiol. Community Health* 67, 1061–7 (2013).
- 10. Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a

Page 17 of 36

BMJ Open

3 4		multicountry observational study. Lancet (London, England) 386, 369-75 (2015).
5 6 7	11.	von Klot, S., Zanobetti, A. & Schwartz, J. Influenza epidemics, seasonality, and the
8 9		effects of cold weather on cardiac mortality. Environ. Heal. 11, 74 (2012).
10 11 12	12.	Imai, C., Barnett, A., Hashizume, M. & Honda, Y. The Role of Influenza in the Delay
13 14		between Low Temperature and Ischemic Heart Disease: Evidence from Simulation
15 16 17		and Mortality Data from Japan. Int. J. Environ. Res. Public Health 13, 454 (2016).
18 19	13.	Nguyen, J. L. et al. Seasonal Influenza Infections and Cardiovascular Disease
20 21 22		Mortality. JAMA Cardiol. 1, 274 (2016).
23 24	14.	Wilkinson, P. et al. Vulnerability to winter mortality in elderly people in Britain:
25 26 27		population based study. BMJ 329 , 647 (2004).
28 29	15.	Reichert, T. A. et al. Influenza and the Winter Increase in Mortality in the United
31 32		States, 1959–1999. Am. J. Epidemiol. Hopkins Bloom. Sch. Public Heal. All rights
33 34		Reserv. 160, 1959–1999 (2004).
35 36 37	16.	Nakaji, S. et al. Seasonal changes in mortality rates from main causes of death in
38 39		Japan. Eur. J. Epidemiol. 19, 905–913 (2004).
40 41 42	17.	Gemmell, I., McLoone, P., Boddy, F., Dickinson, G. J. & Watt, G. Seasonal variation
43 44		in mortality in Scotland. Int. J. Epidemiol. 29, 274–279 (2000).
45 46 47	18.	Hajat, S. et al. Public health vulnerability to wintertime weather: time-series regression
48 49		and episode analyses of national mortality and morbidity databases to inform the Cold
50 51 52		Weather Plan for England. Public Health 137, 26–34 (2016).
53 54 55	19.	Chalabi, Z. et al. Evaluation of the cold weather plan for England: modelling of cost-
56 57		effectiveness. Public Health 137, 13-19 (2016).
58 59 60	20.	Madsen, C. & Nafstad, P. Associations between environmental exposure and blood

pressure among participants in the Oslo Health Study (HUBRO). *Eur. J. Epidemiol.* **21**, 485–91 (2006).

- Richard, S. A., Sugaya, N., Simonsen, L., Miller, M. A. & Viboud, C. A comparative study of the 1918-1920 influenza pandemic in Japan, USA and UK: Mortality impact and implications for pandemic planning. *Epidemiol. Infect.* 137, 1062–1072 (2009).
- Glaser, C. A. *et al.* Medical care capacity for influenza outbreaks, Los Angeles.
 Emerg. Infect. Dis. 8, 569–574 (2002).
- 23. Sera, F. *et al.* How urban characteristics affect vulnerability to heat and cold: a multicountry analysis. *Int. J. Epidemiol.* **48**, 1101–1112 (2019).
- 24. Ng, C. F. S. *et al.* Heat-related mortality: Effect modification and adaptation in Japan from 1972 to 2010. *Glob. Environ. Chang.* **39**, 234–243 (2016).
- 25. Chung, Y. *et al.* Changing Susceptibility to Non-Optimum Temperatures in Japan,
 1972–2012: The Role of Climate, Demographic, and Socioeconomic Factors. *Environ. Health Perspect.* 126, 057002 (2018).
- Sugaya, N. & Takeuchi, Y. Mass Vaccination of Schoolchildren against Influenza and Its Impact on the Influenza-Associated Mortality Rate among Children in Japan. *Clin. Infect. Dis.* 41, 939–947 (2005).
- 27. Reichert, T. A. *et al.* The Japanese Experience with Vaccinating Schoolchildren against Influenza. *N. Engl. J. Med.* **344**, 889–896 (2001).
- Medina-Ramón, M. & Schwartz, J. Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. *Occup. Environ. Med.* 64, 827–33 (2007).
- 29. Braga, A. L. F., Zanobetti, A. & Schwartz, J. The effect of weather on respiratory and

BMJ Open

cardiovascular deaths in 12 U.S. cities. Environ. Health Perspect. 110, 859-63 (2002).

Figure captions:

Figure 1. Pooled seasonality of all-cause, circulatory, and respiratory mortality between 1972 and 2015 before and after adjustments (black: without any adjustment; blue: adjusted for influenza only; green: adjusted for temperature only; red: adjusted for both temperature and influenza)

The seasonality is computed as the ratio of predicted mortality at each day of the year to the predicted minimum mortality at the trough with 95% confidence intervals (95%CIs):

 $Ratio = \frac{Mortality \ prediction \ at \ day_i}{Minimum \ mortality \ prediction \ at \ the \ trough}$

Figure 2. Prefecture-specific peak-to-trough ratio (PTR) with 95% confidence intervals (95% CI) for all-cause (left), circulatory (middle), and respiratory (right) mortality before (black) and after adjustments for influenza only (blue), temperature only (green), and both (red)

Figure 3. Associations between each indicator and PTR before and after adjusting for influenza and temperature

Coefficient and 95% confidence intervals were obtained from liner mixed effect models adjusting for latitude and longitude, except for when we investigated averaged annual mean temperature as the indicator, due to their high correlation. Results are expressed as log (PTR) change for standard deviation increase in each indicator.

Variables	Median [interquartile range]	Mean (SD)	Range
Mean temperature	15.70 [7.70; 22.30]	15.12 (8.61)	[-14.10; 33.80]
All-cause mortality	2350 [2012; 2895]	2484.00 (587.85)	[1447; 4712]
Circulatory mortality	826 [730; 948]	848.10 (147.81)	[553; 1454]
Respiratory mortality	292 [177; 431]	292.00 (156.28)	[64; 1072]
Influenza mortality	0 [0; 1]	2.03 (5.53)	[0; 77]

Table 1. Nationwide summary of daily mean temperature (°C) and daily death ^a (numbers of cases) between 1972 and 2015

^a We excluded the data of the two days: 17 January 1995 and 11 March 2011, the day of the Great Hanshin-Awaji Earthquake and Great East Japan Earthquake, respectively

Table 2. Nationwide pooled peak-to-trough ratio (PTR) with 95% confidence interval (95% CI) with/without adjustment

Adjustment	All-caus	se mortality	Circulato	ry mortality	Respirato	ory mortality
	PTR	95% CI	PTR	95% CI	PTR	95% CI
None	1.29	1.28, 1.31	1.53	1.51, 1.56	1.51	1.49, 1.54
Influenza	1.28	1.27, 1.30	1.53	1.50, 1.55	1.46	1.44, 1.48
Temperature	1.08	1.08, 1.09	1.10	1.08, 1.11	1.37	1.33, 1.40
Influenza and temperature	1.08	1.08, 1.09	1.10	1.08, 1.11	1.35	1.32, 1.39
				0	4	

for temperature and/or influenza

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Circulatory Mortality

Respiratory Mortality 22 of 36

Pac	Hokkaido			Hokkaido
	Aomori			Aomori
1	Akita			Akita
2	Iwate			Iwate
3	Miyagi			Miyagi
4	Yamagata			Yamagata
6	Niigata			Niigata
7	Fukushima			Fukushima
8 0	Ishikawa			Ishikawa
10	Tochiai			Tochiai
11	Tovama			Tovama
12	Gunma			Gunma
14	Ibaraki			Ibaraki
15	Nagano			Nagano
16	Saitama			Saitama
18	Cifu			Cifu
19	Gilu			Gilu
20	Tukui			тики
22	Токуо			Токуо
23	Yamanashi			Yamanash
	Shimane		de)	Shimane
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chiba		ititu	Chiba
1 227 ≩no	Kanagawa		y la	Kanagawa
2 9	Kyoto		d bë	Kyoto
	Tottori		dere	Tottori
	Shiga		(or	Shiga
s 93	Aichi		res	Aichi
34	Hyogo		ctu	Hyogo
9 5 936	Okayama		refe	Okayama
3 7	Osaka	· · · · · · · · · · · · · · · · · · ·	Ē	Osaka
38	Mie			Mie
39 40	Hiroshima			Hiroshima
41	Kagawa			Kagawa
42	Nara			Nara
43 44	Yamaguchi			Yamaguch
45	Tokushima			Tokushima
46	Wakayama			Wakayama
47 48	Fukuoka	191 ⁴		Fukuoka
49	Ehime			Ehime
50 51	Saga			Saga
52	Kochi			Kochi
53	Oita			Oita
54 55	Nagasaki			Nagasaki
56	Kumamoto			Kumamoto
57	Shizuoka			Shizuoka
58 50	Miyazaki			Miyazaki
60	Kagoshima			Kagoshim
	Okinowo			Okinowa
	Doolod			Doolod
		0.9 1.0 1.1 1.2 1.3 1.4		ruuleu
		PTR (95% CI) for all-cause mortality		For poor roy

Hokkaido	i 🛏	BMJOp	en			
Aomori		_	#			
Akita			=			
Iwate			1	F		
Miyagi		=		*		
Yamagata		-	=	=		
Niigata				*		
Fukushima				-		
Ishikawa				4		
Tochigi				-		
Tovama			=			
Gunma				**		
Ibaraki		-		-		
Nagano		-		*		
Saitama				* * *		
Gifu	· · · ·			*		
Eukui		•		=		
			•			
Vomonochi						
Chimanashi				- -		
Chiho		•	_	*		
Chiba	1 📫		•			
Kanagawa	ı ⊨ ∓≓			-		
lottori	====	•		- -		
Shiga	⊨ ₽			••••		
Aichi	, =	=:		+++		
Hyogo	*					
Okayama	;⊨=\$					
Osaka	· · · · · ·					
Mie		=				
Hiroshima						
Kagawa		-				
Nara	1===					
Yamaguchi						
Tokushima				1		
Wakayama	i =====			-		
Fukuoka			•	•		
Ehime	,			-		
Saga	¦ ⊨==∓					
Kochi	i		7	-		
Oita				1		
Nagasaki	¦===		-	F .		
Kumamoto	¦ 듴	-		-		
Shizuoka	¦ 🚅	=		*		
Miyazaki	-	=		-		
Kagoshima				-		
Okinawa			=			
Pooled	· · ·		-			
	0.9	1.2	1.	.5	1.8	

	Hokkaido	
	Aomori	
	Akita	
	Iwate	
	Miyagi	
	Yamagata	
	Niigata	
	Fukushima	
	Ishikawa	
	Tochiai	
	Tovama	
	Gunma	
	Ibaraki	
	Nagano	
	Saitama	
	Gifu	
	Fukui	
	Tokyo	
	Yamanashi	
<u> </u>	Shimane	
nde	Chiha	
atit	Kanagawa	
by I	Kvoto	
red	Tottori	
rdei	Shiga	
s (o	Aichi	
ure:	Hyogo	
fect	Okavama	
Prei	Osaka	
	Mio	
	Hiroshima	
	Kagawa	
	Nara	
	Vamaquehi	
	Tokuchimo	
	Wakayama	
	Fukuoko	
	Ehimo	
	Saga	
	Saya	
	Oito	
	Nagasaki	
	Kumamoto	
	Shizuoko	
	Miyozoki	
	Kagashima	
	Okinowa	
	Pooled	
	1 UUIEU	0.9 1.2 1.5 1.8
		PTR (95% CI) for respiratory mortality

For peer review only - http://bmjopen.bmj.com/site/about/guidellhes.xhtml
Adjustment + Temperature and influenza + Temperature + Influenza + No adjustment

BMJ Open

Supplementary material

Seasonality of mortality in Japan: the role of temperature, influenza and other local characteristics

Table of Contents

Table S1. Summary of daily mean temperature, daily cases of all-cause, circulatory,	
respiratory, and influenza mortality	_2
Figure S1. Nationwide monthly summary of daily mean temperature, daily mortality case	es
from all-cause, circulatory, respiratory disease and influenza between 1972 and 2015	_4
Table S2. Prefecture-specific summary of annual value across the years 1972-2015	
for all indicators (mean (standard deviation)	_5
Figure S2. Correlations between the indicators.	_7
Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95%CI) for each	
single year from 1972 to 2015 for all-cause (top), circulatory (middle), and respiratory	
(bottom) mortality before (black) and after adjustments for just influenza (blue), just	
temperature (green), and both (red)	_8
Figure S4. Pooled seasonality of all-cause, circulatory, and respiratory mortality between	ı
April 1999 and 2015 before and after adjustments, by using weekly influenza-like-illness	
(ILI) for influenza adjustment	_9
Figure S5. Pooled peak-to-trough ratio (PTR, 95% confidence intervals (95%CI)) for eac	ch
prefecture between 1999 April and 2015 before and after adjustments, by using weekly	
influenza-like-illness (ILI) for influenza adjustment1	10
Table S3. Pooled estimates (95% confidence interval (CI)) for peak-to-though ratio (PTR)	l)
with/without adjustment for temperature and influenza (influenza mortality or weekly ILI	[
cases) for all-cause, circulatory, and respiratory mortality	11

Prefecture/	Daily mean te	emperature (°C)	All-cause mortali	ty (n)	Circulatory mor	tality (n)	Respiratory mor	tality (n)	Influenza mo	rtality (n)
country ^a	Mean (SD)	Range	Mean (SD)	Range	Mean (SD	Range	Mean (SD)	Range	Mean (SD)	Range
Hokkaido	8.87 (9.54)	[-14.10;30.10]	113.07 (28.91)	[49;317]	37.90 (7.99)	[10;79]	14.21 (7.43)	[0;55]	0.08 (0.34)	[0;6]
Aomori	10.33 (8.94)	[-8.70;30.10]	34.01 (9.40)	[8;79]	11.90 (3.82)	[1;33]	4.09 (2.76)	[0;19]	0.02 (0.17)	[0;4]
Akita	11.69 (9.00)	[-6.40;31.60]	30.84 (8.34)	[7;98]	11.20 (3.73)	[0;33]	3.61 (2.63)	[0;19]	0.02 (0.13)	[0;2]
Iwate	10.25 (9.32)	[-8.90;29.60]	33.35 (9.28)	[8;85]	12.65 (4.20)	[1;33]	4.27 (2.73)	[0;22]	0.02 (0.17)	[0;3]
Miyagi	12.41 (8.29)	[-5.20;31.20]	43.98 (13.14)	[13;152]	16.07 (4.99)	[2;43]	5.02 (3.40)	[0;29]	0.04 (0.21)	[0;4]
Yamagata	11.71 (9.30)	[-7.40;31.50]	31.33 (8.13)	[9;68]	11.61 (3.85)	[0;29]	3.69 (2.62)	[0;18]	0.02 (0.16)	[0;3]
Niigata	13.78 (8.67)	[-3.90;32.60]	57.84 (13.66)	[24;112]	20.77 (5.71)	[4;52]	6.69 (3.74)	[0;26]	0.05 (0.25)	[0;5]
Fukushima	13.02 (8.79)	[-5.20;31.40]	48.71 (12.56)	[18;114]	18.23 (5.45)	[3;45]	5.88 (3.68)	[0;29]	0.03 (0.20)	[0;3]
Toyama	14.03 (8.76)	[-4.40;33.80]	25.97 (7.24)	[5;59]	8.80 (3.27)	[0;25]	3.44 (2.44)	[0;16]	0.02 (0.13)	[0;3]
Nagano	11.92 (9.46)	[-7.70;30.70]	50.71 (12.47)	[16;107]	19.77 (5.64)	[4;52]	5.77 (3.64)	[0;23]	0.04 (0.22)	[0;3]
Ishikawa	14.62 (8.57)	[-3.90;32.40]	25.03 (7.09)	[6;58]	8.64 (3.27)	[0;26]	3.21 (2.34)	[0;16]	0.02 (0.14)	[0;3]
Tochigi	13.77 (8.52)	[-4.50;31.70]	41.02 (11.62)	[11;95]	15.24 (4.88)	[1;38]	5.11 (3.28)	[0;25]	0.03 (0.21)	[0;5]
Gunma	14.55 (8.47)	[-3.80;32.60]	42.13 (11.91)	[12;101]	15.17 (4.81)	[0;41]	5.73 (3.69)	[0;27]	0.04 (0.24)	[0;4]
Ibaraki	13.68 (8.14)	[-3.80;31.30]	58.95 (16.84)	[22;136]	21.16 (6.25)	[2;52]	7.05 (4.64)	[0;31]	0.05 (0.26)	[0;5]
Fukui	14.54 (8.79)	[-3.80;32.10]	18.59 (5.60)	[4;45]	6.46 (2.79)	[0;20]	2.39 (1.95)	[0;13]	0.02 (0.14)	[0;4]
Saitama	14.95 (8.36)	[-2.80;33.70]	100.88 (37.92)	[33;258]	34.09 (10.67)	[7;97]	12.51 (8.45)	[0;58]	0.08 (0.38)	[0;7]
Tokyo	16.23 (7.84)	[-0.60;33.20]	210.93 (56.25)	[100;434]	70.19 (14.77)	[32;147]	26.54 (13.62)	[1;96]	0.17 (0.62)	[0;11]
Yamanashi	14.6 (8.64)	[-4.40;31.80]	19.66 (6.10)	[3;52]	6.92 (2.96)	[0;23]	2.39 (1.92)	[0;16]	0.02 (0.16)	[0;4]
Chiba	15.73 (7.73)	[-1.40;32.20]	93.29 (33.15)	[29;216]	32.28 (9.92)	[8;88]	11.12 (7.43)	[0;58]	0.07 (0.33)	[0;6]
Tottori	14.86 (8.41)	[-5.60;32.30]	15.44 (4.87)	[1;38]	5.54 (2.57)	[0;19]	1.76 (1.55)	[0;11]	0.01 (0.11)	[0;2]
Shimane	14.85 (8.16)	[-5.30;32.20]	21.05 (5.85)	[5;118]	7.45 (3.16)	[0;23]	2.69 (1.99)	[0;14]	0.02 (0.16)	[0;3]
Gifu	15.79 (8.56)	[-3.00;32.90]	43.03 (11.81)	[14;99]	15.30 (4.82)	[2;39]	5.26 (3.57)	[0;23]	0.03 (0.20)	[0;4]
Kanagawa	15.80 (7.63)	[-1.00;32.20]	124.97 (45.15)	[35;297]	39.98 (11.29)	[12;101]	15.47 (9.76)	[0;65]	0.09 (0.38)	[0;6]
Aichi	15.75 (8.46)	[-2.90;32.70]	116.50 (33.64)	[50;236]	39.35 (9.53)	[12;80]	13.84 (8.40)	[0;52]	0.08 (0.35)	[0;7]
Kyoto	15.86 (8.61)	[-3.40;32.80]	52.80 (12.76)	[17;119]	17.85 (5.26)	[2;45]	6.55 (4.10)	[0;32]	0.04 (0.23)	[0;4]

Table S1. Continued

Prefecture/	Daily mean te	emperature (°C)	All-cause mortality	y (n)	Circulatory morta	ality (n)	Respiratory morta	ality (n)	Influenza mo	rtality (n)
country	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range
Shiga	14.67 (8.52)	[-3.20;31.80]	24.37 (7.44)	[5;60]	8.50 (3.35)	[0;25]	3.01 (2.32)	[0;18]	0.02 (0.16)	[0;4]
Shizuoka	16.58 (7.41)	[-0.90;31.90]	72.73 (21.16)	[29;172]	25.59 (7.17)	[6;62]	8.67 (5.23)	[0;36]	0.05 (0.29)	[0;5]
Mie	15.84 (8.15)	[-2.40;33.50]	40.22 (10.72)	[12;95]	14.36 (4.66)	[2;42]	4.73 (3.26)	[0;24]	0.04 (0.22)	[0;4]
Hyogo	16.31 (8.20)	[-4.30;32.50]	109.02 (26.72)	[44;336]	35.11 (8.74)	[9;81]	13.10 (7.75)	[0;58]	0.09 (0.39)	[0;7]
Nara	14.85 (8.43)	[-3.70;31.70]	26.76 (8.48)	[3;62]	9.19 (3.55)	[0;28]	3.34 (2.58)	[0;17]	0.02 (0.15)	[0;3]
Osaka	16.80 (8.30)	[-2.10;32.90]	157.06 (41.02)	[72;341]	48.61 (11.28)	[18;115]	20.24 (11.78)	[0;75]	0.11 (0.44)	[0;8]
Okayama	15.89 (8.58)	[-4.80;32.30]	44.59 (10.91)	[16;92]	15.26 (4.80)	[1;40]	6.26 (3.93)	[0;26]	0.04 (0.24)	[0;5]
Hiroshima	15.93 (8.30)	[-5.80;32.70]	60.47 (14.89)	[23;146]	20.01 (5.74)	[4;47]	7.91 (4.70)	[0;34]	0.04 (0.24)	[0;4]
Kagawa	15.80 (7.63)	[-1.00;32.20]	124.97 (45.15)	[35;297]	39.98 (11.29)	[12;101]	15.47 (9.76)	[0;65]	0.09 (0.38)	[0;6]
Wakayama	16.60 (8.06)	[-2.70;32.70]	27.17 (7.17)	[7;73]	9.36 (3.51)	[0;28]	3.20 (2.46)	[0;16]	0.03 (0.19)	[0;4]
Yamaguchi	15.33 (8.38)	[-5.40;31.20]	39.07 (9.61)	[14;82]	13.53 (4.35)	[2;36]	5.49 (3.46)	[0;28]	0.04 (0.22)	[0;4]
Tokushima	16.48 (7.92)	[-4.00;32.60]	21.14 (5.94)	[4;51]	7.27 (3.02)	[0;21]	2.93 (2.17)	[0;15]	0.02 (0.15)	[0;4]
Ehime	16.35 (7.97)	[-3.10;31.90]	36.86 (9.28)	[12;81]	12.95 (4.35)	[0;34]	4.70 (3.08)	[0;20]	0.03 (0.21)	[0;4]
Fukuoka	16.89 (7.84)	[-3.20;32.80]	99.34 (24.68)	[41;210]	30.77 (7.52)	[8;73]	13.35 (7.93)	[0;57]	0.09 (0.39)	[0;7]
Kochi	16.90 (7.74)	[-2.30;32.10]	22.57 (6.07)	[5;79]	8.31 (3.28)	[0;27]	3.05 (2.21)	[0;18]	0.03 (0.19)	[0;5]
Oita	16.34 (7.73)	[-3.40;31.70]	30.00 (7.60)	[9;71]	10.67 (3.83)	[0;33]	4.09 (2.77)	[0;21]	0.03 (0.21)	[0;4]
Saga	16.53 (8.16)	[-3.60;32.30]	21.08 (5.88)	[2;50]	7.07 (2.97)	[0;23]	2.83 (2.19)	[0;18]	0.02 (0.14)	[0;4]
Kumamoto	16.82 (8.25)	[-3.20;31.70]	43.14 (10.77)	[12;140]	14.88 (4.85)	[1;39]	5.89 (3.78)	[0;31]	0.06 (0.32)	[0;6]
Nagasaki	17.11 (7.61)	[-2.50;32.20]	36.71 (9.00)	[13;273]	12.49 (4.23)	[0;32]	5.06 (3.16)	[0;23]	0.03 (0.21)	[0;4]
Miyazaki	17.51 (7.44)	[-1.00;32.00]	26.77 (7.69)	[6;67]	9.53 (3.58)	[0;28]	3.64 (2.63)	[0;21]	0.03 (0.20)	[0;4]
Kagoshima	18.33 (7.50)	[-2.10;31.70]	46.72 (10.89)	[17;112]	16.59 (5.24)	[1;46]	6.66 (4.08)	[0;38]	0.06 (0.31)	[0;7]
Nationwide	15.12 (8.61)	[-14.10;33.80]	2484.00 (587.85)	[1447;4712]	848.10 (147.81)	[553; 1454]	292.00 (156.28)	[64;1072]	2.03 (5.53)	[0;77]

^a Prefectures was ordered by latitude from high to low.

