SUPPLEMENTARY MATERIALS

Tool (approach)	Dataset, host (references)	Туре	Sample size	Spearman's correlation	AUROC
TIsigner (mRNA accessibility)	GFP reporter, Escherichia coli (3)	Continuous	14,425	-0.65ª	N/A
	YFP reporter, Saccharomyces cerevisiae (4)	Continuous	2,041	-0.55ª	N/A
	GFP reporter, Mus musculus (5)	Continuous	65,536	-0.28ª	N/A
	PSI:Biology, E. coli (6)	Binary	8,780 expressed, 2,