3 4

BMJ Open

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population ≥ 65 years	Savings (million yen)	Income (million yen)	CPI	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	AC (
Hokkaido	8.82 (0.63)	69.67 (1.99	0.0056 (0.0001)	0.14 (0.06)	7.9 (3.96)	5.15 (1.42)	86.7 (16.51)	0.28 (0.01)	0.38 (0.02)	9.47 (2.73)	25.69 (12.65)	97.78 (15.51)	6.14
Aomori	10.28 (0.66)	74.81 (1.59	0.0015 (0.0000)	0.15 (0.06)	6.71 (3.25)	5.01 (1.42)	81.8 (17.93)	0.29 (0.02)	0.3 (0.03)	2.2 (0.39)	6.34 (2.75)	20.13 (1.42)	18.9
Akita	11.65 (0.59)	73.09 (1.1	0.0012 (0.0001)	0.18 (0.07)	7.42 (3.69)	5.54 (1.60)	85.72 (17.87)	0.29 (0.02)	0.27 (0.02)	1.84 (0.43)	5.37 (2.37)	16.87 (1.68)	30.7
Iwate	10.2 (0.61)	73.84 (1.16	0.0014 (0.0000)	0.17 (0.07)	7.99 (4.40)	5.24 (1.70)	84.96 (17.29)	0.29 (0.02)	0.29 (0.02)	2.19 (0.36)	7.4 (3.06)	19.8 (2.20)	20.3
Miyagi	12.36 (0.66)	71.13 (1.45	0.0022 (0.0002	0.14 (0.05)	8.25 (3.89)	5.84 (1.63)	86.25 (17.48)	0.29 (0.03)	0.51 (0.03)	3.87 (0.82)	8.18 (3.93)	24.23 (2.92)	33.4
Yamagata	11.67 (0.65)	74.48 (1.58	0.0012 (0.0000)	0.18 (0.06)	8.22 (4.34)	6.01 (1.99)	84.89 (17.08)	0.29 (0.02)	0.31 (0.02)	1.92 (0.55)	5.44 (2.63)	13.42 (2.13)	38.9
Niigata	13.76 (0.62)	71.77 (1.91	0.0024 (0.0000)	0.17 (0.06)	9.97 (5.39)	6.13 (1.97)	85.43 (17.67)	0.29 (0.02)	0.4 (0.03)	3.7 (0.71)	9.69 (4.49)	28.03 (3.52)	57.8
Fukushima	12.97 (0.64)	68.91 (1.19	0.0021 (0.0001)	0.16 (0.06)	8.4 (4.31)	5.7 (1.78)	83.75 (17.51)	0.3 (0.02)	0.42 (0.03)	3.15 (0.70)	7.87 (3.62)	29.92 (3.57)	33.8
Toyama	13.98 (0.70)	77.35 (1.88	0.0011 (0.0000)	0.17 (0.06)	11.28 (5.67)	6.74 (2.18)	86.55 (17.29)	0.29 (0.02)	0.42 (0.06)	2 (0.59)	5.51 (2.54)	17.03 (2.25)	62.8
Nagano	11.88 (0.60)	72.12 (1.62	0.0021 (0.0001)	0.18 (0.06)	10.63 (5.36)	6.05 (1.89)	86.18 (17.64))	0.28 (0.02)	0.44 (0.04)	3.34 (0.81)	9.19 (4.70)	23.79 (2.12)	27.9
Ishikawa	14.59 (0.62)	71.95 (2.16	0.0011 (0.0000)	0.15 (0.05)	11.97 (5.95)	6.57 (2.14)	87.53 (17.09)	0.28 (0.02)	0.44 (0.05)	2.55 (0.49)	6 (3.07)	19.87 (2.03)	62.8
Tochigi	13.71 (0.76)	69.85 (1.85	0.0019 (0.0001)	0.14 (0.05)	11.06 (5.61)	6.3 (1.90)	84.14 (18.03)	0.29 (0.01)	0.58 (0.07)	3.09 (0.94)	6.08 (3.58)	20.97 (2.26)	54.7
Gunma	14.49 (0.68)	63.54 (2.4	0.0019 (0.0001)	0.15 (0.05)	10.63 (5.57)	5.91 (1.78)	86.73 (17.40)	0.28 (0.02)	0.55 (0.05)	3.23 (0.84)	6.43 (3.70)	22.31 (4.36)	58.9
Ibaraki	13.62 (0.68)	74.47 (1.91	0.0028 (0.0002)	0.14 (0.05)	10.63 (5.34)	6.3 (2.07)	84.55 (17.08)	0.29 (0.02)	0.6 (0.07)	3.4 (1.10)	7.67 (4.47)	29.99 (5.49)	53.2
Fukui	14.51 (0.55)	75.11 (1.73	0.0008 (0.0000)	0.17 (0.05)	12.8 (6.39)	6.88 (2.13)	86.82 (17.30)	0.3 (0.01)	0.38 (0.04)	1.36 (0.41)	3.45 (1.76)	11.57 (1.31)	67.3
Saitama	14.89 (0.71)	65.68 (2.28	0.0062 (0.0009)	0.11 (0.05)	10.53 (5.32)	6.4 (1.96)	85.52 (17.58)	0.28 (0.03)	0.7 (0.06)	6.72 (2.48)	14.49 (9.58)	50.91 (15.08)	72.8
Tokyo	16.19 (0.64)	62.07 (2.36	0.012 (0.0005)	0.13 (0.05)	12.88 (6.13)	6.81 (1.95)	87.61 (18.28)	0.31 (0.01)	1.21 (0.14)	27.53 (7.17)	46.3 (19.26)	129.27 (7.64)	74.0
Yamanashi	14.54 (0.67)	65.3 (2.42	0.0008 (0.0000)	0.16 (0.05)	9.79 (4.70)	5.88 (1.77)	84.58 (17.85)	0.29 (0.02)	0.38 (0.05)	1.34 (0.41)	3.29 (1.78)	10.72 (1.18)	42.0
Chiba	15.67 (0.74)	68.68 (1.7	0.0054 (0.0007)	0.12 (0.05)	10.97 (5.45)	6.52 (2.01)	86.61 (17.30)	0.29 (0.02)	0.72 (0.07)	6.65 (2.40)	14.53 (8.78)	47.77 (11.38)	63.1
Tottori	14.82 (0.58)	73.81 (1.34	0.0006 (0.0000)	0.18 (0.05)	10.54 (5.40)	5.84 (1.78)	85.96 (17.12)	0.29 (0.02)	0.25 (0.02)	1.41 (0.28)	3.24 (1.22)	8.51 (0.66)	59.1
Shimane	14.81 (0.60)	75.88 (1.72	0.0008 (0.0000)	0.2 (0.06)	9.66 (5.02)	5.77 (1.81)	84.3 (17.53)	0.3 (0.02)	0.23 (0.02)	1.49 (0.44)	3.89 (1.77)	10.92 (1.54)	56.2
Gifu	15.74 (0.63)	67.3 (2.32	0.002 (0.0001)	0.15 (0.05)	11.78 (6.05)	6.43 (1.94)	86.03 (17.38)	0.28 (0.03)	0.49 (0.05)	2.89 (0.72)	6.34 (3.87)	20.18 (2.25)	61.7
Kanagawa	15.74 (0.63)	67.15 (2.33	0.0078 (0.0009)	0.11 (0.05)	12.39 (6.30)	6.74 (2.09)	85.86 (17.80)	0.29 (0.02)	0.89 (0.07)	11.61 (3.67)	25.22 (13.18)	67.12 (11.72)	65.4
Aichi	15.7 (0.70)	66.69 (2.66	0.0067 (0.0005)	0.12 (0.05)	12.45 (6.09)	6.56 (1.98)	86.17 (17.40)	0.3 (0.01)	0.97 (0.09)	10.41 (2.89)	22.17 (12.21)	66.6 (7.63)	73.9
Kyoto	15.83 (0.58)	66.19 (2.03	0.0026 (0.0001)	0.15 (0.05)	11.06 (4.97)	5.89 (1.56)	83.91 (17.87)	0.28 (0.02)	0.56 (0.07)	6.04 (1.30)	11.9 (5.37)	35.32 (4.12)	78.2
Shiga	14.63 (0.59)	74.18 (1.24	0.0012 (0.0002)	0.14 (0.04)	11.95 (5.60)	6.53 (1.90)	85.7 (17.12)	0.28 (0.03)	0.53 (0.07)	1.97 (0.74)	5.18 (3.26)	12.4 (2.27)	67.0
Shizuoka	16.55 (0.52)	67.76 (1.92	0.0036 (0.0002)	0.14 (0.06)	11.17 (5.72)	6.31 (1.97)	84.83 (17.31)	0.29 (0.01)	0.7 (0.05)	5.19 (1.47)	13.13 (6.92)	35 (6.44)	58.0

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population $≥ 65$ years	Savings (million yen)	Income (million yen)	CPI	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	AC (%)
Mie	15.79 (0.71)	69 (1.98)	0.0018 (0.0001)	0.16 (0.05)	11.82 (6.18)	6.28 (1.98)	83.36 (17.45)	0.28 (0.02)	0.54 (0.07)	2.78 (0.69)	6.2 (3.16)	20.57 (1.58)	68.16 (28.2
Hyogo	16.25 (0.79)	66.45 (1.76)	0.0054 (0.0002)	0.14 (0.05)	11.62 (5.33)	6.09 (1.75)	86.97 (17.51)	0.29 (0.02)	0.55 (0.07)	9.33 (2.12)	20.08 (10.68)	59.16 (8.28)	73.09 (24.6
Nara	14.82 (0.54)	72.75 (1.70)	0.0013 (0.0001)	0.14 (0.05)	12.46 (6.07)	6.22 (1.83)	87.62 (17.54)	0.29 (0.03)	0.39 (0.05)	2.19 (0.70)	4.61 (2.73)	13.73 (3.14)	75.27 (25.5
Osaka	16.78 (0.59)	63.63 (1.51)	0.0087 (0.0002)	0.12 (0.06)	10.79 (4.83)	5.87 (1.67)	86.08 (18.62)	0.31 (0.03)	0.75 (0.05)	17.4 (4.12)	30.26 (15.34)	105.58 (17.53)	82.62 (20.0
Okayama	15.85 (0.86)	68.36 (3.39)	0.0019 (0.0001)	0.17 (0.05)	11.55 (5.60)	5.88 (1.70)	85.36 (16.89)	0.29 (0.02)	0.48 (0.07)	4.09 (0.92)	10.34 (4.68)	30.91 (2.12)	70.85 (25.1
Hiroshima	15.88 (0.86)	69.4 (2.77)	0.0028 (0.0001)	0.15 (0.05)	10.77 (5.58)	5.86 (1.72)	86.39 (16.87)	0.29 (0.02)	0.54 (0.07)	5.53 (1.36)	12.14 (5.77)	37.6 (6.37)	69.27 (24.4
Kagawa	16.12 (0.78)	68.45 (2.68)	0.001 (0.0000)	0.17 (0.05)	12.55 (6.36)	5.89 (1.65)	85.85 (16.96)	0.29 (0.01)	0.43 (0.05)	2.01 (0.61)	5.42 (2.36)	16.98 (1.80)	74.12 (25.1
Wakayama	16.57 (0.57)	66.37 (2.24)	0.0011 (0.0000)	0.17 (0.06)	10.75 (4.77)	5.47 (1.51)	85.86 (16.65)	0.29 (0.02)	0.3 (0.04)	2.07 (0.52)	3.74 (2.06)	14.44 (1.18)	69.89 (25.5
Yamaguchi	15.3 (0.64)	73.61 (2.96)	0.0015 (0.0000)	0.18 (0.06)	9.96 (4.73)	5.52 (1.53)	88.13 (16.93)	0.28 (0.02)	0.41 (0.05)	2.96 (0.66)	7.44 (3.34)	26.01 (4.63)	61.49 (28.9
Tokushima	16.46 (0.59)	66.84 (1.66)	0.0008 (0.0000)	0.18 (0.06)	10.75 (5.51)	5.7 (1.73)	86.46 (16.37)	0.32 (0.02)	0.31 (0.02)	1.94 (0.38)	4.36 (1.91)	15.55 (1.93)	65.83 (28.8
Ehime	16.32 (0.63)	66.6 (2.36)	0.0015 (0.0000)	0.17 (0.06)	9.7 (4.74)	5.22 (1.51)	85.85 (16.37)	0.29 (0.02)	0.37 (0.04)	2.77 (0.79)	7.4 (3.70)	22.62 (2.98)	61.71 (28.0
Fukuoka	16.85 (0.62)	68.09 (2.46)	0.0048 (0.0003)	0.14 (0.05)	8.6 (4.37)	5.47 (1.62)	86.67 (17.67)	0.3 (0.02)	0.58 (0.04)	10.79 (2.79)	24.8 (11.56)	81.53 (14.01)	69.69 (28.5
Kochi	16.87 (0.61)	68.47 (1.70)	0.0008 (0.0000)	0.19 (0.06)	9.53 (4.99)	5.24 (1.53)	86.21 (16.81)	0.31 (0.02)	0.23 (0.02)	1.76 (0.50)	4.46 (2.15)	19.9 (1.91)	57.9 (28.50
Oita	16.31 (0.63)	70.03 (2.79)	0.0012 (0.0000)	0.18 (0.06)	8.13 (4.17)	5.08 (1.50)	86 (16.6)	0.29 (0.02)	0.33 (0.04)	2.25 (0.65)	6.03 (2.87)	19.48 (2.58)	56.01 (29.2
Saga	16.49 (0.54)	70.81 (2.79)	0.0009 (0.0000)	0.17 (0.05)	8.44 (4.27)	5.62 (1.81)	87.38 (17.84)	0.28 (0.02)	0.31 (0.03)	1.59 (0.43)	4.38 (2.18)	14.31 (2.25)	65.87 (30.5
Kumamoto	16.79 (0.66)	70.79 (2.33)	0.0018 (0.0001)	0.17 (0.05)	7.65 (3.69)	5.29 (1.62)	85.89 (17.14)	0.3 (0.02)	0.36 (0.04)	3.82 (0.93)	9.99 (4.88)	34.06 (5.16)	60.83 (28.0
Nagasaki	17.09 (0.54)	70.51 (2.11)	0.0015 (0.0001)	0.17 (0.06)	7.36 (3.72)	4.94 (1.48)	85 (17.88)	0.3 (0.03)	0.27 (0.03)	3.25 (0.63)	7.64 (3.47)	26.67 (3.76)	59.16 (32.4
Miyazaki	17.49 (0.54)	73.72 (2.01)	0.0011 (0.0000)	0.17 (0.06)	6.75 (3.54)	4.8 (1.36)	86.52 (16.96)	0.31 (0.00)	0.29 (0.03)	1.92 (0.65)	5.55 (3.18)	19.08 (2.32)	54.65 (30.
Kagoshima	18.3 (0.64)	70.59 (2.68)	0.0018 (0.0000)	0.18 (0.05)	6.66 (3.53)	4.54 (1.42)	84.62 (17.48)	0.29 (0.01)	0.29 (0.02)	3.19 (0.84)	8.33 (4.92)	33.06 (4.90)	53.38 (31.0
Okinawa	22.91 (0.51)	74.42 (2.37)	0.0012 (0.0001)	0.12 (0.04)	4.09 (1.83)	4.2 (1.13)	90.52 (10.77)	0.33 (0.02)	0.28 (0.02)	1.83 (0.89)	4.92 (3.06)	15.75 (5.83)	59.88 (25.
Nationwide	15.12 (2.34)	69.98 (3.61)	0.003 (0.0020)	0.16 (0.06)	9.98 (5.14)	5.83 (1.77)	85.86 (17.10)	0.29 (0.02)	0.47 (0.21)	4.55 (4.98)	10.17 (10.29)	32.29 (26.72)	57.65 (31.

CPI: consumer price index; EPI: Economic power index; AC: air conditioning prevalence.

Figure S2. Correlations between the indicators.

Blue: positively associated; red: negatively associated; Cross: p>0.05. RH: relative humidity; CPI: consumer price index; EPI: economic power index; AC: air conditioning prevalence

Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95%CI) for each single year from 1972 to 2015 for all-cause (top), circulatory (middle), and respiratory (bottom) mortality before (black) and after adjustments for just influenza (blue), just temperature (green), and both (red)

Figure S4. Pooled seasonality of all-cause, circulatory, and respiratory mortality between April 1999 and 2015 before and after adjustments, by using weekly influenza-like-illness (ILI) for influenza adjustment

(black: without any adjustment; blue: adjusted for weekly influenza like illness (ILI) only; green: adjusted for temperature only; red: adjusted for both temperature and ILI)

Figure S5. Pooled peak-to-trough ratio (PTR, 95% confidence intervals (95%CI)) for each prefecture between 1999 April and 2015 before and after adjustments, by using weekly influenza-like-illness (ILI) for influenza adjustment

(black: without any adjustment; blue: adjusted for just ILI; green: adjusted for just temperature; red: adjusted for both temperature and ILI)
	All-cau	se mortality	Circulato	ry mortality	Respirato	ory mortality
Adjustment	PTR	95%CI	PTR	95%CI	PTR	95%CI
None (main analysis) ^a	1.29	1.28, 1.31	1.53	1.51, 1.56	1.51	1.49, 1.54
None (sub-period analysis) ^b	1.29	1.27, 1.30	1.54	1.51, 1.56	1.43	1.41, 1.45
Influenza mortality (main analysis) ^a	1.28	1.27, 1.30	1.53	1.50, 1.55	1.46	1.44, 1.48
Influenza mortality (sub-period analysis) ^b	1.28	1.27, 1.30	1.53	1.51,1.56	1.40	1.38, 1.42
Weekly ILI ^b	1.27	1.26, 1.29	1.52	1.49, 1.55	1.40	1.38, 1.43
Temperature (main analysis) ^a	1.08	1.08, 1.09	1.10	1.08, 1.11	1.37	1.33, 1.40
Temperature (sub-period analysis) ^b	1.06	1.05, 1.07	1.07	1.06, 1.08	1.13	1.09, 1.17
Temperature + Influenza mortality (main analysis) ^a	1.08	1.08, 1.09	1.10	1.08, 1.11	1.35	1.32, 1.39
Temperature + Influenza mortality (sub-period analysis) ^b	1.07	1.06, 1.07	1.14	1.08, 1.19	1.12	1.09, 1.16
Temperature + weekly ILI ^b	1.08	1.08, 1.09	1.07	1.06, 1.09	1.13	1.09, 1.17

Table S3. Pooled estimates (95% confidence interval (CI)) for peak-to-though ratio (PTR) with/without adjustment for temperature and influenza (influenza mortality or weekly ILI cases) for all-cause, circulatory, and respiratory mortality

^a Main analysis: we used mortality data between 1972 and 2015 to assess seasonality;

^b Subperiod analysis: we used mortality data between 1999 April and 2015 to assess seasonality and to confirm if our seasonality estimates are robust to study period or different indicators for seasonal influenza infections.

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-8
		(b) Describe any methods used to examine subgroups and interactions	6-8
		(c) Explain how missing data were addressed	6-8
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	6-8

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-9
		(b) Indicate number of participants with missing data for each variable of interest	8-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9-10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information		•	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The role of temperature, influenza and other local characteristics in seasonality of mortality: a populationbased time-series study in Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044876.R1
Article Type:	Original research
Date Submitted by the Author:	04-Apr-2021
Complete List of Authors:	Madaniyazi, Lina; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Ng, Chris Fook Sheng; Nagasaki University, School of Tropical Medicine and Global Health Seposo, Xerxes; Nagasaki University, School of Tropical Medicine and Global Health Toizumi, Michiko; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Honda, Yasushi; National Institute for Environmental Studies, Center for Climate Change Adaptation; University of Tsukuba Faculty of Health and Sport Sciences Armstrong, Ben; London School of Hygiene & Tropical Medicine, Department of Social and Environmental Health Research Hashizume, Masahiro ; The University of Tokyo, Department of Global Health Policy; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, PREVENTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	1	The role of temperature, influence and other local characteristics in seasonality of mortality; a
4 5	T	The fole of temperature, influenza and other local characteristics in seasonality of moltanty. a
6 7	2	population-based time-series study in Japan
8	3	
9 10	4	Lina Madaniyazi ^{1,2*} , Chris Fook Sheng Ng ² , Xerxes Seposo ² , Michiko Toizumi ^{1,2} , Lay-Myint
11 12	5	Yoshida ^{1,2} , Yasushi Honda ^{3,4} , Ben Armstrong ⁵ , Masahiro Hashizume ^{1,2,6}
13 14	6	
15 16	7	1. Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki
17	8	University, Nagasaki, Japan.
18 19 20	9	2. School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
20 21 22	10	3. Center for Climate Change Adaptation, National Institute for Environmental Studies,
23 24	11	Tsukuba, Japan
25 26	12	4. Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
27 28 20	13	5. Department of Social and Environmental Health Research, London School of Hygiene &
30 31	14	Tropical Medicine, London, UK.
32 33	15	6. Department of Global Health Policy, The University of Tokyo, Tokyo, Japan.
34 35	16	
36 37 28	17	*Corresponding author:
39 40	18	Lina Madaniyazi, lina.madaniyazi@nagasaki-u.ac.jp
41 42	19	Department of Pediatric Infectious Diseases,
43 44	20	Institute of Tropical Medicine, Sakamoto Campus, Nagasaki University,
45 46 47	21	1-12-4, Sakamoto, Nagasaki 852-8523, Japan
47 48 49	22	Phone: +81 95 819 7763
50 51	23	Fax: +81-95-819-7844
52 53	24	
54 55	25	
56 57		
58 59		
60		

Abstract

Objectives: To investigate the extent to which temperature and influenza explained seasonality of mortality in Japan and to examine modifications of the seasonality by prefecture-specific characteristics.

Design and methods: We collected daily mortality from all-cause, circulatory, and respiratory disease in 47 prefectures in Japan between 1999 and 2015 and conducted time-series analysis to estimate the peak-to-trough ratio (PTR, a measure of seasonal amplitude) before and after adjusting for temperature and/or influenza like illness (ILI). Next, we applied linear mixed effect models to investigate the association of PTR with each indicator on prefecture-specific characteristics on climate, demographic and socioeconomic factors, and adaptations.

Results: The nationwide unadjusted-PTRs for all-cause, circulatory and respiratory mortality were 1.29 (95% Confidence Intervals (CI): 1.28, 1.31), 1.52 (95%CI: 1.49, 1.55) and 1.45 (95%CI: 1.43, 1.48), respectively. These PTRs reduced substantially after adjusting for temperature but very little after a separate adjustment for ILI. Furthermore, seasonal amplitudes varied between prefectures. However, there was no strong evidence for the associations of PTR with the indicators on prefecture-specific characteristics.

Conclusion: Seasonality of mortality is primarily driven by temperature in Japan. The spatial variation in seasonal amplitudes was not associated with prefecture-specific characteristics. Although further investigations are required to confirm our findings, this study can help us gain a better understanding of the mechanisms underlying seasonality of mortality.

2		
3 1	50	Strengths and limitations of this study
4 5	51	
6	52	• We investigated the contributions of temperature versus influenza to seasonal variation of
7 8 9	53	different types of mortality by a common study design and statistical framework.
10 11 12	54	• We used indicators on a range of location-specific characteristics to investigate their
13 14	55	modifying effect on seasonal variations in mortality.
15 16 17	56	• The study was conducted in Japan characterized by distinct seasonal weather conditions,
18 19	57	so our results may not be generalized to locations with different climate (e.g., tropical
20 21 22	58	countries).
23 24 25	59	• The deviance of residuals showed some autocorrelations, but it had limited impacts on our
25 26 27	60	seasonality estimates.
28 29 30	61	
31 32 33	62	
34 35 36	63	
37 38	64	
39 40 41	65	
42 43 44	66	
45 46 47	67	
48 49	68	
50 51 52	69	
53 54 55	70	
56 57	71	
58 59 60	72	

BMJ Open

73 Introduction

Seasonality of mortality is among the oldest observation across a broad range of population
and geographical locations, typically entailing higher mortality in cold seasons than in warm
seasons.¹⁻⁶ This epidemiological phenomenon reflects a complex interaction between
environment and human.² The understanding of its underlying drivers is yet to be elucidated.

Some of the postulated contributors to seasonality of mortality include temperature, infectious disease, air pollution, physiological responses, and human behaviors.^{1,2,7–9} Temperature is of most profound interest, with overwhelming evidence on its cold and hot effect on mortality.¹⁰ Another well recognized contributor to seasonality is influenza, due to its strong seasonal cycle and association with inflammatory process.¹¹ A number of studies demonstrated an association between influenza and mortality in cold seasons.^{11–15} Some of them focused on its role in temperature-mortality associations.^{11,12} Other publications assessed its contribution to winter-season increase in mortality.^{13–15} Although consensus exists that both temperature and influenza contribute to winter-season increase in mortality,^{11–14,16} their relative importance has not been completely elucidated. Most research^{11–14,16} has focused on either temperature or influenza only, and few studies have comparatively assessed their contribution to seasonality of mortality. We are aware of only one study that has compared their contributions to seasonality of all-cause mortality among people aged \geq 75 years in Britain and suggested more seasonality was explained by temperature than influenza.¹⁴

The strength of seasonality in mortality varies geographically.⁸ For example, a smaller seasonal
amplitude was observed in areas with milder climates, suggesting that individuals living in
warm areas might be more vulnerable to seasonal variations in mortality.² Several local
characteristics on climate, demographic and socioeconomic factors, and adaptations have been
linked with such spatial variation. However, only a few studies have evaluated their modifying
effect on seasonality of mortality.^{1,17} Another question remains unclear is if these modification

98 effect will remain when we remove the effect of temperature and influenza from seasonal
99 variations in mortality, given that the same local characteristics can also modify associations
100 between influenza, temperature and mortality.^{18–23}

In the current study, we collected daily mortality data between 1999 and 2015 from 47 prefectures in Japan to investigate the contribution of temperature and influenza to seasonality of mortality and to study its modifying factors by a range of prefecture-specific indicators. This study will strengthen our understanding of seasonality of mortality and provide important evidence to associate managements of seasonal risk factors to local conditions.

106 Method

107 Data collection

Hourly mean temperature (°C) and relative humidity (%) measured at a single monitoring site
in the capital city of each prefecture were obtained from 1999 to 2015 from the Japan
Meteorological Agency. We computed daily mean value of temperature and relative humidity
for our analysis.

Daily mortality (counts) from all-cause, circulatory, respiratory disease and influenza were obtained from the Ministry of Health, Labor and Welfare of Japan between 1999 and 2015 for each prefecture in Japan. The principal cause of death statistics is coded using the International Statistical Classification of Diseases and Related Health Problems, 10th version (ICD-10). Cause-specific mortality was defined according to the ICD system: circulatory mortality (ICD-10 codes I00-I99), and respiratory mortality (ICD-10 codes J00-J99). Weekly number of influenza like illness (ILI) were obtained for each prefecture from April 1999 to 2015 from National Institute of Infectious Diseases, Japan.

Yearly data on prefecture-specific indicators was collected over the study period for each
 prefecture, including annual mean temperature, relative humidity, population density, the

Page 7 of 38

BMJ Open

proportion of population aged ≥ 65 years, saving, income, Gini index (a measure of income inequality), consumer price index (CPI), economic power index (EPI, a measure of the wealth of a prefecture), the prevalence of air conditioning for households, and the number of registered physicians, nurses and hospital beds per 10K population. For each indicator, we computed the averaged value across the years 1999-2015 for each prefecture. The details for data collection were described in previous studies ^{24,25} and summarized in supplementary material.

128 Data analysis

We conducted our data analysis in three steps. First, we assessed seasonality of mortality
without adjustments for temperature or ILI. Then, we examined the changes in the
seasonality after adjusting for temperature and ILI separately, as well as both at the same
time. Lastly, we evaluated the associations between each indicator and seasonality estimates
before and after adjustments.

We applied a generalized linear model with a quasi-Poisson family to assess seasonality of mortality in each prefecture without any adjustment for temperature and ILI. Day-of-year was treated as an indicator for seasonality, taking values from 1 to 366 corresponding to Jan 1st through Dec 31st for both common and leap years (from 60th day to 365th day in common years, values were taken from 61 to 366). We used a cyclic cubic spline with 4 degrees of freedom (df) for day of year to estimate seasonality. The days-of-year with maximum and minimum mortality estimates from generalized liner models were identified as the peak and trough days, respectively, and were subsequently used to calculate the peak-to-trough ratio (PTR) to provide a measure of seasonality. When constructing confidence intervals for PTR, previous studies enforced the boundary constraint by truncating the lower confidence limit at one for PTR.^{26,27} However, doing that may introduce a positive bias into the PTR.²⁸ In order to show the statistical variability in PTR, therefore, we did not truncate the lower confidence limit at one for PTR. Indicators for year, day-of-week and their interaction were used to control for

the long-term trend and the effect of day-of-week. We excluded the data on 11 March 2011,the day of the Great East Japan Earthquake.

To assess the contribution of temperature and ILI to seasonality of mortality, we attempted three types of adjustment. First, we added temperature to our main model using a bidimensional cross-basis function to account for its non-linear and delayed effect on mortality. We modeled the exposure-response curve with a natural cubic B-spline with three internal knots at 25th, 50th, and 75th percentiles of temperature distribution, and the lag-response association with another natural cubic spline basis with 3 *df* with extended lags up to 21 days.^{10,25}

Second, we removed temperature and adjusted for ILI in main model. We assumed ILI cases
distributed evenly across day of week and computed daily average ILI cases. A natural cubic
spline with 3 *df* was then used to control for daily ILI cases in the model. Third, adjustment
was made using both temperature and influenza.

The prefecture-specific PTR was pooled for the whole of Japan for all-cause, circulatory and respiratory mortality, respectively, by meta-analysis with prefecture as a random factor. To explore if patterns of interest varied over time, we conducted yearly analyses for the entire country using separate quasi-Poisson regression model for each year with prefecture as a random factor.

To evaluate the modification of seasonal variation in mortality by prefecture-specific indicators, we applied linear mixed effects models (LMEMs) to investigate associations of PTR with each prefecture-specific indicator separately. We fitted LMEMs with random intercepts for prefectures and the inverse of squared SE as weight. The longitude and latitude for the capital city of each prefecture were included to reduce spatial correlation, except for when we investigated annual mean temperature as the indicator, due to their high correlation. We

BMJ Open

 171 conducted the analysis for all-cause, circulatory, and respiratory mortality in separate LMEMs.
172 Results are expressed as the log(PTR) variation for a standard deviation increase of the
173 indicator.

We performed a series of sensitivity analysis to confirm our findings. We tested the cyclic spline function for day of year with different *df* of 5 and 6 and adjusted temperature by changing the spline function, internal knots for temperature distribution, df and lag days for the lagresponse associations. For influenza adjustment, we varied the number of lag days using the moving averages of the previous 7, 14, 21 and 28 days, and tested the natural cubic spline function with 2 df. For ILI adjustment, we tested moving average of previous 7, 14, 21 and 28 days for ILI cases, and 2 df for the natural cubic spline function. Overall, we did not observe substantial changes in our estimates.

The models were summarized in supplementary material including diagnostic plots. We conducted the analysis with R software, version 3.6.0 (R Development Core Team) using the dlnm and mixmeta packages.

185 Patient and public involvement

186 There was no patient or public involvement.

187 Results

This study included 18 985 036 deaths from all causes, 5 541 277 deaths from circulatory diseases, and 2 894 314 deaths from respiratory diseases. The nationwide time series of daily mortality showed a significant seasonal pattern (Figure S1). Daily mean temperature for the whole country between 1999 and 2015 ranged from -1.0°C to 30.7°C, with a mean value at 15.6°C (Table 1). ILI cases showed a large variation, ranging from 7 case to 1 652 147 cases with a median value at 7626 (Table 1). Prefecture-specific summary was provided in Table S1.

We observed a high variability for healthcare capacity (Table S2 & S3), while a low variability
for socioeconomic indicators. Most of the indicators are correlated (Figure S2). In particular,
EPI was highly correlated with population density, proportion of individuals aged over than 65
years old, and numbers of physicians, nurses and hospital beds (correlation>0.70). In addition,
saving is highly correlated with income (correlation>0.70).

Figure 1 and Table 2 show the pooled results for the whole of Japan for seasonality of allcause, circulatory, and respiratory mortality before and after adjustments for temperature and/or influenza. We observed a clear seasonal pattern with higher numbers of deaths in cold seasons than in warm seasons. Before any adjustments, the nationwide pooled PTR for allcause, circulatory and respiratory mortality were 1.29 (95% confidence intervals (CI): 1.27, 1.30), 1.52 (95% CI: 1.49, 1.55) and 1.45 (95% CI: 1.43, 1.48), respectively. After adjustments for temperature and ILI, the shape of seasonality remained (Figure 1), but its amplitude reduced to different extents. Adjusting for just temperature reduced PTRs substantially in particular for all-cause and circulatory mortality to 1.06 (95% CI: 1.05, 1.07) and 1.07 (95% CI: 1.05, 1.09). Adjusting for just ILI reduced PTRs only very slightly to 1.27 (95% CI: 1.26,1.29), 1.52 (95% CI: 1.49,1.55), and 1.40 (95% CI: 1.38, 1.43) for all-cause, circulatory and respiratory mortality, respectively. Notably, adjusting for temperature and ILI did not flatten the seasonal pattern or reduce the PTR to 1.

Similarly, prefecture-specific PTRs also showed a substantial reduction with temperature adjustment while a slight reduction when ILI was adjusted only, although an apparent reduction was observed in ILI-adjusted PTR for respiratory mortality (Figure 2). Furthermore, PTR for all mortality types varied across prefectures, and the spatial variation after adjustments was less apparent in particular for all-cause and circulatory mortality. Prefectures with higher latitude (northern areas), including Hokkaido, Aomori, and Akita, as well as the southernmost

BMJ Open

218 prefecture- Okinawa, showed a lower unadjusted-PTR and a smaller reduction after219 adjustments for temperature.

Our yearly analyses for the entire country showed a large reduction after adjusting for temperature while a small reduction after adjusting for ILI for most of the years (Figure S3). For the year of 2020, however, a higher PTR for all-cause and respiratory mortality was observed when temperature was included in the adjustment. We further checked the sensitivity of our estimates to temperature adjustment. Changing the lag period of 21 days in cross-basis function to 14 days reduced temperature-adjusted PTR, although it remained slightly higher than unadjusted PTR with a largely overlapped confidence intervals. The results for the other years did not change much (results not shown).

Figure S4 shows associations between the indicators and PTR. There was no strong evidence
for the association between prefecture-specific characteristics and seasonality estimates.
Diagnostic plots for models were included in supplementary material (Figure S5-S7).

231 Discussion

In this study, we investigated the contribution of temperature and influenza to seasonal variation of mortality in 47 prefectures of Japan and evaluated the modifications of seasonality by a range of prefecture-specific indicators. Our findings show that seasonal variation in mortality was substantially contributed by temperature and to a lesser extent, by influenza. In addition, seasonal amplitudes varied between prefectures. There was no strong evidence for the association between prefecture-specific characteristics and seasonal amplitudes.

238 Temperature and influenza have been among the most studied drivers of seasonality of
 239 mortality.¹³⁻¹⁶ However, most of the investigations focused on either temperature or influenza.
 240 How much of seasonality of mortality is dependent on temperature versus influenza remain
 241 unsolved. Our finding showed that most of seasonality of mortality in Japan was attributable

to temperature while little was driven by influenza. Consistent with our findings, a population -based cohort study in elderly British people examined month to month variation in mortality and its relationship with temperature and influenza A, and discovered that most of seasonal fluctuation was associated with cold temperature and a small component related with influenza A. Despite the smaller contribution of influenza to seasonal variation of mortality than temperature, our analysis suggested that influenza was accountable for seasonal variation, especially, for respiratory mortality. A study¹¹ in 48 U.S. cities observed a link between influenza epidemic and the irregularly high winter mortality in some certain years. Evidence thus far implies that temperature contributes substantially to seasonality of mortality in general, while influenza is related with seasonal variations of mortality to a less extent.

Notably, removing the effect of temperature and influenza from seasonal variation in mortality did not completely flatten the seasonal pattern of mortality, in particular, respiratory mortality. Seasonality of mortality is resulted from complex interaction between human behavior and environment. In addition to temperature and influenza, other infectious diseases (e.g., respiratory syncytial virus), air pollutants, behavioral changes based on a seasonal basis (e.g., dietary pattern and physical activities) have been linked with seasonal variation of diseases and mortality. However, there is no direct evidence assessing their contribution to seasonality of mortality.

Despite of a similar seasonal shape across prefectures, seasonal amplitudes varied across 47 prefectures. Previous studies have suggested that individuals living in cold locations show less seasonal variation in mortality, partially due to a better cold acclimatization from the combination of habituation, metabolic adjustment, and insulative acclimatization. ^{8,29–31} In addition, less developed locations is likely to exhibit a larger seasonal variation in mortality,¹ which can be related with high vulnerabilities to cold and heat effect of temperature because of poorer housing conditions, lower prevalence of air conditioning, and limited access to health Page 13 of 38

BMJ Open

care.^{18,23} In our study, we did not observe strong evidence for any associations between prefecture-specific characteristics and seasonal variations in mortality. This could be partially explained by the limited range of variations in the indicators and possible confounding effect between them. Furthermore, our data on the indictors are population-level, and future investigations with individual-level data is recommended to examine these issues.

This study has several limitations. First, our study was conducted in Japan that has distinct seasonal weather conditions, hence our results may not be applicable to other areas with different climate (e.g., tropical countries). Second, we assumed the association of mortality with influenza and temperature did not change between 1999 and 2015, and our findings for 2000 were sensitive to temperature adjustment. Furthermore, we observed some autocorrelation in the model residuals despite our attempts to model it (Figure S6). However, sensitivity testing showed that it had limited impacts on the estimate of seasonality (Table S4). It is possible that the PTR on adjusting for influenza and temperature may be overestimated due to residual confounding as a result of error in measuring these variables.³² However, any such overestimation would be believed to be slight, as the main error here would be of Berkson type, which does not cause bias and hence not compromise confounder control.³³ Finally, future investigations should be conducted by extending current datasets to those areas with different climate, and also by including more details for influenza (e.g., influenza subtype and vaccination coverage). Results from these investigations would complement our findings in current analysis.

This study presents findings from an epidemiologic analysis investigating the role of temperature, influenza and other local characteristics on seasonality of mortality across multiple locations. A strength of current study was the investigation of contributions of temperature versus influenza to seasonal variation of different types of mortality by a common

study design and statistical framework, while previous studies mostly focused on eithertemperature or influenza only.

This study suggests that seasonality of mortality is primarily driven by temperature. Furthermore, seasonal amplitudes varied between prefectures. However, this spatial variation was not explained by the differences in prefecture-specific characteristics on climate, demographic and socioeconomic factors, and adaptations. Further investigations are required to confirm our findings. In sum, this study can help us to gain a better understanding of seasonality of mortality.

Contributors: LM conducted the study, analyzed the data and wrote the manuscript. CN and XS helped with the statistical analysis and the discussion of the text. MT, LY and YH contributed to the final version of the manuscript. BA helped with the data analysis and the interpretation of the results. MH contributed to the study design and the discussion of the results. **Funding:** This work was primarily supported by the Japanese Society for the Promotion of Science (JSPS) KAKENHI Grant Number 19K19461.

306 Disclaimer: The funders had no role in study design, data collection and analysis, decision to
 1 307 publish, or preparation of the manuscript.

Competing interests: None declared.

309 Ethics approval: This study used secondary data, with no possibility of personal identification,
310 and an informed consent or an approval by a medical ethics board is not required.

Data availability statement: Data are available upon reasonable request. The technical appendix, statistical code and data set will be available upon request from the Corresponding author.

59 314 **References**

Page 15 of 38

BMJ Open

1 2			
2 3 4	315	1.	Healy, J. D. Excess winter mortality in Europe: a cross country analysis identifying
5 6 7	316		key risk factors. J. Epidemiol. Community Health 57, 784–9 (2003).
8 9	317	2.	Stewart, S., Keates, A. K., Redfern, A. & McMurray, J. J. V. Seasonal variations in
10 11 12	318		cardiovascular disease. Nat. Rev. Cardiol. 14, 654-664 (2017).
13 14	319	3.	Momiyama, M. Biometeorological study of the seasonal variation of mortality in Japan
15 16 17	320		and other countries. Int. J. Biometeor. 12, 377–393 (1968).
18 19	321	4.	M. Momiyama, K. K. A medico-climatological study in the seasonal variation of
20 21 22	322		mortality in USA (1). Pap. Meteor. Geophys. 17, 279–286 (1967).
23 24	323	5.	M. Momiyama, K. K. A medico-climatological study in the seasonal variation of
25 26 27	324		mortality in USA (2). Pap. Meteor. Geophys. 18, 209–232 (1968).
28 29 30	325	6.	Momiyama, M. A geographical study of seasonal disease calendar model by period
31 32	326		and country. Pap. Meteor. Geophys. 14, 1–11 (1963).
33 34 35	327	7.	van Rossum, C. T. et al. Seasonal variation in cause-specific mortality: Are there high-
36 37	328		risk groups? 25-year follow-up of civil servants from the first Whitehall study. Int. J.
38 39 40	329		<i>Epidemiol.</i> 30 , 1109–1116 (2001).
41 42	330	8.	Marti-Soler, H. et al. Seasonal Variation of Overall and Cardiovascular Mortality: A
43 44	331		Study in 19 Countries from Different Geographic Locations. PLoS One 9, e113500
45 46 47	332		(2014).
48 49 50	333	9.	Tanner, L. M., Moffatt, S., Milne, E. M. G., Mills, S. D. H. & White, M.
50 51 52	334		Socioeconomic and behavioural risk factors for adverse winter health and social
53 54	335		outcomes in economically developed countries: a systematic review of quantitative
55 56 57	336		observational studies. J. Epidemiol. Community Health 67, 1061-7 (2013).
58 59 60	337	10.	Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a

1 2			
2 3 4 5	338		multicountry observational study. Lancet (London, England) 386, 369-75 (2015).
5 6 7	339	11.	von Klot, S., Zanobetti, A. & Schwartz, J. Influenza epidemics, seasonality, and the
8 9 10	340		effects of cold weather on cardiac mortality. Environ. Heal. 11, 74 (2012).
11 12	341	12.	Imai, C., Barnett, A., Hashizume, M. & Honda, Y. The Role of Influenza in the Delay
13 14	342		between Low Temperature and Ischemic Heart Disease: Evidence from Simulation
15 16 17	343		and Mortality Data from Japan. Int. J. Environ. Res. Public Health 13, 454 (2016).
18 19	344	13.	Nguyen, J. L. et al. Seasonal Influenza Infections and Cardiovascular Disease
20 21 22	345		Mortality. <i>JAMA Cardiol</i> . 1, 274 (2016).
23 24 25	346	14.	Wilkinson, P. et al. Vulnerability to winter mortality in elderly people in Britain:
25 26 27	347		population based study. <i>BMJ</i> 329 , 647 (2004).
28 29 30	348	15.	Reichert, T. A. et al. Influenza and the Winter Increase in Mortality in the United
31 32	349		States, 1959–1999. Am. J. Epidemiol. Hopkins Bloom. Sch. Public Heal. All rights
33 34 35	350		Reserv. 160, 1959–1999 (2004).
36 37	351	16.	Nakaji, S. et al. Seasonal changes in mortality rates from main causes of death in
38 39 40	352		Japan. Eur. J. Epidemiol. 19, 905–913 (2004).
41 42	353	17.	Gemmell, I., McLoone, P., Boddy, F., Dickinson, G. J. & Watt, G. Seasonal variation
43 44 45	354		in mortality in Scotland. Int. J. Epidemiol. 29, 274–279 (2000).
46 47	355	18.	Hajat, S. et al. Public health vulnerability to wintertime weather: time-series regression
48 49 50	356		and episode analyses of national mortality and morbidity databases to inform the Cold
50 51 52	357		Weather Plan for England. Public Health 137, 26–34 (2016).
53 54 55	358	19.	Chalabi, Z. et al. Evaluation of the cold weather plan for England: modelling of cost-
56 57	359		effectiveness. Public Health 137, 13–19 (2016).
58 59 60	360	20.	Madsen, C. & Nafstad, P. Associations between environmental exposure and blood

Page 17 of 38

1

BMJ Open

2			
3 4	361		pressure among participants in the Oslo Health Study (HUBRO). Eur. J. Epidemiol.
5 6 7	362		21 , 485–91 (2006).
7 8 9	363	21.	Richard, S. A., Sugaya, N., Simonsen, L., Miller, M. A. & Viboud, C. A comparative
10 11	364		study of the 1918-1920 influenza pandemic in Japan, USA and UK: Mortality impact
12 13 14	365		and implications for pandemic planning. Epidemiol. Infect. 137, 1062–1072 (2009).
15 16	366	22.	Glaser, C. A. et al. Medical care capacity for influenza outbreaks, Los Angeles.
17 18 19	367		Emerg. Infect. Dis. 8, 569–574 (2002).
20 21	368	23.	Sera, F. et al. How urban characteristics affect vulnerability to heat and cold: a multi-
22 23 24	369		country analysis. Int. J. Epidemiol. 48, 1101–1112 (2019).
25 26	370	24.	Ng, C. F. S. et al. Heat-related mortality: Effect modification and adaptation in Japan
27 28 29	371		from 1972 to 2010. Glob. Environ. Chang. 39, 234–243 (2016).
30 31	372	25.	Chung, Y. et al. Changing Susceptibility to Non-Optimum Temperatures in Japan,
32 33	373		1972–2012: The Role of Climate, Demographic, and Socioeconomic Factors. <i>Environ</i> .
34 35 36	374		Health Perspect. 126, 057002 (2018).
37 38	275	26	Christonson A. L. Lundhva Christonson S. & Dathlafson C. Poisson ragrassion
39 40	575	20.	Christensen, A. L., Lundbye-Christensen, S. & Detmetsen, C. Poisson regression
40 41 42	376		models outperform the geometrical model in estimating the peak-to-trough ratio of
43 44	377		seasonal variation: A simulation study. Comput. Methods Programs Biomed. 104,
45 46	378		333–340 (2011).
47 48 49	379	27.	Brookhart, M. A. & Rothman, K. J. Simple estimators of the intensity of seasonal
50 51	380		occurrence. BMC Med. Res. Methodol. 8, 67 (2008).
52 53 54	381	28.	N, S. et al. Forty-year Seasonality Trends in Occurrence of Myocardial Infarction,
55 56	382		Ischemic Stroke, and Hemorrhagic Stroke. Epidemiology 29, (2018).
57 58 59 60	383	29.	Medina-Ramón, M. & Schwartz, J. Temperature, temperature extremes, and mortality:

3 4	384		a study of acclimatisation and effect modification in 50 US cities. Occup. Environ.
5 6 7	385		Med. 64, 827–33 (2007).
8 9	386	30.	Braga, A. L. F., Zanobetti, A. & Schwartz, J. The effect of weather on respiratory and
10 11 12	387		cardiovascular deaths in 12 U.S. cities. Environ. Health Perspect. 110, 859-63 (2002).
13 14	388	31.	McKee, C. M. Deaths in Winter: Can Britain Learn from Europe? Eur. J. Epidemiol. 5,
15 16 17	389		178–82 (1989).
18 19	390	32.	Armstrong, B. G. Effect of measurement error on epidemiological studies of
20 21 22	391		environmental and occupational exposures. Occup. Environ. Med. 55, 651-6 (1998).
23 24 25	392	33.	Dominici, F., Zeger, S. L. & Samet, J. M. A measurement error model for time-series
25 26 27	393		studies of air pollution and mortality. Biostatistics 1, (2000).
28 29 30	394		
30 31 32 33	395		
34 35 36	396		
37 38 30	397		
40 41	398		
42 43 44	399		
45 46 47	400		
48 49	401		
50 51 52	402		
55 54 55	403		
56 57 58	404		
59 60	405		

1		
2 3	100	
4	406	
5 6 7	407	
8 9 10	408	Figure captions:
11 12 12	409	Figure 1. Pooled seasonality of all-cause, circulatory, and respiratory mortality between 1999
15 14 15	410	and 2015 before and after adjustments (black: without any adjustment; blue: adjusted for
16 17	411	influenza like illness (ILI) only; green: adjusted for temperature only; red: adjusted for both
18 19 20	412	temperature and ILI)
21	413	The seasonality is computed as the ratio of predicted mortality at each day of the year to the predicted minimum
22 23 24	414	mortality at the trough with 95% confidence intervals (95%CIs):
25 26 27	415	$Ratio = \frac{Mortality \ at \ day_i}{Minimum \ mortality \ at \ the \ trough}$
28 29 30	416	
31 32 33	417	Figure 2. Prefecture-specific peak-to-trough ratio (PTR) with 95% confidence intervals (95%
34 35	418	CI) for all-cause (left), circulatory (middle), and respiratory (right) mortality before (black)
36 37	419	and after adjustments for influenza like illness (ILI) only (blue), temperature only (green),
38 39 40	420	and both (red)
41 42	421	
43 44	422	
45 46 47	423	
48 49 50 51 52 53 54 55	424	
56 57 58 59 60		

Table 1. Nationwide summary of daily mean temperature (°C), daily death (numbers of cases), and weekly influenza like illness

Variables	Median [interquartile range]	Mean (SD)	Range
Mean temperature	16.09 [8.04; 22.8]	15.6 (8.2)	[-1.0; 30.7]
All-cause mortality	3046 [2726; 3350]	3058 (443.7)	[2114; 4712]
Circulatory mortality	866 [768; 1003]	892.6 (157.1)	[570; 1454]
Respiratory mortality	464 [388; 535]	465.2 (105.9)	[247; 1072]
TT T			
ILI Note: Daily mortality on the day of the	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147
ILI Note: Daily mortality on the day of the	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]
ILI Note: Daily mortality on the day of the	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]
ILI Note: Daily mortality on the day of the	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]

(ILI) between 1999 and 2015

Table 2. Nationwide pooled peak-to-trough ratio (PTR) with 95% confidence interval (95% CI) with/without adjustment

... ...

Adjustment	All-caus	e mortality	Circulato	ry mortality	Respirato	ry mortality
	PTR	95% CI	PTR	95% CI	PTR	95% CI
None	1.29	1.28, 1.31	1.52	1.49, 1.55	1.45	1.43, 1.48
Temperature	1.06	1.05, 1.07	1.07	1.05, 1.09	1.16	1.12, 1.21
ILI	1.27	1.26, 1.29	1.52	1.49, 1.55	1.40	1.38, 1.43
Temperature + ILI	1.07	1.06, 1.07	1.08	1.06, 1.09	1.12	1.09, 1.16
				0		

Aomori Image: Constraint of the second o	Aomori Akita Akita Akita Ivate Ivate<	
Akita	Akita Akita Iwate Iwate </th <th></th>	
Iwate Miyagi Yamagata Niigata Fukushima Toyama Ishikawa Tochigi Gunma	Image: select of the select of th	
Miyagi Yamagata Niigata Fukushima Toyama Ishikawa Tochigi Gunma	Miyagi Miyagi Yamagata Yamagata Niigata Fukushima Toyama Nagano Ishikawa	
Yamagata Niigata Fukushima Toyama Sano Ishikawa Gunma	Yamagata Niigata Fukushima Toyama Nagano Ishikawa Ishikawa Ibaraki	
Niigata Fukushima Toyama Nagano Ishikawa Tochigi Gunma	Image: state	
Fukushima Toyama Nagano Ishikawa Tochigi Gunma	Image: strate strat	
Toyama Nagano Ishikawa Tochigi Gunma	Image: Constrained of the constrai	
Nagano	Image: Toyama	
Nagano Ishikawa Ishikawa Ishikawa Gunma Ishikawa	Nagano Ishikawa Tochigi Gunma Ibaraki	
Ishikawa Tochigi Gunma	 → →	
Gunma	Tochigi Gunma Ibaraki	
Gunma	Gunma Ibaraki	
	Ibaraki	
Ibaraki here		
Fukui	Fukui	
Saitama	Saitama	
7 Tokyo	Токуо	
Yamanashi	Yamanashi	
Chiba	Chiba	
Tottori	Tottori	
Shimane	Shimane	
Gifu	- Gifu	
Kanagawa	Kanagawa	
Aichi I		
Kvoto		
Hyogo	Hyogo	
Nara	Nara	
Osaka	Osaka	
Okayama	Okayama	
Hiroshima	Hiroshima	
Kagawa	Kagawa	
Wakayama	Wakayama	
Yamaguchi	Yamaguchi	
Tokushima	Tokushima	
Ehime	Ehime	
Fukuoka	Fukuoka	
Kochi H	Kochi	
Oita	Oita	
Saga	Saga	
Kumamoto	Kumamoto	
Nagasaki	Nagasaki	
Miyazaki	Miyazaki	
Kagoshima	Kagoshima	
Okinawa	Okinawa	
0.75 1.00 1.25	1.50 1.75 0.7	75 1.00 1.25 1.50 1.75

Supplementary material

The role of temperature, influenza and other local characteristics in seasonality of mortality: a population-based time-series study in Japan

Table of Contents

Table S1. Summary of daily mean temperature, daily cases of all-cause, circulatory, and respiratory	
mortality, and weekly cases of influenza likely illness	2
Figure S1. Time series of national wide daily mortality cases from all-cause, circulatory, respiratory dis	sease
and influenza between April 1999 and 2015	4
Summary of data collection on prefecture-specific indicators on climate, demographics, socioecon	omic
factors, and healthcare capacity	5
Table S2. Summary of Annual Values Across the Years (1999-2015) for Each Indicator	6
Table S3. Prefecture-specific summary of annual value across the years 1999-2015 for all indicators (m	ean
(SD))	7
Figure S2. Correlations between the indicators	9
Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95%CI) for each single year from	n
2000 to 2015 for all-cause (top), circulatory (middle), and respiratory (bottom) mortality before (black)	and
after adjustments for just influenza like illness (blue), just temperature (green), and both (red)	10
Figure S4. Associations between each indicator and PTR before and after adjusting for influenza like il	lness
(ILI) and temperature	11
Description of models	12
 Seasonality assessment without and with adjustments for temperature and/or influenza like illn Modification of seasonal variation in mortality by prefecture-specific indicators	ess 12 12
Model Checking and sensitivity analysis	13
Scatter plot of deviance residuals vs time	13
Partial autocorrelation function (PACF) plot of the deviance residuals	13
• The fit of the model to the daily death counts over time	14

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
Δ1	
יד- ⊿ר/	
4Z	
43	
44	
45	
46	

Table S1. Summary of daily mean temperature, dai	ly cases of all-cause, circulatory, and respirato	bry mortality, and weekly cases of influenza likely illness
--	---	---

Prefecture/	Daily mean te	mperature (°C)	All-cause mortalit	xy (n)	Circulatory mor	tality (n)	Respiratory mort	tality (n)	Influenza like illness (a	n)
country ^a	Mean (SD)	Range	Mean (SD)	Range	Mean (SD	Range	Mean (SD)	Range	Mean (SD)	Range
Hokkaido	9.32 (9.62)	[-11;29.6]	141.36 (21.94)	[81;220]	41.47 (8.36)	[18;79]	20.49 (6.09)	[3;55]	958.26 (2040.19)	[0;15153]
Aomori	10.7 (9.06)	[-7.5;30.1]	41.56 (8.2)	[16;79]	12.64 (3.95)	[1;28]	5.94 (2.73)	[0;19]	259.68 (566.2)	[0;3591]
Akita	12.14 (9.14)	[-5.5;31.6]	37.03 (7.55)	[15;64]	11.21 (3.75)	[1;27]	5.5 (2.6)	[0;19]	241.43 (517)	[0;4180]
Iwate	10.64 (9.46)	[-8.9;29.3]	40.4 (8.44)	[15;85]	13.49 (4.37)	[1;32]	5.89 (2.68)	[0;19]	273.48 (564.55)	[0;3716]
Miyagi	12.84 (8.38)	[-4.5;31.2]	55.3 (11.21)	[22;152]	17.14 (5.11)	[2;43]	7.57 (3.26)	[0;29]	400.31 (857.1)	[0;5417]
Yamagata	12.1 (9.43)	[-5.8;30.5]	36.91 (7.58)	[13;68]	11.59 (3.81)	[0;29]	5.49 (2.63)	[0;18]	209.39 (444.9)	[0;2795]
Niigata	14.17 (8.76)	[-2.8;31.8]	68.63 (12.22)	[31;112]	21.17 (5.66)	[4;45]	9.27 (3.5)	[0;26]	467.68 (1057.89)	[0;7472]
Fukushima	13.42 (8.89)	[-4.2;31.4]	58.49 (11.3)	[23;114]	18.98 (5.55)	[5;44]	8.61 (3.43)	[0;29]	350.57 (736.63)	[0;4293]
Toyama	14.57 (8.89)	[-2.8;33.1]	30.8 (6.97)	[11;59]	8.72 (3.25)	[1;24]	4.95 (2.46)	[0;16]	197.35 (433.32)	[0;3042]
Nagano	12.28 (9.53)	[-6.7;30]	59.97 (11.51)	[26;107]	19.68 (5.61)	[4;48]	8.38 (3.48)	[0;23]	424.98 (927.86)	[0;6713]
Ishikawa	15.07 (8.66)	[-2.6;32.4]	29.71 (6.78)	[9;58]	8.78 (3.28)	[0;26]	4.65 (2.37)	[0;16]	222.14 (503.98)	[0;3450]
Tochigi	14.39 (8.56)	[-2.5;31.7]	50.11 (10.49)	[19;95]	16.02 (5.1)	[4;37]	7.32 (3.21)	[0;25]	263.1 (595.1)	[0;3112]
Gunma	15.04 (8.6)	[-1.7;32.6]	51.57 (10.8)	[20;101]	15.74 (4.96)	[0;41]	8.5 (3.55)	[0;27]	393.01 (863.12)	[0;5616]
Ibaraki	14.15 (8.23)	[-1.7;31]	73.38 (14.37)	[31;136]	22.52 (6.5)	[2;51]	10.77 (4.32)	[0;31]	395.03 (908.36)	[0;5926]
Fukui	14.87 (8.94)	[-1.8;31.9]	21.69 (5.62)	[6;45]	6.35 (2.78)	[0;18]	3.57 (2.07)	[0;13]	176.7 (401.64)	[0;3054]
Saitama	15.53 (8.47)	[-0.9;33.7]	138.85 (27.86)	[65;258]	41.24 (10.6)	[13;97]	20.3 (7.16)	[3;58]	1139.33 (2572)	[0;15454]
Tokyo	16.69 (7.93)	[0.3;33.2]	265.37 (41.16)	[166;434]	76.17 (15.73)	[36;147]	38.71 (10.36)	[11;96]	1016.52 (2578.95)	[0;18939]
Yamanashi	15.12 (8.69)	[-2.1;31.8]	23.31 (6)	[7;52]	6.82 (2.9)	[0;20]	3.46 (2.01)	[0;16]	144.31 (310.05)	[0;1812]
Chiba	16.3 (7.76)	[0.3;32.1]	126.11 (24.2)	[64;216]	38.5 (9.97)	[13;88]	17.97 (6.22)	[2;58]	891.29 (2020.46)	[0;12096]
Tottori	15.22 (8.54)	[-3.1;32]	17.86 (4.84)	[5;38]	5.38 (2.49)	[0;16]	2.54 (1.66)	[0;11]	113.05 (238.68)	[0;1543]
Shimane	15.26 (8.27)	[-3.3;32.2]	23.8 (5.83)	[6;48]	6.92 (2.91)	[0;23]	3.72 (2.07)	[0;14]	125.38 (276.71)	[0;1979]
Gifu	16.22 (8.69)	[-1.7;32.7]	52.28 (10.68)	[21;99]	15.57 (4.93)	[3;36]	8.05 (3.35)	[0;23]	339.83 (715.25)	[0;4339]
Kanagawa	16.28 (7.67)	[0.3;32.2]	170.3 (31.31)	[94;297]	47.51 (10.56)	[18;101]	24.47 (7.72)	[3;65]	1276.81 (3000.95)	[0;17813]
Aichi	16.26 (8.57)	[-1.5;32.7]	148.39 (26.39)	[81;236]	41.47 (9.81)	[16;80]	21.5 (6.99)	[5;52]	1026.52 (2284.16)	[0;12493]
Kyoto	16.23 (8.71)	[-1.2;32.6]	62.27 (11.61)	[29;119]	18.01 (5.4)	[4;45]	9.63 (3.69)	[0;32]	403.21 (882.09)	[0;5518]

Table S1. Continued

Prefecture/	Daily mean te	mperature (°C)	All-cause mortalit	zy (n)	Circulatory mort	tality (n)	Respiratory mor	tality (n)	Influenza like illness (n))
country	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range
Shiga	15.1 (8.64)	[-2.1;31.8]	29.51 (7.11)	[9;60]	8.57 (3.37)	[0;22]	4.56 (2.35)	[0;18]	218.49 (484.12)	[0;2675]
Shizuoka	16.92 (7.45)	[1.7;31.9]	91.42 (18.13)	[45;172]	27.52 (7.56)	[9;62]	12.86 (4.84)	[2;36]	598.14 (1351.69)	[0;8255]
Mie	16.37 (8.21)	[-0.4;33.5]	47.71 (10.07)	[21;95]	13.97 (4.56)	[2;33]	7.12 (3.18)	[0;24]	331.76 (728.13)	[0;3989]
Hyogo	17.08 (8.24)	[-0.8;32.5]	131.5 (22.43)	[70;265]	36.03 (9.04)	[10;75]	19.74 (6.38)	[3;49]	793.55 (1722.72)	[0;10287]
Nara	15.19 (8.5)	[-1.7;30.8]	33.11 (7.65)	[12;62]	9.81 (3.76)	[0;28]	5.16 (2.56)	[0;17]	184.89 (412.67)	[0;2379]
Osaka	17.17 (8.36)	[-0.1;32.7]	195.43 (31.77)	[113;341]	52.28 (12.09)	[18;115]	30.9 (9.42)	[7;75]	1017.19 (2175.46)	[0;13525]
Okayama	16.52 (8.61)	[-1.7;32.3]	51.94 (10.18)	[19;92]	15.1 (4.7)	[1;34]	9.2 (3.64)	[0;26]	321.47 (729.3)	[0;4974]
Hiroshima	16.5 (8.43)	[-2;31.8]	72.18 (13.13)	[33;146]	20.79 (6)	[4;47]	11.62 (4.21)	[0;34]	441.89 (988.89)	[0;6087]
Kagawa	16.8 (8.37)	[-0.4;33]	28.54 (6.77)	[8;58]	8.28 (3.36)	[0;25]	5.04 (2.47)	[0;16]	187.73 (431.76)	[0;2632]
Wakayama	16.94 (8.12)	[0;32.7]	31.17 (7.11)	[9;73]	9.02 (3.47)	[0;28]	4.9 (2.48)	[0;16]	173.35 (381.83)	[0;2479]
Yamaguchi	15.79 (8.44)	[-4.5;31]	45.67 (8.95)	[20;82]	13.69 (4.43)	[2;32]	7.89 (3.25)	[0;28]	331.05 (769.8)	[0;5183]
Tokushima	16.85 (8)	[-1;32.6]	24.18 (5.89)	[8;51]	6.95 (2.88)	[0;20]	4.2 (2.26)	[0;15]	143.77 (329.5)	[0;2089]
Ehime	16.79 (8.04)	[-0.7;31.7]	42.87 (8.81)	[15;81]	13.42 (4.42)	[3;34]	6.8 (2.98)	[0;20]	263.9 (577.75)	[0;3750]
Fukuoka	17.35 (7.86)	[-0.8;32.8]	121.01 (19.83)	[69;210]	30.39 (7.36)	[11;73]	20.15 (6.46)	[4;57]	1025.85 (2276.78)	[0;12597]
Kochi	17.37 (7.75)	[-0.1;32.1]	25.27 (6.07)	[9;52]	7.92 (3.12)	[0;21]	4.2 (2.3)	[0;18]	205.81 (464.68)	[0;3201]
Oita	16.87 (7.76)	[-0.3;31.7]	34.24 (7.59)	[12;71]	10.03 (3.64)	[0;26]	5.89 (2.77)	[0;21]	316.35 (714.1)	[0;4478]
Saga	16.9 (8.22)	[-2.5;32.3]	23.97 (5.91)	[6;50]	6.67 (2.81)	[0;18]	4.1 (2.24)	[0;18]	186.74 (412.58)	[0;2778]
Kumamoto	17.31 (8.28)	[-1.8;31.7]	50.33 (10.24)	[20;95]	14.6 (4.69)	[1;35]	8.54 (3.55)	[0;31]	346.29 (811.45)	[0;5887]
Nagasaki	17.43 (7.64)	[-0.8;31.9]	41.9 (8.5)	[19;75]	11.99 (4.01)	[1;32]	7.08 (3.05)	[0;23]	337.01 (757.91)	[0;4798]
Miyazaki	17.77 (7.4)	[0.8;31.6]	31.75 (7.46)	[11;67]	9.72 (3.65)	[1;25]	5.28 (2.67) 🥏	[0;21]	356.01 (800.59)	[0;5875]
Kagoshima	18.85 (7.44)	[0.5;31.7]	53.03 (10.42)	[22;112]	16.1 (4.92)	[3;43]	9.4 (3.88)	[0;38]	436.56 (969.33)	[0;7309]
Okinawa	23.29 (4.68)	[10.3;31.1]	25.95 (6.33)	[6;53]	6.67 (2.78)	[0;21]	4.36 (2.26)	[0;15]	404.6 (716.61)	[0;5197]

^a Prefectures was ordered by latitude from high to low.

^b Daily mortality on the day of the Great East Japan Earthquake (11 March 2011) was excluded from our analysis.

Figure S1. Time series of national wide daily mortality cases from all-cause, circulatory, respiratory disease and influenza between April 1999 and 2015

Summary of data collection on prefecture-specific indicators on climate, demographics, socioeconomic factors, and healthcare capacity

We computed the annual mean temperature and relative humidity for each prefecture averaged from 1999 to 2015. For demographic indicators, we collected yearly data on population density and the proportion of population aged \geq 65 years for each prefecture for 1972-2012 from the Statics Bureau of the Ministry of Internal Affairs and Communications of Japan. We collected information on socioeconomic indicators from Statistics Bureau of the Ministry of Internal Affairs and Communications of Japan,^{1,2} including saving and income available every 5 years for 1974-2009, Gini index (a measure of income inequality) available every 5 years for 1979-2009, consumer price index (CPI) from 1972 to 2009, economic power index (EPI, a measure of the wealth of a prefecture) from 2003 to 2015, and the prevalence of air conditioning for households with two persons or more from 1972 to 2009. We extracted the number of registered physicians, nurses and hospital beds per 10K population in 1975 and 2004 from the Survey of Medical Institutions and Hospital Report conducted by the Ministry of Health, Labour and Welfare.³ For each indicator, we computed the averaged value across the years 1999-2015 for each prefecture.

- Satistics Bureau of the Ministry of Internal Affairs and Communications of Japan. 2015. Statistics, Consumer Price Index.
- 2. National Survey of Family Income and Expenditure Definitions of Terms Webpage [in Japanese]. Statics Bureau of the Ministry of Internal Affairs and Communications of Japan. 2009.
- Survey of Medical Institutions. [WWW Document]. Health Statistics Office Ministry of Health Labor and Welfare Japan. http://www.mhlw.go.jp/english/ database/db-hss/smi.html (accessed 10.1.14.). Published 2010.

Table S2. Summary of Annual Values Across the Years (1999-2015) for Each Indicator

		Runge
15.55 (2.34)	16.03 [14.64; 16.91]	[8.4; 23.55]
68.64 (3.61)	68.42 [65.52; 72.08]	[57.51; 79.96]
0.003 (0.002)	0.002 [0.001; 0.003]	[0.0006; 0.013]
0.22 (0.06)	0.22 [0.20; 0.25]	[0.12; 0.31]
14.49 (5.14)	14.97 [12.24; 16.47]	[5.07; 19.73]
6.88 (1.77)	6.84 [6.35; 7.45]	[4.56; 8.94]
97.65 (17.1)	97.4 [96.6; 98.60]	[94.6; 103.30]
0.30 (0.02)	0.30 [0.29; 0.31]	[0.27; 0.35]
0.47 (0.21)	0.42 [0.31; 0.57]	[0.20; 1.41]
5.60 (4.98)	3.60 [4.89; 5.93]	[1.62; 34.46]
15.04 (10.29)	10.41 [7.82; 15.88]	[4.09; 68.00]
34.88 (26.72)	23.81 [17.93; 36.86]	[9.11; 130.48]
85.9 (31.60)	92.6 [86.0; 95.7]	[8.30; 99.40]
	.3.55 (2.34) i8.64 (3.61)).003 (0.002)).22 (0.06) 14.49 (5.14) 5.88 (1.77))7.65 (17.1)).30 (0.02)).47 (0.21) 5.60 (4.98) 15.04 (10.29) 34.88 (26.72) 35.9 (31.60)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population ≥ 65 years	Savings (million yen)	Income (million yen)	СРІ	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	AC
Hokkaido	9.26(0.38)	68.81(2.07)	0.0056(1e-04)	0.22(0.03)	11.64(0.15)	6.02(0.54)	97.13(1.2)	0.29(0.01)	0.38(0.02)	11.87(0.47)	37.78(4.15)	106.68(1.57)	13.2
Aomori	10.64(0.4)	74.78(1.9)	0.0014(0)	0.23(0.03)	9.92(0.91)	5.96(0.3)	96.7(1.09)	0.3(0.01)	0.3(0.03)	2.52(0)	8.84(0.56)	19.96(0.46)	43.7
Akita	12.11(0.28)	72.64(0.9)	0.0011(0)	0.27(0.02)	10.82(0.79)	6.51(0.62)	98.6(1.48)	0.29(0.01)	0.27(0.02)	2.2(0.06)	7.6(0.59)	17.58(0.31)	66.8
Iwate	10.57(0.34)	73.31(1.37)	0.0014(0)	0.25(0.02)	12.29(0.23)	6.53(0.87)	97.33(0.94)	0.3(0.01)	0.29(0.02)	2.48(0.02)	10.18(0.69)	20.45(0.76)	45.5
Miyagi	12.78(0.4)	71.22(1.25)	0.0024(0)	0.2(0.02)	11.87(0.34)	6.89(0.26)	98.05(1.4)	0.3(0.02)	0.51(0.03)	4.62(0.2)	12(1.44)	26.42(0.25)	67.9
Yamagata	12.07(0.33)	74.27(1.31)	0.0012(0)	0.26(0.02)	12.36(0.49)	7.21(0.67)	96.85(0.84)	0.3(0.02)	0.31(0.02)	2.37(0.09)	7.94(0.69)	15.12(0.16)	76.1
Niigata	14.19(0.29)	70.69(1.55)	0.0024(0)	0.24(0.02)	15.21(0.86)	7.38(0.64)	97.96(1.22)	0.3(0.01)	0.4(0.03)	4.34(0.09)	13.93(1.31)	30.32(0.04)	91.6
Fukushima	13.36(0.37)	68.79(0.92)	0.0021(1e-04)	0.23(0.02)	12.46(0.38)	6.88(0.65)	97.08(1.07)	0.31(0.01)	0.42(0.03)	3.72(0.05)	11.22(1.01)	30.95(1.36)	64.2
Toyama	14.56(0.32)	77.2(1.74)	0.0011(0)	0.24(0.02)	16.33(0.62)	8.08(0.84)	98.15(1.53)	0.3(0.02)	0.42(0.06)	2.51(0.09)	7.88(0.87)	18.34(0.01)	93.6
Nagano	12.25(0.3)	71.31(1.55)	0.0022(0)	0.24(0.02)	15.57(0.71)	7.12(0.71)	98.11(1.21)	0.28(0.01)	0.44(0.04)	4.08(0.19)	13.78(1.49)	25.03(0.11)	54.3
Ishikawa	15.06(0.3)	70.05(1.91)	0.0012(0)	0.21(0.02)	16.57(1.16)	7.71(0.96)	98.56(1.12)	0.29(0)	0.44(0.05)	2.9(0.12)	8.89(0.73)	20.41(0.58)	92.9
Tochigi	14.34(0.34)	69.09(2.2)	0.002(0)	0.2(0.02)	15.62(0.66)	7.46(0.33)	96.8(1.4)	0.3(0.01)	0.58(0.07)	3.91(0.18)	9.57(1.27)	22.67(0.07)	89.1
Gunma	14.98(0.34)	61.18(1.76)	0.002(0)	0.21(0.02)	15.58(1.06)	6.85(0.54)	98.26(1.46)	0.3(0.01)	0.55(0.05)	3.98(0.17)	10.03(1.65)	25.32(0.04)	89.0
Ibaraki	14.08(0.39)	72.75(0.85)	0.003(0)	0.2(0.03)	15.35(0.57)	7.44(0.95)	95.5(0.98)	0.3(0.01)	0.6(0.07)	4.37(0.17)	12.01(1.43)	33.23(0.45)	89.7
Fukui	14.85(0.28)	74.7(1.86)	8e-04(0)	0.23(0.02)	18.63(1.15)	8.19(0.72)	98.05(1.51)	0.3(0.01)	0.38(0.04)	1.72(0.05)	5.12(0.57)	12.24(0.22)	95.1
Saitama	15.49(0.34)	64.24(2.26)	0.0071(1e-04)	0.17(0.03)	15.16(0.87)	7.38(0.62)	97.09(1.53)	0.29(0.01)	0.7(0.06)	8.95(0.71)	23.78(3.55)	61.53(1.06)	97.3
Tokyo	16.67(0.36)	59.7(1.51)	0.0126(4e-04)	0.19(0.02)	18.18(1.42)	7.99(0.25)	99.56(1.67)	0.31(0)	1.21(0.14)	33.31(1.63)	64.5(4.94)	130.07(0.57)	96.4
Yamanashi	15.08(0.3)	63.11(1.55)	9e-04(0)	0.22(0.02)	13.92(1.39)	6.79(0.68)	96.91(0.99)	0.29(0.02)	0.38(0.05)	1.69(0.02)	4.98(0.53)	11.52(0.33)	73.1
Chiba	16.24(0.39)	68.32(1.6)	0.0061(1e-04)	0.18(0.03)	16.19(0.2)	7.53(0.81)	98.23(1.68)	0.3(0.01)	0.72(0.07)	8.8(0.53)	22.91(2.73)	56.24(0.03)	93.6
Tottori	15.19(0.29)	72.91(1.3)	6e-04(0)	0.24(0.02)	15.58(0.65)	6.81(0.67)	97.94(1.25)	0.3(0)	0.25(0.02)	1.66(0.07)	4.41(0.44)	9.15(0.06)	90.2
Shimane	15.24(0.28)	74.31(1.45)	7e-04(0)	0.27(0.02)	14.25(0.86)	6.96(0.72)	96.61(0.78)	0.3(0.02)	0.23(0.02)	1.85(0.06)	5.57(0.51)	11.97(0.21)	89.7
Gifu	16.18(0.3)	65.69(2.68)	0.0021(0)	0.21(0.02)	17.53(0.51)	7.66(0.86)	97.35(1.76)	0.3(0.01)	0.49(0.05)	3.54(0.1)	10.18(1.01)	21.05(0.26)	90.6
Kanagawa	16.22(0.36)	65.11(1.62)	0.0088(2e-04)	0.17(0.03)	17.92(0.65)	7.78(0.6)	97.7(1.03)	0.3(0.01)	0.89(0.07)	14.7(0.72)	37.79(3.69)	75.2(0.55)	94.6
Aichi	16.23(0.34)	65.22(2.84)	0.0073(2e-04)	0.18(0.02)	17.99(1.16)	7.7(0.45)	97.96(1.2)	0.3(0)	0.97(0.09)	12.97(0.47)	33.84(4.21)	69.96(0.03)	96.7
Kyoto	16.19(0.28)	64.26(2)	0.0026(0)	0.21(0.03)	15.65(0.9)	6.64(0.83)	97.09(1.02)	0.29(0.01)	0.56(0.07)	7.17(0.11)	16.99(1.48)	37.17(0.42)	97.1
Shiga	15.07(0.26)	73.87(1.46)	0.0014(0)	0.18(0.02)	16.75(0.7)	7.42(0.54)	97.59(1.18)	0.29(0.01)	0.53(0.07)	2.63(0.18)	8.37(1.16)	14.14(0.63)	95.4
Shizuoka	16.9(0.3)	68.26(1.74)	0.0038(0)	0.21(0.03)	16.73(0.53)	7.45(0.65)	97.06(1.33)	0.3(0.01)	0.7(0.05)	6.43(0.29)	19.68(2.15)	39.74(0.74)	90.1

3 4

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population ≥ 65 years	Savings (million yen)	Income (million yen)	CPI	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	A
Mie	16.35(0.3)	67.67(2.16)	0.0019(0)	0.22(0.02)	17.55(1.8)	7.45(0.65)	96.24(0.83)	0.28(0)	0.54(0.07)	3.38(0.08)	9.3(1.17)	21.22(0.07)	94
Hyogo	17.08(0.29)	65.15(1.93)	0.0056(0)	0.2(0.03)	16(0.65)	7.01(0.52)	98.18(1.95)	0.3(0.01)	0.55(0.07)	11.22(0.49)	30.33(3.37)	64.77(0.49)	95
Nara	15.16(0.29)	72.17(1.47)	0.0014(0)	0.21(0.03)	18.02(1.78)	7.26(0.69)	99.24(2.2)	0.3(0.01)	0.39(0.05)	2.81(0.15)	7.23(0.82)	16.19(0.88)	97
Osaka	17.19(0.32)	62.81(1.12)	0.0088(0)	0.19(0.03)	14.5(0.48)	6.62(0.7)	99.34(1.9)	0.32(0.02)	0.75(0.05)	21.07(0.69)	44.41(6.91)	113.25(3.26)	97
Okayama	16.57(0.29)	65.53(1.56)	0.0019(0)	0.23(0.02)	16.77(0.56)	7.07(0.67)	97.51(0.81)	0.3(0.01)	0.48(0.07)	4.86(0.27)	14.71(1.4)	31.45(0.45)	94
Hiroshima	16.48(0.28)	67.24(2.45)	0.0029(0)	0.21(0.02)	16.13(1.18)	6.9(0.34)	97.44(1.08)	0.3(0.01)	0.54(0.07)	6.7(0.16)	17.77(2.04)	42.23(0.33)	93
Kagawa	16.8(0.28)	65.55(1.47)	0.001(0)	0.24(0.02)	18.52(1.26)	6.95(0.53)	97.44(1)	0.29(0.01)	0.43(0.05)	2.51(0.04)	7.55(0.52)	17.36(0.4)	96
Wakayama	16.92(0.31)	64.22(1.73)	0.001(0)	0.24(0.03)	15.19(1.03)	6.24(0.7)	96.62(1.17)	0.3(0)	0.3(0.04)	2.54(0.09)	5.8(0.72)	14.84(0.25)	95
Yamaguchi	15.81(0.25)	70.19(1.53)	0.0015(0)	0.25(0.02)	13.95(0.73)	6.3(0.36)	98.89(1.38)	0.29(0.01)	0.41(0.05)	3.53(0.06)	10.57(0.97)	28.29(0.22)	91
Tokushima	16.86(0.3)	66.08(1.49)	8e-04(0)	0.25(0.02)	16.1(1.28)	6.77(0.58)	97.19(0.89)	0.33(0.01)	0.31(0.02)	2.26(0.05)	6.08(0.39)	16.22(0.56)	94
Ehime	16.8(0.28)	65.35(2.18)	0.0015(0)	0.24(0.02)	13.8(1.41)	6.11(0.32)	97.26(0.86)	0.3(0.01)	0.37(0.04)	3.4(0.06)	10.91(0.81)	23.81(0)	92
Fukuoka	17.33(0.28)	65.6(1.58)	0.0051(0)	0.2(0.02)	12.55(0.73)	6.49(0.36)	98.16(1.94)	0.31(0.01)	0.58(0.04)	13.19(0.52)	35.67(3.32)	89.87(1.1)	95
Kochi	17.39(0.32)	68.63(1.23)	8e-04(0)	0.26(0.02)	13.95(2.37)	6.22(0.69)	97.43(1.26)	0.32(0.01)	0.23(0.02)	2.16(0.05)	6.48(0.71)	20.05(0.56)	88
Oita	16.9(0.3)	66.88(1.82)	0.0012(0)	0.25(0.02)	12.17(0.27)	6.08(0.55)	97.08(1.06)	0.3(0.01)	0.33(0.04)	2.82(0.1)	8.78(0.95)	21.09(0.22)	88
Saga	16.86(0.27)	67.71(1.68)	9e-04(0)	0.23(0.02)	12.14(1.08)	6.84(0.65)	98.58(1.54)	0.29(0.01)	0.31(0.03)	1.95(0.05)	6.44(0.57)	15.47(0.05)	93
Kumamoto	17.34(0.36)	68.2(1.65)	0.0018(0)	0.24(0.02)	10.85(0.52)	6.27(0.55)	97.84(1.16)	0.31(0.01)	0.36(0.04)	4.58(0)	14.54(1.4)	36.53(0.44)	90
Nagasaki	17.45(0.31)	68.71(1.9)	0.0015(0)	0.24(0.02)	11.01(0.22)	6.02(0.58)	97.86(0.97)	0.31(0.02)	0.27(0.03)	3.78(0.2)	10.92(1.21)	28.45(0.91)	93
Miyazaki	17.78(0.32)	72.24(1.44)	0.0012(0)	0.24(0.02)	10.18(0.44)	5.93(0.32)	98.22(1.46)	0.31(0)	0.29(0.03)	2.49(0.07)	8.63(1.1)	19.92(0.08)	88
Kagoshima	18.86(0.32)	68.12(2.12)	0.0017(0)	0.25(0.02)	10.08(0.13)	5.63(0.37)	97.42(0.72)	0.29(0.01)	0.29(0.02)	3.89(0.11)	13.17(1.27)	36.17(0.52)	89
Okinawa	23.28(0.22)	72.39(2.08)	0.0014(0)	0.16(0.01)	5.58(0.44)	4.79(0.41)	97.36(1.11)	0.35(0.01)	0.28(0.02)	2.62(0.23)	7.85(0.87)	19.78(0.01)	86

Blue: positively associated; red: negatively associated; Cross: p>0.05. RH: relative humidity; CPI: consumer price index; EPI: economic power index; AC: air conditioning prevalence

Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95% CI) for each single year from 2000 to 2015 for all-cause (top), circulatory (middle), and respiratory (bottom) mortality before (black) and after adjustments for just influenza like illness (blue), just temperature (green), and both (red) *Note: The year of 1999 was excluded from our yearly analyses, as ILI data was not available until April 1999.*

Figure S4. Associations between each indicator and PTR before and after adjusting for influenza like illness (ILI) and temperature

Coefficient and 95% confidence intervals were obtained from liner mixed effect models adjusting for latitude and longitude, except for when we investigated averaged annual mean temperature as the indicator, due to their high correlation. Results are expressed as log (PTR) change for standard deviation increase in each indicator.

Description of models

• Seasonality assessment without and with adjustments for temperature and/or influenza like illness

We applied a generalized linear model with a quasi-Poisson family to assess seasonality of mortality in each prefecture.

$Y_t \sim Quasi - Poisson(\mu_t)$

Main model (without any adjustment for temperature and ILI) $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t$ Adjusting for temperature $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + \beta Temp_{t,l}$ Adjusting for ILI $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + ns(ILI_t, 3)$ Adjusting for both temperature and ILI $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + \beta Temp_{t,l} + ns(ILI_t, 3)$

t: the day of the observation;

Yt: the observed daily numbers of mortality on day *t*;

 β_0 : the intercept;

doy: day of year, which was fitted using cyclic cubic spline with 4 degrees of freedom (df);

 ILI_t : the daily numbers of ILI on day t, which was controlled using natural cubic spline with 3 df;

Stratat: strata defined by year, day of week, and their interaction to control for the long-term trend and the effect of day of week, and λ is the vector of coefficients;

Tempt,l: a matrix obtained by using cross basis function to temperature; l is the lag days, and β is the vector of coefficients. (For the cross-basis function, a natural cubic B-spline basis with three internal knots at the 25th, 50th, and 75th percentiles of temperature distribution was used for exposure-response association, and another natural cubic B-spline basis with 3 df with extended lag up to 21 days was used for the lag-response association.)

• Modification of seasonal variation in mortality by prefecture-specific indicators

We applied linear mixed effects models (LMEMs) to investigate associations of PTR with each prefecture-specific indicator separately. We fitted LMEMs with random intercepts for prefectures and the inverse of squared SE as weight. The longitude and latitude for the capital city of each prefecture were included to reduce spatial correlation, except for when we investigated annual mean temperature as the indicator, due to their high correlation.

$\beta_i = \alpha + \gamma Z_i + \eta + \nu_i$

 β_i is the estimated coefficient for seasonality (i.e., log(PTR)) in prefecture *i*

 Z_i is the prefecture-specific indicator for prefecture *i* (e.g., latitudes, longitudes, and averaged annual mean temperature)

 α and γ are estimated using least squares regression with inverse-variance weights.

 v_i is the variation within prefecture *i*, with the variance as $\sigma_{v_i}^2$

 η represents the heterogeneity among prefectures with a variance of σ_{η}^2 estimated using the restricted maximum likelihood approach.

Model Checking and sensitivity analysis

We used scatter plot of deviance residuals vs time and partial autocorrelation function plot of the deviance residuals to check the models. In addition, sensitivity analysis was conducted to check the robustness of our estimates.

We used the largest prefecture (i.e., Tokyo) for model evaluation, as the statistical uncertainty for the estimates was small.

• Scatter plot of deviance residuals vs time

In general, the plot shows an even band of points over the time, although we observed a few spikes, for example, in 1999. This pattern did not change significantly when we use more flexible modellings for seasonality, temperature, and influenza.

Figure S5. Deviance residuals over time from the analysis in Tokyo (without adjustment for temperature and/or influenza)

• Partial autocorrelation function (PACF) plot of the deviance residuals

PACF shows a slow decay and a high degree of autocorrelation around a 1-week lag. This pattern remained when we included temperature and/or ILI in the model. In order to reduce the autocorrelation, we tried more flexible functions for seasonality by increasing the degree of freedom, and then we added lagged deviance residuals to the model in several different ways. For example, 1-day lagged deviance residuals, 1- to 6-day lagged deviance residual, and a moving average of 6 days lagged deviance residuals, respectively. The autocorrelation remained without much reduction after many attempts, but the coefficient and its standard error from cyclic spline functions for seasonality changed very little (Table S4).

Figure S6. Partial autocorrelation function plot of the deviance residuals from the analysis in Tokyo (without adjustment for temperature and/or influenza)

	adjusting for temperature and	of influenza like liness		
_	Models	Peak-to-Trough		
	Widdels	(95% confidence interval)		
	Main model	1.254 (1.249, 1.259)		
	Model 1	1.249 (1.237, 1.255)		
	Model 2	1.244 (1.237, 1.252)		
	Model 3	1.253 (1.249, 1.258)		
	Model 4	1.253 (1.248, 1.257)		
	Model 5	1.252 (1.248, 1.257)		
	Model 6	1.250 (1.247, 1.254)		

Table S4. Seasonality estimates for Tokyo without adjusting for temperature and/or influenza like illness

Main model: $\log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t$

(*Stratat*: strata defined by year, day of week, and their interaction to control for long-term trend and effect of day of week) Model 1: $\log(\mu_t) = \beta_0 + cs(day - of - year, 5) + \lambda Strata_t$

$$\begin{split} & \text{Model 2: } \log(\mu_t) = \beta_0 + cs(day - of - year, 6) + \lambda Strata_t \\ & \text{Model 3: } \log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) \\ & \text{Model 4: } \log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) + \\ & Lag(residuals(main model), 2) + Lag(residuals(main model), 3) \\ & \text{Model 5: } \log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) + \\ & Lag(residuals(main model), 2) + Lag(residuals(main model), 3) \\ & \text{Model 5: } \log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) + \\ & Lag(residuals(main model), 2) + Lag(residuals(main model), 3) + Lag(residuals(main model), 4) + \\ & Lag(residuals(main model), 5) + Lag(residuals(main model), 6) \\ & \text{Model 6: } \log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + runmean(residuals(main model), 6) \\ \end{aligned}$$

• The fit of the model to the daily death counts over time

Figure S7. Daily mean number of observed aal-cause, circulatory, and respiratory mortality in Japan averaged from 47 prefectures over the study period and estimated number of daily circulatory mortality from time series regression models (Main model)

Grey dot: daily mean number of observed mortality cases averaged from 47 prefectures over the study period; Red: pooled estimates with 95% confidence intervals obtained from prefecture-specific estimates from models without temperature adjustment

Figure S7 suggests that our models fitted seasonality of circulatory mortality better and may underestimate the seasonal variation in all-cause and respiratory mortality. The discrepancy between observed and fitted values may be explained by the risk of temperature, infectious disease, and other factors (e.g., human behaviour).

Soction/Tonic			
	Item #	Recommendation	Reported on page #
litle and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-8
		(b) Describe any methods used to examine subgroups and interactions	6-8
		(c) Explain how missing data were addressed	6-8
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	6-8

		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-9
		(b) Indicate number of participants with missing data for each variable of interest	8-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	8
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9-10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information		•	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The role of temperature, influenza and other local characteristics in seasonality of mortality: a populationbased time-series study in Japan

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044876.R2
Article Type:	Original research
Date Submitted by the Author:	08-Jun-2021
Complete List of Authors:	Madaniyazi, Lina; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Ng, Chris Fook Sheng; Nagasaki University, School of Tropical Medicine and Global Health Seposo, Xerxes; Nagasaki University, School of Tropical Medicine and Global Health Toizumi, Michiko; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Yoshida, LM; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases; Nagasaki University, School of Tropical Medicine and Global Health Honda, Yasushi; National Institute for Environmental Studies, Center for Climate Change Adaptation; University of Tsukuba Faculty of Health and Sport Sciences Armstrong, Ben; London School of Hygiene & Tropical Medicine, Department of Social and Environmental Health Research Hashizume, Masahiro ; The University of Tokyo, Department of Global Health Policy; Nagasaki University Institute of Tropical Medicine, Department of Paediatric Infectious Diseases
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, PREVENTIVE MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	1	The role of temperature, influence and other local characteristics in seasonality of mortality; a
4 5	T	The fole of temperature, influenza and other local characteristics in seasonality of moltanty. a
6 7	2	population-based time-series study in Japan
8	3	
9 10	4	Lina Madaniyazi ^{1,2*} , Chris Fook Sheng Ng ² , Xerxes Seposo ² , Michiko Toizumi ^{1,2} , Lay-Myint
11 12	5	Yoshida ^{1,2} , Yasushi Honda ^{3,4} , Ben Armstrong ⁵ , Masahiro Hashizume ^{1,2,6}
13 14	6	
15 16	7	1. Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki
17	8	University, Nagasaki, Japan.
18 19 20	9	2. School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
20 21 22	10	3. Center for Climate Change Adaptation, National Institute for Environmental Studies,
23 24	11	Tsukuba, Japan
25 26	12	4. Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
27 28 20	13	5. Department of Social and Environmental Health Research, London School of Hygiene &
30 31	14	Tropical Medicine, London, UK.
32 33	15	6. Department of Global Health Policy, The University of Tokyo, Tokyo, Japan.
34 35	16	
36 37	17	*Corresponding author:
39 40	18	Lina Madaniyazi, lina.madaniyazi@nagasaki-u.ac.jp
41 42	19	Department of Pediatric Infectious Diseases,
43 44	20	Institute of Tropical Medicine, Sakamoto Campus, Nagasaki University,
45 46 47	21	1-12-4, Sakamoto, Nagasaki 852-8523, Japan
47 48 49	22	Phone: +81 95 819 7763
50 51	23	Fax: +81-95-819-7844
52 53	24	
54 55	25	
56 57		
58 59		
60		

2	
2	
4	
5	
6	
7	
8	
å	
9 10	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
20 27	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
<u>4</u> २	
ر ب	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	
~	

48

60

26	Abstract	

Objectives: To investigate the extent to which temperature and influenza explained seasonality
of mortality in Japan and to examine the association of the seasonality with prefecture-specific
characteristics.

30 Design: We conducted time-series analysis to estimate the seasonal amplitude before and after 31 adjusting for temperature and/or influenza like illness (ILI). Next, we applied linear mixed 32 effect models to investigate the association of seasonal amplitudes with each indicator on 33 prefecture-specific characteristics on climate, demographic and socioeconomic factors, and 34 adaptations.

35 Setting: 47 prefectures in Japan

36 Participants: Deaths for all-cause, circulatory, and respiratory disease between 1999 and 2015
37 Outcome measures: Peak-to-trough ratio (PTR, a measure of seasonal amplitude)

Results: The nationwide unadjusted-PTRs for all-cause, circulatory and respiratory mortality
were 1.29 (95% Confidence Intervals (CI): 1.28, 1.31), 1.52 (95%CI: 1.49, 1.55) and 1.45
(95%CI: 1.43, 1.48), respectively. These PTRs reduced substantially after adjusting for
temperature but very little after a separate adjustment for ILI. Furthermore, seasonal amplitudes
varied between prefectures. However, there was no strong evidence for the associations of PTR
with the indicators on prefecture-specific characteristics.

Conclusions: Seasonality of mortality is primarily driven by temperature in Japan. The spatial
variation in seasonal amplitudes was not associated with prefecture-specific characteristics.
Although further investigations are required to confirm our findings, this study can help us gain
a better understanding of the mechanisms underlying seasonality of mortality.

2 3	10	Strongths and limitations of this study
4	49 50	Strengths and minitations of tins study
5 6 7	51	• We investigated the contributions of temperature versus influenza to seasonal variation of
, 8 9	52	different types of mortality by a common study design and statistical framework.
10 11 12	53	• We used indicators on a range of location-specific characteristics to investigate their
13 14	54	modifying effect on seasonal variations in mortality.
15 16 17	55	• The study was conducted in Japan characterized by distinct seasonal weather conditions,
18 19	56	so our results may not be generalized to locations with different climate (e.g., tropical
20 21 22	57	countries).
23 24	58	• The deviance of residuals showed some autocorrelations, but it had limited impacts on our
25 26 27	59	seasonality estimates.
28 29	60	
30 31 32 33	61	
34 35	62	
30 37 38	63	
39 40 41	64	
42 43 44	65	
45 46 47	66	
48 49	67	
50 51 52	68	
53 54 55	69	
56 57 58 59 60	70	

71 Introduction

Seasonality of mortality is among the oldest observation across a broad range of population and geographical locations, typically entailing higher mortality in cold seasons than in warm seasons.^{1–6} This epidemiological phenomenon reflects a complex interaction between environment and human.² The understanding of its underlying drivers is yet to be elucidated.

Some of the postulated contributors to seasonality of mortality include temperature, infectious disease, air pollution, physiological responses, and human behaviors.^{1,2,7–9} Temperature is of most profound interest, with overwhelming evidence on its cold and hot effect on mortality.¹⁰ Another well recognized contributor to seasonality is influenza, due to its strong seasonal cycle and association with inflammatory process.¹¹ A number of studies demonstrated an association between influenza and mortality in cold seasons.^{11–15} Some of them focused on its role in temperature-mortality associations.^{11,12} Other publications assessed its contribution to winter-season increase in mortality.^{13–15} Although consensus exists that both temperature and influenza contribute to winter-season increase in mortality,^{11–14,16} their relative importance has not been completely elucidated. Most research^{11–14,16} has focused on either temperature or influenza only, and few studies have comparatively assessed their contribution to seasonality of mortality. We are aware of only one study that has compared their contributions to seasonality of all-cause mortality among people aged \geq 75 years in Britain and suggested more seasonality was explained by temperature than influenza.¹⁴

90 The strength of seasonality in mortality varies geographically.⁸ For example, a larger seasonal 91 amplitude was observed in areas with milder climates, suggesting that individuals living in 92 warm areas might be more vulnerable to seasonal variations in mortality.² Several local 93 characteristics on climate, demographic and socioeconomic factors, and adaptations have been 94 linked with such spatial variation. However, only a few studies have evaluated their impact on 95 effect on seasonality of mortality.^{1,17} Another question remains unclear is if their impact effect

will remain when we remove the effect of temperature and influenza from seasonal variations
in mortality, given that the same local characteristics can also modify associations between
influenza, temperature and mortality.^{18–23}

In the current study, we collected daily mortality data between 1999 and 2015 from 47 prefectures in Japan to investigate the contribution of temperature and influenza to seasonality of mortality as well as to study the associations between prefecture-specific indicators and seasonality of mortality. This study will strengthen our understanding of seasonality of mortality and provide important evidence to associate managements of seasonal risk factors to local conditions.

105 Method

106 Data collection

Hourly mean temperature (°C) and relative humidity (%) measured at a single monitoring site
in the capital city of each prefecture were obtained from 1999 to 2015 from the Japan
Meteorological Agency. We computed daily mean value of temperature and relative humidity
for our analysis.

Daily mortality (counts) from all-cause, circulatory, respiratory disease and influenza were obtained from the Ministry of Health, Labor and Welfare of Japan between 1999 and 2015 for each prefecture in Japan. The principal cause of death statistics is coded using the International Statistical Classification of Diseases and Related Health Problems, 10th version (ICD-10). Cause-specific mortality was defined according to the ICD system: circulatory mortality (ICD-10 codes I00-I99), and respiratory mortality (ICD-10 codes J00-J99). Weekly number of influenza like illness (ILI) were obtained for each prefecture from April 1999 to 2015 from National Institute of Infectious Diseases, Japan.

BMJ Open

Yearly data on prefecture-specific indicators was collected over the study period for each prefecture, including annual mean temperature, relative humidity, population density, the proportion of population aged ≥ 65 years, saving, income, Gini index (a measure of income inequality), consumer price index (CPI), economic power index (EPI, a measure of the wealth of a prefecture), the prevalence of air conditioning for households, and the number of registered physicians, nurses and hospital beds per 10K population. For each indicator, we computed the averaged value across the years 1999-2015 for each prefecture. The details for data collection were described in previous studies ^{24,25} and summarized in supplementary material.

127 Data analysis

We conducted our data analysis in three steps. First, we assessed seasonality of mortality without adjustments for temperature or ILI. Then, we examined the changes in the seasonality after adjusting for temperature and ILI separately, as well as both at the same time. Lastly, we evaluated the associations between each indicator and seasonality estimates before and after adjustments.

We applied a generalized linear model with a quasi-Poisson family to assess seasonality of mortality in each prefecture without any adjustment for temperature and ILI. Day-of-year was treated as an indicator for seasonality, taking values from 1 to 366 corresponding to Jan 1st through Dec 31st for both common and leap years (from 60th day to 365th day in common years, values were taken from 61 to 366). We used a cyclic cubic spline with 4 degrees of freedom (df) for day of year to estimate seasonality. The days-of-year with maximum and minimum mortality estimates from generalized liner models were identified as the peak and trough days, respectively, and were subsequently used to calculate the peak-to-trough ratio (PTR) to provide a measure of seasonality. When constructing confidence intervals for PTR, previous studies enforced the boundary constraint by truncating the lower confidence limit at one for PTR.^{26,27} However, doing that may introduce a positive bias into the PTR.²⁸ In order to

show the statistical variability in PTR, therefore, we did not truncate the lower confidence limit
at one for PTR. Indicators for year, day-of-week and their interaction were used to control for
the long-term trend and the effect of day-of-week. We excluded the data on 11 March 2011,
the day of the Great East Japan Earthquake.

To assess the contribution of temperature and ILI to seasonality of mortality, we attempted three types of adjustment. First, we added temperature to our main model using a bidimensional cross-basis function to account for its non-linear and delayed effect on mortality. We modeled the exposure-response curve with a natural cubic B-spline with three internal knots at 25th, 50th, and 75th percentiles of temperature distribution, and the lag-response association with another natural cubic spline basis with 3 *df* with extended lags up to 21 days.^{10,25}

155 Second, we removed temperature and adjusted for ILI in main model. We assumed ILI cases 156 distributed evenly across day of week and computed daily average ILI cases. A natural cubic 157 spline with 3 *df* was then used to control for daily ILI cases in the model. Third, adjustment 158 was made using both temperature and influenza.

The prefecture-specific PTR was pooled for the whole of Japan for all-cause, circulatory and respiratory mortality, respectively, by meta-analysis with prefecture as a random factor. To explore if patterns of interest varied over time, we conducted yearly analyses for the entire country using separate quasi-Poisson regression model for each year with prefecture as a random factor.

164 To evaluate the modification of seasonal variation in mortality by prefecture-specific indicators,
 165 we applied linear mixed effects models (LMEMs) to investigate associations of PTR with each
 166 prefecture-specific indicator separately. We fitted LMEMs with random intercepts for
 167 prefectures and the inverse of squared SE as weight. The longitude and latitude for the capital

Page 9 of 38

BMJ Open

city of each prefecture were included to reduce spatial correlation, except for when we
investigated annual mean temperature as the indicator, due to their high correlation. We
conducted the analysis for all-cause, circulatory, and respiratory mortality in separate LMEMs.
Results are expressed as the log(PTR) variation for a standard deviation increase of the
indicator.

We performed a series of sensitivity analysis to confirm our findings. We tested the cyclic spline function for day of year with different df of 5 and 6 and adjusted temperature by changing the spline function, internal knots for temperature distribution, df and lag days for the lag-response associations. For influenza adjustment, we varied the number of lag days using the moving averages of the previous 7, 14, 21 and 28 days, and tested the natural cubic spline function with 2 df. For ILI adjustment, we tested moving average of previous 7, 14, 21 and 28 days for ILI cases, and 2 df for the natural cubic spline function. Overall, we did not observe substantial changes in our estimates.

181 The models were summarized in supplementary material including diagnostic plots. We
182 conducted the analysis with R software, version 3.6.0 (R Development Core Team) using the
183 dlnm and mixmeta packages.

184 Patient and public involvement

185 There was no patient or public involvement.

186 Results

This study included 18 985 036 deaths from all causes, 5 541 277 deaths from circulatory diseases, and 2 894 314 deaths from respiratory diseases. The nationwide time series of daily mortality showed a significant seasonal pattern (Figure S1). Daily mean temperature for the whole country between 1999 and 2015 ranged from -1.0°C to 30.7°C, with a mean value at 15.6°C

(Table 1). ILI cases showed a large variation, ranging from 7 case to 1 652 147 cases with a
median value at 7626 (Table 1). Prefecture-specific summary was provided in Table S1.

We observed a high variability for healthcare capacity (Table S2 & S3), while a low variability
for socioeconomic indicators. Most of the indicators are correlated (Figure S2). In particular,
EPI was highly correlated with population density, proportion of individuals aged over than 65
years old, and numbers of physicians, nurses and hospital beds (correlation>0.70). In addition,
saving is highly correlated with income (correlation>0.70).

Figure 1 and Table 2 show the pooled results for the whole of Japan for seasonality of all-cause, circulatory, and respiratory mortality before and after adjustments for temperature and/or influenza. We observed a clear seasonal pattern with higher numbers of deaths in cold seasons than in warm seasons. Before any adjustments, the nationwide pooled PTR for all-cause, circulatory and respiratory mortality were 1.29 (95% confidence intervals (CI): 1.27, 1.30), 1.52 (95% CI: 1.49, 1.55) and 1.45 (95% CI: 1.43, 1.48), respectively. After adjustments for temperature and ILI, the shape of seasonality remained (Figure 1), but its amplitude reduced to different extents. Adjusting for just temperature reduced PTRs substantially in particular for all-cause and circulatory mortality to 1.06 (95% CI: 1.05,1.07) and 1.07 (95% CI: 1.05, 1.09). Adjusting for just ILI reduced PTRs only very slightly to 1.27 (95% CI: 1.26,1.29), 1.52 (95% CI: 1.49,1.55), and 1.40 (95% CI: 1.38, 1.43) for all-cause, circulatory and respiratory mortality, respectively. Notably, adjusting for temperature and ILI did not flatten the seasonal pattern or reduce the PTR to 1.

Similarly, prefecture-specific PTRs also showed a substantial reduction with temperature adjustment while a slight reduction when ILI was adjusted only, although an apparent reduction was observed in ILI-adjusted PTR for respiratory mortality (Figure 2). Furthermore, PTR for all mortality types varied across prefectures, and the spatial variation after adjustments was less apparent in particular for all-cause and circulatory mortality. Prefectures with higher

BMJ Open

216 latitude (northern areas), including Hokkaido, Aomori, and Akita, as well as the southernmost
217 prefecture- Okinawa, showed a lower unadjusted-PTR and a smaller reduction after
218 adjustments for temperature.

Our yearly analyses for the entire country showed a large reduction after adjusting for temperature while a small reduction after adjusting for ILI for most of the years (Figure S3). For the year of 2020, however, a higher PTR for all-cause and respiratory mortality was observed when temperature was included in the adjustment. We further checked the sensitivity of our estimates to temperature adjustment. Changing the lag period of 21 days in cross-basis function to 14 days reduced temperature-adjusted PTR, although it remained slightly higher than unadjusted PTR with a largely overlapped confidence intervals. The results for the other years did not change much (results not shown).

Figure S4 shows associations between the indicators and PTR. There was no strong evidence
 for the association between prefecture-specific characteristics and seasonality estimates.
 Diagnostic plots for models were included in supplementary material (Figure S5-S7).

230 Discussion

In this study, we investigated the contribution of temperature and influenza to seasonal variation of mortality in 47 prefectures of Japan and evaluated the modifications of seasonality by a range of prefecture-specific indicators. Our findings show that seasonal variation in mortality was substantially contributed by temperature and to a lesser extent, by influenza. In addition, seasonal amplitudes varied between prefectures. There was no strong evidence for the association between prefecture-specific characteristics and seasonal amplitudes.

Temperature and influenza have been among the most studied drivers of seasonality of
 mortality.¹³⁻¹⁶ However, most of the investigations focused on either temperature or influenza.
 How much of seasonality of mortality is dependent on temperature versus influenza remain

unsolved. Our finding showed that most of seasonality of mortality in Japan was attributable to temperature while little was driven by influenza. Consistent with our findings, a population -based cohort study in elderly British people examined month to month variation in mortality and its relationship with temperature and influenza A, and discovered that most of seasonal fluctuation was associated with cold temperature and a small component related with influenza A. Despite the smaller contribution of influenza to seasonal variation of mortality than temperature, our analysis suggested that influenza was accountable for seasonal variation, especially, for respiratory mortality. The transmission of influenza virus is most efficient under cold and dry conditions, which may lead to considerable increase in mortality during winter. For example, a study¹¹ in 48 U.S. cities observed a link between influenza epidemic and the irregularly high winter mortality in some certain years. Evidence thus far implies that temperature contributes substantially to seasonality of mortality in general, while influenza is related with seasonal variations of mortality to a less extent.

Notably, removing the effect of temperature and influenza from seasonal variation in mortality did not completely flatten the seasonal pattern of mortality, in particular, respiratory mortality. Seasonality of mortality is resulted from complex interaction between human behavior and environment. In addition to temperature and influenza, other infectious diseases (e.g., respiratory syncytial virus), air pollutants, behavioral changes based on a seasonal basis (e.g., dietary pattern and physical activities) have been linked with seasonal variation of diseases and mortality. However, there is no direct evidence assessing their contribution to seasonality of mortality.

261 Despite of a similar seasonal shape across prefectures, seasonal amplitudes varied across 47
 262 prefectures. Previous studies have suggested that individuals living in cold locations show less
 263 seasonal variation in mortality, partially due to a better cold acclimatization from the
 264 combination of habituation, metabolic adjustment, and insulative acclimatization. ^{8,29–31} In

Page 13 of 38

BMJ Open

addition, less developed locations is likely to exhibit a larger seasonal variation in mortality,¹ which can be related with high vulnerabilities to cold and heat effect of temperature because of poorer housing conditions, lower prevalence of air conditioning, and limited access to health care.^{18,23} In our study, we did not observe strong evidence for any associations between prefecture-specific characteristics and seasonal variations in mortality. This could be partially explained by the limited range of variations in the indicators and possible confounding effect between them. Furthermore, our data on the indictors are population-level, and future investigations with individual-level data is recommended to examine these issues.

This study has several limitations. First, our study was conducted in Japan that has distinct seasonal weather conditions, hence our results may not be applicable to other areas with different climate (e.g., tropical countries). Second, we assumed the association of mortality with influenza and temperature did not change between 1999 and 2015, and our findings for 2000 were sensitive to temperature adjustment. Furthermore, we observed some autocorrelation in the model residuals despite our attempts to model it (Figure S6). However, sensitivity testing showed that it had limited impacts on the estimate of seasonality (Table S4). It is possible that temperature and influenza adjusted PTR may be overestimated due to the measurement error in temperature and influenza.³² However, any such overestimation would be believed to be slight, as the main error here would be of Berkson type, which does not cause bias and hence not compromise confounder control.³³ Finally, future investigations should be conducted by extending current datasets to those areas with different climate, and also by including more details for influenza (e.g., influenza subtype and vaccination coverage). Results from these investigations would complement our findings in current analysis.

This study presents findings from an epidemiologic analysis investigating the role of temperature, influenza and other local characteristics on seasonality of mortality across multiple locations. A strength of current study was the investigation of contributions of temperature versus influenza to seasonal variation of different types of mortality by a common study design and statistical framework, while previous studies mostly focused on either temperature or influenza only.

This study suggests that seasonality of mortality is primarily driven by temperature. Furthermore, seasonal amplitudes varied between prefectures. However, this spatial variation was not explained by the differences in prefecture-specific characteristics on climate, demographic and socioeconomic factors, and adaptations. Further investigations are required to confirm our findings. In sum, this study can help us to gain a better understanding of seasonality of mortality.

300 Contributors: LM conducted the study, analyzed the data and wrote the manuscript. CN and
301 XS helped with the statistical analysis and the discussion of the text. MT, LY and YH
302 contributed to the final version of the manuscript. BA helped with the data analysis and the
303 interpretation of the results. MH contributed to the study design and the discussion of the results.
304 Funding: This work was primarily supported by the Japanese Society for the Promotion of
305 Science (JSPS) KAKENHI Grant Number 19K19461.

306 Disclaimer: The funders had no role in study design, data collection and analysis, decision to307 publish, or preparation of the manuscript.

Competing interests: None declared.

309 Ethics approval: This study used secondary data, with no possibility of personal identification,
 310 and an informed consent or an approval by a medical ethics board is not required.

311 Data availability statement: Data are available upon reasonable request. The technical
 312 appendix, statistical code and data set will be available upon request from the Corresponding
 313 author.

Page 15 of 38

BMJ Open

1 2			
3 4	314	Refe	rences
5 6 7	315	1.	Healy, J. D. Excess winter mortality in Europe: a cross country analysis identifying
8 9 10	316		key risk factors. J. Epidemiol. Community Health 57, 784–9 (2003).
11 12	317	2.	Stewart, S., Keates, A. K., Redfern, A. & McMurray, J. J. V. Seasonal variations in
13 14 15	318		cardiovascular disease. Nat. Rev. Cardiol. 14, 654-664 (2017).
16 17	319	3.	Momiyama, M. Biometeorological study of the seasonal variation of mortality in Japan
18 19 20	320		and other countries. Int. J. Biometeor. 12, 377-393 (1968).
21 22	321	4.	M. Momiyama, K. K. A medico-climatological study in the seasonal variation of
23 24 25	322		mortality in USA (1). Pap. Meteor. Geophys. 17, 279–286 (1967).
26 27	323	5.	M. Momiyama, K. K. A medico-climatological study in the seasonal variation of
28 29 30	324		mortality in USA (2). Pap. Meteor. Geophys. 18, 209–232 (1968).
31 32 22	325	6.	Momiyama, M. A geographical study of seasonal disease calendar model by period
34 35	326		and country. Pap. Meteor. Geophys. 14, 1–11 (1963).
36 37 38	327	7.	van Rossum, C. T. et al. Seasonal variation in cause-specific mortality: Are there high-
39 40	328		risk groups? 25-year follow-up of civil servants from the first Whitehall study. Int. J.
41 42 43	329		<i>Epidemiol.</i> 30 , 1109–1116 (2001).
44 45	330	8.	Marti-Soler, H. et al. Seasonal Variation of Overall and Cardiovascular Mortality: A
46 47 48	331		Study in 19 Countries from Different Geographic Locations. PLoS One 9, e113500
48 49 50	332		(2014).
51 52	333	9.	Tanner, L. M., Moffatt, S., Milne, E. M. G., Mills, S. D. H. & White, M.
53 54 55	334		Socioeconomic and behavioural risk factors for adverse winter health and social
56 57	335		outcomes in economically developed countries: a systematic review of quantitative
58 59 60	336		observational studies. J. Epidemiol. Community Health 67, 1061-7 (2013).

2 3	337	10.	Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a
4 5 6	338		multicountry observational study. Lancet (London, England) 386, 369-75 (2015).
7 8 0	339	11.	von Klot, S., Zanobetti, A. & Schwartz, J. Influenza epidemics, seasonality, and the
9 10 11	340		effects of cold weather on cardiac mortality. Environ. Heal. 11, 74 (2012).
12 13 14	341	12.	Imai, C., Barnett, A., Hashizume, M. & Honda, Y. The Role of Influenza in the Delay
15 16	342		between Low Temperature and Ischemic Heart Disease: Evidence from Simulation
17 18 19	343		and Mortality Data from Japan. Int. J. Environ. Res. Public Health 13, 454 (2016).
20 21	344	13.	Nguyen, J. L. et al. Seasonal Influenza Infections and Cardiovascular Disease
22 23 24	345		Mortality. JAMA Cardiol. 1, 274 (2016).
25 26	346	14.	Wilkinson, P. et al. Vulnerability to winter mortality in elderly people in Britain:
27 28 29	347		population based study. BMJ 329, 647 (2004).
30 31 32	348	15.	Reichert, T. A. et al. Influenza and the Winter Increase in Mortality in the United
32 33 34	349		States, 1959–1999. Am. J. Epidemiol. Hopkins Bloom. Sch. Public Heal. All rights
35 36	350		Reserv. 160, 1959–1999 (2004).
37 38 39	351	16.	Nakaji, S. et al. Seasonal changes in mortality rates from main causes of death in
40 41 42	352		Japan. Eur. J. Epidemiol. 19, 905–913 (2004).
42 43 44	353	17.	Gemmell, I., McLoone, P., Boddy, F., Dickinson, G. J. & Watt, G. Seasonal variation
45 46 47	354		in mortality in Scotland. Int. J. Epidemiol. 29, 274–279 (2000).
47 48 49	355	18.	Hajat, S. et al. Public health vulnerability to wintertime weather: time-series regression
50 51	356		and episode analyses of national mortality and morbidity databases to inform the Cold
53 54	357		Weather Plan for England. Public Health 137, 26–34 (2016).
55 56	358	19.	Chalabi, Z. et al. Evaluation of the cold weather plan for England: modelling of cost-
57 58 59	359		effectiveness. Public Health 137, 13-19 (2016).
60			

Page 17 of 38

1

BMJ Open

2		• •	
4	360	20.	Madsen, C. & Nafstad, P. Associations between environmental exposure and blood
5 6	361		pressure among participants in the Oslo Health Study (HUBRO). Eur. J. Epidemiol.
/ 8 9	362		21 , 485–91 (2006).
10 11 12	363	21.	Richard, S. A., Sugaya, N., Simonsen, L., Miller, M. A. & Viboud, C. A comparative
12 13 14	364		study of the 1918-1920 influenza pandemic in Japan, USA and UK: Mortality impact
15 16	365		and implications for pandemic planning. Epidemiol. Infect. 137, 1062–1072 (2009).
17 18 19	366	22.	Glaser, C. A. et al. Medical care capacity for influenza outbreaks, Los Angeles.
20 21	367		Emerg. Infect. Dis. 8, 569–574 (2002).
22 23 24	368	23.	Sera, F. et al. How urban characteristics affect vulnerability to heat and cold: a multi-
25 26 27	369		country analysis. Int. J. Epidemiol. 48, 1101–1112 (2019).
28 29	370	24.	Ng, C. F. S. et al. Heat-related mortality: Effect modification and adaptation in Japan
30 31 32	371		from 1972 to 2010. Glob. Environ. Chang. 39, 234–243 (2016).
33 34	372	25.	Chung, Y. et al. Changing Susceptibility to Non-Optimum Temperatures in Japan,
35 36	373		1972–2012: The Role of Climate, Demographic, and Socioeconomic Factors. Environ.
37 38 39	374		Health Perspect. 126, 057002 (2018).
40 41 42	375	26.	Christensen, A. L., Lundbye-Christensen, S. & Dethlefsen, C. Poisson regression
42 43 44	376		models outperform the geometrical model in estimating the peak-to-trough ratio of
45 46	377		seasonal variation: A simulation study. Comput. Methods Programs Biomed. 104,
47 48 49	378		333–340 (2011).
50 51	379	27.	Brookhart, M. A. & Rothman, K. J. Simple estimators of the intensity of seasonal
52 53 54	380		occurrence. BMC Med. Res. Methodol. 8, 67 (2008).
55 56	381	28.	N, S. et al. Forty-year Seasonality Trends in Occurrence of Myocardial Infarction,
57 58 59 60	382		Ischemic Stroke, and Hemorrhagic Stroke. Epidemiology 29, (2018).

2			
3 4	383	29.	Medina-Ramón, M. & Schwartz, J. Temperature, temperature extremes, and mortality:
5 6	384		a study of acclimatisation and effect modification in 50 US cities. Occup. Environ.
7 8 9	385		Med. 64, 827–33 (2007).
10 11	386	30.	Braga, A. L. F., Zanobetti, A. & Schwartz, J. The effect of weather on respiratory and
12 13 14	387		cardiovascular deaths in 12 U.S. cities. <i>Environ. Health Perspect.</i> 110 , 859–63 (2002).
15 16 17	388	31.	McKee, C. M. Deaths in Winter: Can Britain Learn from Europe? <i>Eur. J. Epidemiol.</i> 5,
18 19 20	389		178–82 (1989).
20 21 22	390	32.	Armstrong, B. G. Effect of measurement error on epidemiological studies of
23 24 25	391		environmental and occupational exposures. Occup. Environ. Med. 55, 651-6 (1998).
26 27	392	33.	Dominici, F., Zeger, S. L. & Samet, J. M. A measurement error model for time-series
28 29 30	393		studies of air pollution and mortality. Biostatistics 1, (2000).
31 32	394		
33 34 35	395		
36 37 38	396		
39 40 41	397		
42 43 44	398		
45 46 47	399		
48 49	400		
50 51 52	401		
53 54 55	402		
56 57 58	403		
59 60	404		

1		
2 3 4 5	405	
6 7	406	
8 9 10	407	
11 12 13	408	Figure captions:
14 15	409	Figure 1. Pooled seasonality of all-cause, circulatory, and respiratory mortality between 1999
16 17 18	410	and 2015 before and after adjustments (black: without any adjustment; blue: adjusted for
19 20	411	influenza like illness (ILI) only; green: adjusted for temperature only; red: adjusted for both
21 22	412	temperature and ILI)
23 24	413	The seasonality is computed as the ratio of predicted mortality at each day of the year to the predicted minimum
25 26	414	mortality at the trough with 95% confidence intervals (95%CIs):
27 28 29 30	415	$Ratio = \frac{Mortality \ at \ day_i}{Minimum \ mortality \ at \ the \ trough}$
31 32 33	416	
34 35	417	Figure 2. Prefecture-specific peak-to-trough ratio (PTR) with 95% confidence intervals (95%
36 37 38	418	CI) for all-cause (left), circulatory (middle), and respiratory (right) mortality before (black)
39 40	419	and after adjustments for influenza like illness (ILI) only (blue), temperature only (green),
41 42	420	and both (red)
43 44 45	421	
46 47	422	
48 49	423	
50 51 52 53 54 55 56 57 58 59	424	
60		

Table 1. Nationwide summary of daily mean temperature (°C), daily death (numbers of cases), and weekly influenza like illness

Variables	Median [interquartile range]	Mean (SD)	Range
Mean temperature	16.09 [8.04; 22.8]	15.6 (8.2)	[-1.0; 30.7]
All-cause mortality	3046 [2726; 3350]	3058 (443.7)	[2114; 4712]
Circulatory mortality	866 [768; 1003]	892.6 (157.1)	[570; 1454]
Respiratory mortality	464 [388; 535]	465.2 (105.9)	[247; 1072]
11 I			
ILI Note: Daily mortality on the day of th	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]
ILI Note: Daily mortality on the day of th	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]
ILI Note: Daily mortality on the day of th	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]
ILI Note: Daily mortality on the day of th	7626 [1575; 106199] e Great East Japan Earthquake (11 March 2011) was	142113 (295087.3) excluded from our analysis.	[7; 1652147]

(ILI) between 1999 and 2015

Table 2. Nationwide pooled peak-to-trough ratio (PTR) with 95% confidence interval (95% CI) with/without adjustment

... ...

Adjustment	All-caus	All-cause mortality		ry mortality	Respirato	Respiratory mortality	
	PTR	95% CI	PTR	95% CI	PTR	95% CI	
None	1.29	1.28, 1.31	1.52	1.49, 1.55	1.45	1.43, 1.48	
Temperature	1.06	1.05, 1.07	1.07	1.05, 1.09	1.16	1.12, 1.21	
ILI	1.27	1.26, 1.29	1.52	1.49, 1.55	1.40	1.38, 1.43	
Temperature + ILI	1.07	1.06, 1.07	1.08	1.06, 1.09	1.12	1.09, 1.16	
			071				

Madd Market	
Falama And Pacha and a second and a secon	
Norm Norm Norm <th>-</th>	-
Noga Noga Noga Noga Childred Noga	
biblic biblic biblic <t< th=""><th></th></t<>	
Day Image: State Berner State Banner <td< th=""><th></th></td<>	
Borns Image	-
Razal Fau Cake Sale	
Idua	
Balares	
More differential Chece Tater Chece Chece Chece Chece Chece	
Markarani Markaraki Markaraki Markaraki Markaraki Othba Markaraki Markaraki Markaraki Shinane Markaraki Markaraki Adit Markaraki Markaraki Shinane Markaraki Adit Markaraki Shinane Markaraki Adit Markaraki Shinane Markaraki <t< th=""><th>_</th></t<>	_
Cheba	
Table i Table i Shinare Shinare Galu Shinare Abril Shinare Abril Shinare Shinare Shinare Abril Shinare Shinare Sh	
Sinane Sinane Giu	-
Gau Gau <th>-</th>	-
Karagawa Achi Achi Koto Shiga Shiga </th <th>7</th>	7
Ach Ach Koh Kach Shipa Kach Mara Kapaa	
Kyoto Sniga Sniga </th <th></th>	
Shiga Shiga </th <th></th>	
Skrucka Skrucka Nara Image: Skrucka Nara Image: Skrucka Okaka Image: Skrucka Okaka Image: Skrucka Okaka Image: Skrucka Okayona Image: Skrucka Okayona Image: Skrucka Vikayama Image: Skrucka Vakayama Image: Skrucka Vakayama Image: Skrucka Vakayama Image: Skrucka Fukuka Image: Skrucka Kagawa Image: Skrucka Vakayama Image: Skrucka Fukuka Image: Skrucka Kagawa Image: Skrucka Vakayama Image: Skrucka Kagawa Image: Skrucka Vakayama Image: Skrucka Fukuka Image: Skrucka Kuranoto Image: Skrucka Nagaaki Image: Skrucka Magaaki Image: Skrucka	
Mie Mie Hogo Mie Hogo Mie Hogo Mie Oaka Mie Oaka Oaka Okyana Mie Hicehna Mie Hicehna Mie Kagawa Kagawa Vakayama Mie Yanaguchi Mie Filoshna Mie Yanaguchi Mie Yanaguchi Mie Filoshna Mie Yanaguchi </th <th>•</th>	•
Hiso Hiso Hiso Hiso Hiso Nara Aira Aira Aira Aira Caska Aira Caska Caska Caska Caska Caska Aira Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Caska Kagawa Caska Caska Caska Caska Caska Caska Kagawa Caska Caska Caska Caska Caska Caska Yanaguchi Caska Caska Caska Caska Caska Yanaguchi Caska Caska Caska Caska Caska Yanaguchi Caska Caska Caska Caska Caska Fukuoka Caska Caska Caska Caska Caska Kochi Caska Caska Caska Caska Caska Kochi Caska Caska Caska Caska Caska Kunanoto Caska Caska Caska Caska Caska Kagashina Caska </th <th>-</th>	-
Hyogo Hyogo Nara Image: Constrained of the second of the	
Nara Osaka Osaka <th></th>	
Osaka Osaka Okayama Okayama Hiroshima Image in the second	
Okayama Hiroshima Kagawa Wakayama Wakayama Yamaguchi Tokushima Fhiroshima Yamaguchi Fhiroshima Yamaguchi Fhiroshima Sagai Sagai Kumamoto Kugawai Kumamoto Kugawai K	
Hiroshima Hiroshima Kagawa Kagawa Vakayama Kagawa Yamaguchi Makayama Yamaguchi Makayama Tokushima Yamaguchi Tokushima Makayama Fukuoka Fukuoka Fukuoka Fukuoka Kochi Gotta Saga Saga Kumamoto Saga Nagasaki Mayazaki Kagoshima Kumamoto Kagoshima Kagoshima	
Kagawa Wakayama Yamaguchi Tokushima Fukuoka Fukuoka Fukuoka Gagawa Kagawa Kagawa Kagawa Yamaguchi Tokushima Fukuoka Gagawa Fukuoka Gagawa Kagawa Kagawa Kagawa Kagawa Kagawa Yamaguchi Yamaguchi Tokushima Gagawa Fukuoka Gagawa Kagawa Kagashima	-
Wakayama Yamaguchi Yamaguchi Tokushima Ehime Fukuoka Fukuoka Ghia Gia Saga Kumamoto Nagasaki Miyazaki Miyazaki Kagoshima Kagoshima	· · · · · ·
Yamaguchi Yamaguchi Tokushima Tokushima Ehime Tokushima Fukuoka Fukuoka Fukuoka Fukuoka Gita Fukuoka Oita Fukuoka Saga Fukuoka Saga Fukuoka Kumanoto Fukuoka Nagasaki Fukuoka Miyazaki Fukuoka Kagoshima Fukuoka	-
Tokushima Ehime Fukuoka Fukuoka Gita Saga Saga Saga Saga Saga Miyazaki Miyazaki Sagoshima Sagoshima	
Ehime Fukuoka Fukuoka Kochi Oita Saga Kumamoto Nagasaki Miyazaki Miyazaki Kagoshima	
Fukuoka Fukuoka Kochi Oita Saga Jagasaki Miyazaki Miyazaki Kagoshima Kagoshima	
Kochi Kochi Oita Saga Imagasaki Miyazaki Imagasaki	
Notin Oita Jita Jita Jita Jita Jita Jita Jita Saga Jita	
Olta Saga Kumamoto Nagasaki Miyazaki Miyazaki Miyazaki Miyazaki Miyazaki	-
Saga Kumamoto Nagasaki Miyazaki Miyazaki Image to the second secon	
Kumamoto Kumamoto Nagasaki Image: Ima	
Nagasaki Miyazaki Miyazaki Miyazaki Miyazaki Miyazaki Kagoshima Miyazaki	
Miyazaki Miyazaki Kagoshima Image: Compared and the second and the sec	
Kagoshima Kagoshima Kagoshima	
Okinawa Okinawa Okinawa	
0.75 1.00 1.25 1.50 1.75 0.75 1.00 1.25 1.50	1.75

Supplementary material

The role of temperature, influenza and other local characteristics in seasonality of mortality: a population-based time-series study in Japan

Table of Contents

Table S1. Summary of daily mean temperature, daily cases of all-cause, circulatory, and respiratory	
mortality, and weekly cases of influenza likely illness	2
Figure S1. Time series of national wide daily mortality cases from all-cause, circulatory, respiratory dis	sease
and influenza between April 1999 and 2015	4
Summary of data collection on prefecture-specific indicators on climate, demographics, socioecon	omic
factors, and healthcare capacity	5
Table S2. Summary of Annual Values Across the Years (1999-2015) for Each Indicator	6
Table S3. Prefecture-specific summary of annual value across the years 1999-2015 for all indicators (m	ean
(SD))	7
Figure S2. Correlations between the indicators	9
Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95%CI) for each single year from	n
2000 to 2015 for all-cause (top), circulatory (middle), and respiratory (bottom) mortality before (black)	and
after adjustments for just influenza like illness (blue), just temperature (green), and both (red)	10
Figure S4. Associations between each indicator and PTR before and after adjusting for influenza like il	lness
(ILI) and temperature	11
Description of models	12
 Seasonality assessment without and with adjustments for temperature and/or influenza like illn Modification of seasonal variation in mortality by prefecture-specific indicators	ess 12 12
Model Checking and sensitivity analysis	13
Scatter plot of deviance residuals vs time	13
Partial autocorrelation function (PACF) plot of the deviance residuals	13
• The fit of the model to the daily death counts over time	14

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
Δ1	
יד ⊿2	
+∠ ∕\2	
45	
44	
45	
46	

Table S1. Summary of daily mean temperature, daily cases of all-	cause, circulatory, and respiratory	mortality, and weekly cases	of influenza likely illness
--	-------------------------------------	-----------------------------	-----------------------------

Prefecture/	Daily mean temperature (°C)		All-cause mortality (n)		Circulatory mortality (n)		Respiratory mortality (n)		Influenza like illness (n)	
country ^a	Mean (SD)	Range	Mean (SD)	Range	Mean (SD	Range	Mean (SD)	Range	Mean (SD)	Range
Hokkaido	9.32 (9.62)	[-11;29.6]	141.36 (21.94)	[81;220]	41.47 (8.36)	[18;79]	20.49 (6.09)	[3;55]	958.26 (2040.19)	[0;15153]
Aomori	10.7 (9.06)	[-7.5;30.1]	41.56 (8.2)	[16;79]	12.64 (3.95)	[1;28]	5.94 (2.73)	[0;19]	259.68 (566.2)	[0;3591]
Akita	12.14 (9.14)	[-5.5;31.6]	37.03 (7.55)	[15;64]	11.21 (3.75)	[1;27]	5.5 (2.6)	[0;19]	241.43 (517)	[0;4180]
Iwate	10.64 (9.46)	[-8.9;29.3]	40.4 (8.44)	[15;85]	13.49 (4.37)	[1;32]	5.89 (2.68)	[0;19]	273.48 (564.55)	[0;3716]
Miyagi	12.84 (8.38)	[-4.5;31.2]	55.3 (11.21)	[22;152]	17.14 (5.11)	[2;43]	7.57 (3.26)	[0;29]	400.31 (857.1)	[0;5417]
Yamagata	12.1 (9.43)	[-5.8;30.5]	36.91 (7.58)	[13;68]	11.59 (3.81)	[0;29]	5.49 (2.63)	[0;18]	209.39 (444.9)	[0;2795]
Niigata	14.17 (8.76)	[-2.8;31.8]	68.63 (12.22)	[31;112]	21.17 (5.66)	[4;45]	9.27 (3.5)	[0;26]	467.68 (1057.89)	[0;7472]
Fukushima	13.42 (8.89)	[-4.2;31.4]	58.49 (11.3)	[23;114]	18.98 (5.55)	[5;44]	8.61 (3.43)	[0;29]	350.57 (736.63)	[0;4293]
Toyama	14.57 (8.89)	[-2.8;33.1]	30.8 (6.97)	[11;59]	8.72 (3.25)	[1;24]	4.95 (2.46)	[0;16]	197.35 (433.32)	[0;3042]
Nagano	12.28 (9.53)	[-6.7;30]	59.97 (11.51)	[26;107]	19.68 (5.61)	[4;48]	8.38 (3.48)	[0;23]	424.98 (927.86)	[0;6713]
Ishikawa	15.07 (8.66)	[-2.6;32.4]	29.71 (6.78)	[9;58]	8.78 (3.28)	[0;26]	4.65 (2.37)	[0;16]	222.14 (503.98)	[0;3450]
Tochigi	14.39 (8.56)	[-2.5;31.7]	50.11 (10.49)	[19;95]	16.02 (5.1)	[4;37]	7.32 (3.21)	[0;25]	263.1 (595.1)	[0;3112]
Gunma	15.04 (8.6)	[-1.7;32.6]	51.57 (10.8)	[20;101]	15.74 (4.96)	[0;41]	8.5 (3.55)	[0;27]	393.01 (863.12)	[0;5616]
Ibaraki	14.15 (8.23)	[-1.7;31]	73.38 (14.37)	[31;136]	22.52 (6.5)	[2;51]	10.77 (4.32)	[0;31]	395.03 (908.36)	[0;5926]
Fukui	14.87 (8.94)	[-1.8;31.9]	21.69 (5.62)	[6;45]	6.35 (2.78)	[0;18]	3.57 (2.07)	[0;13]	176.7 (401.64)	[0;3054]
Saitama	15.53 (8.47)	[-0.9;33.7]	138.85 (27.86)	[65;258]	41.24 (10.6)	[13;97]	20.3 (7.16)	[3;58]	1139.33 (2572)	[0;15454]
Tokyo	16.69 (7.93)	[0.3;33.2]	265.37 (41.16)	[166;434]	76.17 (15.73)	[36;147]	38.71 (10.36)	[11;96]	1016.52 (2578.95)	[0;18939]
Yamanashi	15.12 (8.69)	[-2.1;31.8]	23.31 (6)	[7;52]	6.82 (2.9)	[0;20]	3.46 (2.01)	[0;16]	144.31 (310.05)	[0;1812]
Chiba	16.3 (7.76)	[0.3;32.1]	126.11 (24.2)	[64;216]	38.5 (9.97)	[13;88]	17.97 (6.22)	[2;58]	891.29 (2020.46)	[0;12096]
Tottori	15.22 (8.54)	[-3.1;32]	17.86 (4.84)	[5;38]	5.38 (2.49)	[0;16]	2.54 (1.66)	[0;11]	113.05 (238.68)	[0;1543]
Shimane	15.26 (8.27)	[-3.3;32.2]	23.8 (5.83)	[6;48]	6.92 (2.91)	[0;23]	3.72 (2.07)	[0;14]	125.38 (276.71)	[0;1979]
Gifu	16.22 (8.69)	[-1.7;32.7]	52.28 (10.68)	[21;99]	15.57 (4.93)	[3;36]	8.05 (3.35)	[0;23]	339.83 (715.25)	[0;4339]
Kanagawa	16.28 (7.67)	[0.3;32.2]	170.3 (31.31)	[94;297]	47.51 (10.56)	[18;101]	24.47 (7.72)	[3;65]	1276.81 (3000.95)	[0;17813]
Aichi	16.26 (8.57)	[-1.5;32.7]	148.39 (26.39)	[81;236]	41.47 (9.81)	[16;80]	21.5 (6.99)	[5;52]	1026.52 (2284.16)	[0;12493]
Kyoto	16.23 (8.71)	[-1.2;32.6]	62.27 (11.61)	[29;119]	18.01 (5.4)	[4;45]	9.63 (3.69)	[0;32]	403.21 (882.09)	[0;5518]

Table S1. Continued

Prefecture/	Daily mean temperature (°C)		All-cause mortality (n)		Circulatory mortality (n)		Respiratory mortality (n)		Influenza like illness (n)	
country	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range
Shiga	15.1 (8.64)	[-2.1;31.8]	29.51 (7.11)	[9;60]	8.57 (3.37)	[0;22]	4.56 (2.35)	[0;18]	218.49 (484.12)	[0;2675]
Shizuoka	16.92 (7.45)	[1.7;31.9]	91.42 (18.13)	[45;172]	27.52 (7.56)	[9;62]	12.86 (4.84)	[2;36]	598.14 (1351.69)	[0;8255]
Mie	16.37 (8.21)	[-0.4;33.5]	47.71 (10.07)	[21;95]	13.97 (4.56)	[2;33]	7.12 (3.18)	[0;24]	331.76 (728.13)	[0;3989]
Hyogo	17.08 (8.24)	[-0.8;32.5]	131.5 (22.43)	[70;265]	36.03 (9.04)	[10;75]	19.74 (6.38)	[3;49]	793.55 (1722.72)	[0;10287]
Nara	15.19 (8.5)	[-1.7;30.8]	33.11 (7.65)	[12;62]	9.81 (3.76)	[0;28]	5.16 (2.56)	[0;17]	184.89 (412.67)	[0;2379]
Osaka	17.17 (8.36)	[-0.1;32.7]	195.43 (31.77)	[113;341]	52.28 (12.09)	[18;115]	30.9 (9.42)	[7;75]	1017.19 (2175.46)	[0;13525]
Okayama	16.52 (8.61)	[-1.7;32.3]	51.94 (10.18)	[19;92]	15.1 (4.7)	[1;34]	9.2 (3.64)	[0;26]	321.47 (729.3)	[0;4974]
Hiroshima	16.5 (8.43)	[-2;31.8]	72.18 (13.13)	[33;146]	20.79 (6)	[4;47]	11.62 (4.21)	[0;34]	441.89 (988.89)	[0;6087]
Kagawa	16.8 (8.37)	[-0.4;33]	28.54 (6.77)	[8;58]	8.28 (3.36)	[0;25]	5.04 (2.47)	[0;16]	187.73 (431.76)	[0;2632]
Wakayama	16.94 (8.12)	[0;32.7]	31.17 (7.11)	[9;73]	9.02 (3.47)	[0;28]	4.9 (2.48)	[0;16]	173.35 (381.83)	[0;2479]
Yamaguchi	15.79 (8.44)	[-4.5;31]	45.67 (8.95)	[20;82]	13.69 (4.43)	[2;32]	7.89 (3.25)	[0;28]	331.05 (769.8)	[0;5183]
Tokushima	16.85 (8)	[-1;32.6]	24.18 (5.89)	[8;51]	6.95 (2.88)	[0;20]	4.2 (2.26)	[0;15]	143.77 (329.5)	[0;2089]
Ehime	16.79 (8.04)	[-0.7;31.7]	42.87 (8.81)	[15;81]	13.42 (4.42)	[3;34]	6.8 (2.98)	[0;20]	263.9 (577.75)	[0;3750]
Fukuoka	17.35 (7.86)	[-0.8;32.8]	121.01 (19.83)	[69;210]	30.39 (7.36)	[11;73]	20.15 (6.46)	[4;57]	1025.85 (2276.78)	[0;12597]
Kochi	17.37 (7.75)	[-0.1;32.1]	25.27 (6.07)	[9;52]	7.92 (3.12)	[0;21]	4.2 (2.3)	[0;18]	205.81 (464.68)	[0;3201]
Oita	16.87 (7.76)	[-0.3;31.7]	34.24 (7.59)	[12;71]	10.03 (3.64)	[0;26]	5.89 (2.77)	[0;21]	316.35 (714.1)	[0;4478]
Saga	16.9 (8.22)	[-2.5;32.3]	23.97 (5.91)	[6;50]	6.67 (2.81)	[0;18]	4.1 (2.24)	[0;18]	186.74 (412.58)	[0;2778]
Kumamoto	17.31 (8.28)	[-1.8;31.7]	50.33 (10.24)	[20;95]	14.6 (4.69)	[1;35]	8.54 (3.55)	[0;31]	346.29 (811.45)	[0;5887]
Nagasaki	17.43 (7.64)	[-0.8;31.9]	41.9 (8.5)	[19;75]	11.99 (4.01)	[1;32]	7.08 (3.05)	[0;23]	337.01 (757.91)	[0;4798]
Miyazaki	17.77 (7.4)	[0.8;31.6]	31.75 (7.46)	[11;67]	9.72 (3.65)	[1;25]	5.28 (2.67) 🥏	[0;21]	356.01 (800.59)	[0;5875]
Kagoshima	18.85 (7.44)	[0.5;31.7]	53.03 (10.42)	[22;112]	16.1 (4.92)	[3;43]	9.4 (3.88)	[0;38]	436.56 (969.33)	[0;7309]
Okinawa	23.29 (4.68)	[10.3;31.1]	25.95 (6.33)	[6;53]	6.67 (2.78)	[0;21]	4.36 (2.26)	[0;15]	404.6 (716.61)	[0;5197]

^a Prefectures was ordered by latitude from high to low.

^b Daily mortality on the day of the Great East Japan Earthquake (11 March 2011) was excluded from our analysis.

Figure S1. Time series of national wide daily mortality cases from all-cause, circulatory, respiratory disease and influenza between April 1999 and 2015

Summary of data collection on prefecture-specific indicators on climate, demographics, socioeconomic factors, and healthcare capacity

We computed the annual mean temperature and relative humidity for each prefecture averaged from 1999 to 2015. For demographic indicators, we collected yearly data on population density and the proportion of population aged \geq 65 years for each prefecture for 1972-2012 from the Statics Bureau of the Ministry of Internal Affairs and Communications of Japan. We collected information on socioeconomic indicators from Statistics Bureau of the Ministry of Internal Affairs and Communications of Japan,^{1,2} including saving and income available every 5 years for 1974-2009, Gini index (a measure of income inequality) available every 5 years for 1979-2009, consumer price index (CPI) from 1972 to 2009, economic power index (EPI, a measure of the wealth of a prefecture) from 2003 to 2015, and the prevalence of air conditioning for households with two persons or more from 1972 to 2009. We extracted the number of registered physicians, nurses and hospital beds per 10K population in 1975 and 2004 from the Survey of Medical Institutions and Hospital Report conducted by the Ministry of Health, Labour and Welfare.³ For each indicator, we computed the averaged value across the years 1999-2015 for each prefecture.

- Satistics Bureau of the Ministry of Internal Affairs and Communications of Japan. 2015. Statistics, Consumer Price Index.
- 2. National Survey of Family Income and Expenditure Definitions of Terms Webpage [in Japanese]. Statics Bureau of the Ministry of Internal Affairs and Communications of Japan. 2009.
- Survey of Medical Institutions. [WWW Document]. Health Statistics Office Ministry of Health Labor and Welfare Japan. http://www.mhlw.go.jp/english/ database/db-hss/smi.html (accessed 10.1.14.). Published 2010.
Table S2. Summary of Annual Values Across the Years (1999-2015) for Each Indicator

Mean (SD)	Median [interquartile range]	Range
15.55 (2.34)	16.03 [14.64; 16.91]	[8.4; 23.55]
68.64 (3.61)	68.42 [65.52; 72.08]	[57.51; 79.96]
0.003 (0.002)	0.002 [0.001; 0.003]	[0.0006; 0.013]
0.22 (0.06)	0.22 [0.20; 0.25]	[0.12; 0.31]
14.49 (5.14)	14.97 [12.24; 16.47]	[5.07; 19.73]
6.88 (1.77)	6.84 [6.35; 7.45]	[4.56; 8.94]
97.65 (17.1)	97.4 [96.6; 98.60]	[94.6; 103.30]
0.30 (0.02)	0.30 [0.29; 0.31]	[0.27; 0.35]
0.47 (0.21)	0.42 [0.31; 0.57]	[0.20; 1.41]
5.60 (4.98)	3.60 [4.89; 5.93]	[1.62; 34.46]
15.04 (10.29)	10.41 [7.82; 15.88]	[4.09; 68.00]
34.88 (26.72)	23.81 [17.93; 36.86]	[9.11; 130.48]
85.9 (31.60)	92.6 [86.0; 95.7]	[8.30; 99.40]
	Mean (SD) 15.55 (2.34) 68.64 (3.61) 0.003 (0.002) 0.22 (0.06) 14.49 (5.14) 6.88 (1.77) 97.65 (17.1) 0.30 (0.02) 0.47 (0.21) 5.60 (4.98) 15.04 (10.29) 34.88 (26.72) 85.9 (31.60)	Mean (SD)Median [interquartile range] $15.55 (2.34)$ $16.03 [14.64; 16.91]$ $68.64 (3.61)$ $68.42 [65.52; 72.08]$ $0.003 (0.002)$ $0.002 [0.001; 0.003]$ $0.22 (0.06)$ $0.22 [0.20; 0.25]$ $14.49 (5.14)$ $14.97 [12.24; 16.47]$ $6.88 (1.77)$ $6.84 [6.35; 7.45]$ $97.65 (17.1)$ $97.4 [96.6; 98.60]$ $0.30 (0.02)$ $0.30 [0.29; 0.31]$ $0.47 (0.21)$ $0.42 [0.31; 0.57]$ $5.60 (4.98)$ $3.60 [4.89; 5.93]$ $15.04 (10.29)$ $10.41 [7.82; 15.88]$ $34.88 (26.72)$ $23.81 [17.93; 36.86]$ $85.9 (31.60)$ $92.6 [86.0; 95.7]$

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population ≥ 65 years	Savings (million yen)	Income (million yen)	СРІ	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	AC
Hokkaido	9.26(0.38)	68.81(2.07)	0.0056(1e-04)	0.22(0.03)	11.64(0.15)	6.02(0.54)	97.13(1.2)	0.29(0.01)	0.38(0.02)	11.87(0.47)	37.78(4.15)	106.68(1.57)	13.2
Aomori	10.64(0.4)	74.78(1.9)	0.0014(0)	0.23(0.03)	9.92(0.91)	5.96(0.3)	96.7(1.09)	0.3(0.01)	0.3(0.03)	2.52(0)	8.84(0.56)	19.96(0.46)	43.7
Akita	12.11(0.28)	72.64(0.9)	0.0011(0)	0.27(0.02)	10.82(0.79)	6.51(0.62)	98.6(1.48)	0.29(0.01)	0.27(0.02)	2.2(0.06)	7.6(0.59)	17.58(0.31)	66.8
Iwate	10.57(0.34)	73.31(1.37)	0.0014(0)	0.25(0.02)	12.29(0.23)	6.53(0.87)	97.33(0.94)	0.3(0.01)	0.29(0.02)	2.48(0.02)	10.18(0.69)	20.45(0.76)	45.5
Miyagi	12.78(0.4)	71.22(1.25)	0.0024(0)	0.2(0.02)	11.87(0.34)	6.89(0.26)	98.05(1.4)	0.3(0.02)	0.51(0.03)	4.62(0.2)	12(1.44)	26.42(0.25)	67.9
Yamagata	12.07(0.33)	74.27(1.31)	0.0012(0)	0.26(0.02)	12.36(0.49)	7.21(0.67)	96.85(0.84)	0.3(0.02)	0.31(0.02)	2.37(0.09)	7.94(0.69)	15.12(0.16)	76.1
Niigata	14.19(0.29)	70.69(1.55)	0.0024(0)	0.24(0.02)	15.21(0.86)	7.38(0.64)	97.96(1.22)	0.3(0.01)	0.4(0.03)	4.34(0.09)	13.93(1.31)	30.32(0.04)	91.6
Fukushima	13.36(0.37)	68.79(0.92)	0.0021(1e-04)	0.23(0.02)	12.46(0.38)	6.88(0.65)	97.08(1.07)	0.31(0.01)	0.42(0.03)	3.72(0.05)	11.22(1.01)	30.95(1.36)	64.2
Toyama	14.56(0.32)	77.2(1.74)	0.0011(0)	0.24(0.02)	16.33(0.62)	8.08(0.84)	98.15(1.53)	0.3(0.02)	0.42(0.06)	2.51(0.09)	7.88(0.87)	18.34(0.01)	93.6
Nagano	12.25(0.3)	71.31(1.55)	0.0022(0)	0.24(0.02)	15.57(0.71)	7.12(0.71)	98.11(1.21)	0.28(0.01)	0.44(0.04)	4.08(0.19)	13.78(1.49)	25.03(0.11)	54.3
Ishikawa	15.06(0.3)	70.05(1.91)	0.0012(0)	0.21(0.02)	16.57(1.16)	7.71(0.96)	98.56(1.12)	0.29(0)	0.44(0.05)	2.9(0.12)	8.89(0.73)	20.41(0.58)	92.9
Tochigi	14.34(0.34)	69.09(2.2)	0.002(0)	0.2(0.02)	15.62(0.66)	7.46(0.33)	96.8(1.4)	0.3(0.01)	0.58(0.07)	3.91(0.18)	9.57(1.27)	22.67(0.07)	89.1
Gunma	14.98(0.34)	61.18(1.76)	0.002(0)	0.21(0.02)	15.58(1.06)	6.85(0.54)	98.26(1.46)	0.3(0.01)	0.55(0.05)	3.98(0.17)	10.03(1.65)	25.32(0.04)	89.0
Ibaraki	14.08(0.39)	72.75(0.85)	0.003(0)	0.2(0.03)	15.35(0.57)	7.44(0.95)	95.5(0.98)	0.3(0.01)	0.6(0.07)	4.37(0.17)	12.01(1.43)	33.23(0.45)	89.7
Fukui	14.85(0.28)	74.7(1.86)	8e-04(0)	0.23(0.02)	18.63(1.15)	8.19(0.72)	98.05(1.51)	0.3(0.01)	0.38(0.04)	1.72(0.05)	5.12(0.57)	12.24(0.22)	95.1
Saitama	15.49(0.34)	64.24(2.26)	0.0071(1e-04)	0.17(0.03)	15.16(0.87)	7.38(0.62)	97.09(1.53)	0.29(0.01)	0.7(0.06)	8.95(0.71)	23.78(3.55)	61.53(1.06)	97.3
Tokyo	16.67(0.36)	59.7(1.51)	0.0126(4e-04)	0.19(0.02)	18.18(1.42)	7.99(0.25)	99.56(1.67)	0.31(0)	1.21(0.14)	33.31(1.63)	64.5(4.94)	130.07(0.57)	96.4
Yamanashi	15.08(0.3)	63.11(1.55)	9e-04(0)	0.22(0.02)	13.92(1.39)	6.79(0.68)	96.91(0.99)	0.29(0.02)	0.38(0.05)	1.69(0.02)	4.98(0.53)	11.52(0.33)	73.1
Chiba	16.24(0.39)	68.32(1.6)	0.0061(1e-04)	0.18(0.03)	16.19(0.2)	7.53(0.81)	98.23(1.68)	0.3(0.01)	0.72(0.07)	8.8(0.53)	22.91(2.73)	56.24(0.03)	93.6
Tottori	15.19(0.29)	72.91(1.3)	6e-04(0)	0.24(0.02)	15.58(0.65)	6.81(0.67)	97.94(1.25)	0.3(0)	0.25(0.02)	1.66(0.07)	4.41(0.44)	9.15(0.06)	90.2
Shimane	15.24(0.28)	74.31(1.45)	7e-04(0)	0.27(0.02)	14.25(0.86)	6.96(0.72)	96.61(0.78)	0.3(0.02)	0.23(0.02)	1.85(0.06)	5.57(0.51)	11.97(0.21)	89.7
Gifu	16.18(0.3)	65.69(2.68)	0.0021(0)	0.21(0.02)	17.53(0.51)	7.66(0.86)	97.35(1.76)	0.3(0.01)	0.49(0.05)	3.54(0.1)	10.18(1.01)	21.05(0.26)	90.6
Kanagawa	16.22(0.36)	65.11(1.62)	0.0088(2e-04)	0.17(0.03)	17.92(0.65)	7.78(0.6)	97.7(1.03)	0.3(0.01)	0.89(0.07)	14.7(0.72)	37.79(3.69)	75.2(0.55)	94.6
Aichi	16.23(0.34)	65.22(2.84)	0.0073(2e-04)	0.18(0.02)	17.99(1.16)	7.7(0.45)	97.96(1.2)	0.3(0)	0.97(0.09)	12.97(0.47)	33.84(4.21)	69.96(0.03)	96.7
Kyoto	16.19(0.28)	64.26(2)	0.0026(0)	0.21(0.03)	15.65(0.9)	6.64(0.83)	97.09(1.02)	0.29(0.01)	0.56(0.07)	7.17(0.11)	16.99(1.48)	37.17(0.42)	97.1
Shiga	15.07(0.26)	73.87(1.46)	0.0014(0)	0.18(0.02)	16.75(0.7)	7.42(0.54)	97.59(1.18)	0.29(0.01)	0.53(0.07)	2.63(0.18)	8.37(1.16)	14.14(0.63)	95.4
Shizuoka	16.9(0.3)	68.26(1.74)	0.0038(0)	0.21(0.03)	16.73(0.53)	7.45(0.65)	97.06(1.33)	0.3(0.01)	0.7(0.05)	6.43(0.29)	19.68(2.15)	39.74(0.74)	90.1

3 4

Prefecture/ country	Temperature (°C)	Relative humidity (%)	Density (population/km ²)	% population ≥ 65 years	Savings (million yen)	Income (million yen)	CPI	Gini index	EPI (%)	Physicians (number per 10k population)	Nurses (number per 10k population)	Hospital beds (number per 10K population)	A
Mie	16.35(0.3)	67.67(2.16)	0.0019(0)	0.22(0.02)	17.55(1.8)	7.45(0.65)	96.24(0.83)	0.28(0)	0.54(0.07)	3.38(0.08)	9.3(1.17)	21.22(0.07)	94
Hyogo	17.08(0.29)	65.15(1.93)	0.0056(0)	0.2(0.03)	16(0.65)	7.01(0.52)	98.18(1.95)	0.3(0.01)	0.55(0.07)	11.22(0.49)	30.33(3.37)	64.77(0.49)	95
Nara	15.16(0.29)	72.17(1.47)	0.0014(0)	0.21(0.03)	18.02(1.78)	7.26(0.69)	99.24(2.2)	0.3(0.01)	0.39(0.05)	2.81(0.15)	7.23(0.82)	16.19(0.88)	97
Osaka	17.19(0.32)	62.81(1.12)	0.0088(0)	0.19(0.03)	14.5(0.48)	6.62(0.7)	99.34(1.9)	0.32(0.02)	0.75(0.05)	21.07(0.69)	44.41(6.91)	113.25(3.26)	97
Okayama	16.57(0.29)	65.53(1.56)	0.0019(0)	0.23(0.02)	16.77(0.56)	7.07(0.67)	97.51(0.81)	0.3(0.01)	0.48(0.07)	4.86(0.27)	14.71(1.4)	31.45(0.45)	94
Hiroshima	16.48(0.28)	67.24(2.45)	0.0029(0)	0.21(0.02)	16.13(1.18)	6.9(0.34)	97.44(1.08)	0.3(0.01)	0.54(0.07)	6.7(0.16)	17.77(2.04)	42.23(0.33)	93
Kagawa	16.8(0.28)	65.55(1.47)	0.001(0)	0.24(0.02)	18.52(1.26)	6.95(0.53)	97.44(1)	0.29(0.01)	0.43(0.05)	2.51(0.04)	7.55(0.52)	17.36(0.4)	96
Wakayama	16.92(0.31)	64.22(1.73)	0.001(0)	0.24(0.03)	15.19(1.03)	6.24(0.7)	96.62(1.17)	0.3(0)	0.3(0.04)	2.54(0.09)	5.8(0.72)	14.84(0.25)	95
Yamaguchi	15.81(0.25)	70.19(1.53)	0.0015(0)	0.25(0.02)	13.95(0.73)	6.3(0.36)	98.89(1.38)	0.29(0.01)	0.41(0.05)	3.53(0.06)	10.57(0.97)	28.29(0.22)	91
Tokushima	16.86(0.3)	66.08(1.49)	8e-04(0)	0.25(0.02)	16.1(1.28)	6.77(0.58)	97.19(0.89)	0.33(0.01)	0.31(0.02)	2.26(0.05)	6.08(0.39)	16.22(0.56)	94
Ehime	16.8(0.28)	65.35(2.18)	0.0015(0)	0.24(0.02)	13.8(1.41)	6.11(0.32)	97.26(0.86)	0.3(0.01)	0.37(0.04)	3.4(0.06)	10.91(0.81)	23.81(0)	92
Fukuoka	17.33(0.28)	65.6(1.58)	0.0051(0)	0.2(0.02)	12.55(0.73)	6.49(0.36)	98.16(1.94)	0.31(0.01)	0.58(0.04)	13.19(0.52)	35.67(3.32)	89.87(1.1)	95
Kochi	17.39(0.32)	68.63(1.23)	8e-04(0)	0.26(0.02)	13.95(2.37)	6.22(0.69)	97.43(1.26)	0.32(0.01)	0.23(0.02)	2.16(0.05)	6.48(0.71)	20.05(0.56)	88
Oita	16.9(0.3)	66.88(1.82)	0.0012(0)	0.25(0.02)	12.17(0.27)	6.08(0.55)	97.08(1.06)	0.3(0.01)	0.33(0.04)	2.82(0.1)	8.78(0.95)	21.09(0.22)	88
Saga	16.86(0.27)	67.71(1.68)	9e-04(0)	0.23(0.02)	12.14(1.08)	6.84(0.65)	98.58(1.54)	0.29(0.01)	0.31(0.03)	1.95(0.05)	6.44(0.57)	15.47(0.05)	93
Kumamoto	17.34(0.36)	68.2(1.65)	0.0018(0)	0.24(0.02)	10.85(0.52)	6.27(0.55)	97.84(1.16)	0.31(0.01)	0.36(0.04)	4.58(0)	14.54(1.4)	36.53(0.44)	90
Nagasaki	17.45(0.31)	68.71(1.9)	0.0015(0)	0.24(0.02)	11.01(0.22)	6.02(0.58)	97.86(0.97)	0.31(0.02)	0.27(0.03)	3.78(0.2)	10.92(1.21)	28.45(0.91)	93
Miyazaki	17.78(0.32)	72.24(1.44)	0.0012(0)	0.24(0.02)	10.18(0.44)	5.93(0.32)	98.22(1.46)	0.31(0)	0.29(0.03)	2.49(0.07)	8.63(1.1)	19.92(0.08)	88
Kagoshima	18.86(0.32)	68.12(2.12)	0.0017(0)	0.25(0.02)	10.08(0.13)	5.63(0.37)	97.42(0.72)	0.29(0.01)	0.29(0.02)	3.89(0.11)	13.17(1.27)	36.17(0.52)	89
Okinawa	23.28(0.22)	72.39(2.08)	0.0014(0)	0.16(0.01)	5.58(0.44)	4.79(0.41)	97.36(1.11)	0.35(0.01)	0.28(0.02)	2.62(0.23)	7.85(0.87)	19.78(0.01)	86

BMJ Open

Blue: positively associated; red: negatively associated; Cross: p>0.05. RH: relative humidity; CPI: consumer price index; EPI: economic power index; AC: air conditioning prevalence

Figure S3. Peak-to-trough ratio (PTR) with 95% confidence intervals (95% CI) for each single year from 2000 to 2015 for all-cause (top), circulatory (middle), and respiratory (bottom) mortality before (black) and after adjustments for just influenza like illness (blue), just temperature (green), and both (red) *Note: The year of 1999 was excluded from our yearly analyses, as ILI data was not available until April 1999.*

BMJ Open

Figure S4. Associations between each indicator and PTR before and after adjusting for influenza like illness (ILI) and temperature

Coefficient and 95% confidence intervals were obtained from liner mixed effect models adjusting for latitude and longitude, except for when we investigated averaged annual mean temperature as the indicator, due to their high correlation. Results are expressed as log (PTR) change for standard deviation increase in each indicator.

Description of models

• Seasonality assessment without and with adjustments for temperature and/or influenza like illness

We applied a generalized linear model with a quasi-Poisson family to assess seasonality of mortality in each prefecture.

$Y_t \sim Quasi - Poisson(\mu_t)$

Main model (without any adjustment for temperature and ILI) $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t$ Adjusting for temperature $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + \beta Temp_{t,l}$ Adjusting for ILI $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + ns(ILI_t, 3)$ Adjusting for both temperature and ILI $\log(\mu_t) = \beta_0 + cs(doy, 4) + \lambda Strata_t + \beta Temp_{t,l} + ns(ILI_t, 3)$

t: the day of the observation;

Yt: the observed daily numbers of mortality on day *t*;

 β_0 : the intercept;

doy: day of year, which was fitted using cyclic cubic spline with 4 degrees of freedom (df);

 ILI_t : the daily numbers of ILI on day t, which was controlled using natural cubic spline with 3 df;

Stratat: strata defined by year, day of week, and their interaction to control for the long-term trend and the effect of day of week, and λ is the vector of coefficients;

Tempt,l: a matrix obtained by using cross basis function to temperature; l is the lag days, and β is the vector of coefficients. (For the cross-basis function, a natural cubic B-spline basis with three internal knots at the 25th, 50th, and 75th percentiles of temperature distribution was used for exposure-response association, and another natural cubic B-spline basis with 3 df with extended lag up to 21 days was used for the lag-response association.)

• Modification of seasonal variation in mortality by prefecture-specific indicators

We applied linear mixed effects models (LMEMs) to investigate associations of PTR with each prefecture-specific indicator separately. We fitted LMEMs with random intercepts for prefectures and the inverse of squared SE as weight. The longitude and latitude for the capital city of each prefecture were included to reduce spatial correlation, except for when we investigated annual mean temperature as the indicator, due to their high correlation.

$\beta_i = \alpha + \gamma Z_i + \eta + \nu_i$

 β_i is the estimated coefficient for seasonality (i.e., log(PTR)) in prefecture *i*

 Z_i is the prefecture-specific indicator for prefecture *i* (e.g., latitudes, longitudes, and averaged annual mean temperature)

 α and γ are estimated using least squares regression with inverse-variance weights.

 v_i is the variation within prefecture *i*, with the variance as $\sigma_{v_i}^2$

 η represents the heterogeneity among prefectures with a variance of σ_{η}^2 estimated using the restricted maximum likelihood approach.

Model Checking and sensitivity analysis

We used scatter plot of deviance residuals vs time and partial autocorrelation function plot of the deviance residuals to check the models. In addition, sensitivity analysis was conducted to check the robustness of our estimates.

We used the largest prefecture (i.e., Tokyo) for model evaluation, as the statistical uncertainty for the estimates was small.

• Scatter plot of deviance residuals vs time

In general, the plot shows an even band of points over the time, although we observed a few spikes, for example, in 1999. This pattern did not change significantly when we use more flexible modellings for seasonality, temperature, and influenza.

Figure S5. Deviance residuals over time from the analysis in Tokyo (without adjustment for temperature and/or influenza)

• Partial autocorrelation function (PACF) plot of the deviance residuals

PACF shows a slow decay and a high degree of autocorrelation around a 1-week lag. This pattern remained when we included temperature and/or ILI in the model. In order to reduce the autocorrelation, we tried more flexible functions for seasonality by increasing the degree of freedom, and then we added lagged deviance residuals to the model in several different ways. For example, 1-day lagged deviance residuals, 1- to 6-day lagged deviance residual, and a moving average of 6 days lagged deviance residuals, respectively. The autocorrelation remained without much reduction after many attempts, but the coefficient and its standard error from cyclic spline functions for seasonality changed very little (Table S4).

Figure S6. Partial autocorrelation function plot of the deviance residuals from the analysis in Tokyo (without adjustment for temperature and/or influenza)

adjusting for temperature and	1/01 Influenza like linless
Models	Peak-to-Trough
Widdels	(95% confidence interval)
Main model	1.254 (1.249, 1.259)
Model 1	1.249 (1.237, 1.255)
Model 2	1.244 (1.237, 1.252)
Model 3	1.253 (1.249, 1.258)
Model 4	1.253 (1.248, 1.257)
Model 5	1.252 (1.248, 1.257)
Model 6	1.250 (1.247, 1.254)

Table S4. Seasonality estimates for Tokyo without adjusting for temperature and/or influenza like illness

Main model: $\log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t$

(*Stratat*: strata defined by year, day of week, and their interaction to control for long-term trend and effect of day of week) Model 1: $\log(\mu_t) = \beta_0 + cs(day - of - year, 5) + \lambda Strata_t$

Model 2: $\log(\mu_t) = \beta_0 + cs(day - of - year, 6) + \lambda Strata_t$ Model 2: $\log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1)$ Model 4: $\log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) + Lag(residuals(main model), 2) + Lag(residuals(main model), 3)$ Model 5: $\log(\mu_t) = \beta_0 + cs(day - of - year, 4) + \lambda Strata_t + Lag(residuals(main model), 1) + Lag(residuals(main model), 2) + Lag(residuals(main model), 3) + Lag(residuals(main model), 2) + Lag(residuals(main model), 3) + Lag(residuals(main model), 4) + Lag(residuals(main model), 5) + Lag(residuals(main model), 6)$

• The fit of the model to the daily death counts over time

Figure S7. Daily mean number of observed aal-cause, circulatory, and respiratory mortality in Japan averaged from 47 prefectures over the study period and estimated number of daily circulatory mortality from time series regression models (Main model)

Grey dot: daily mean number of observed mortality cases averaged from 47 prefectures over the study period; Red: pooled estimates with 95% confidence intervals obtained from prefecture-specific estimates from models without temperature adjustment

Figure S7 suggests that our models fitted seasonality of circulatory mortality better and may underestimate the seasonal variation in all-cause and respiratory mortality. The discrepancy between observed and fitted values may be explained by the risk of temperature, infectious disease, and other factors (e.g., human behaviour).

Section/Topic	Itom #	Perommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction	I		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-4
Objectives	3	State specific objectives, including any pre-specified hypotheses	3-4
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5-6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6-8
		(b) Describe any methods used to examine subgroups and interactions	6-8
		(c) Explain how missing data were addressed	6-8
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	6-8

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	8
Results		·	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	8
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-9
		(b) Indicate number of participants with missing data for each variable of interest	8-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9-10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information	•		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.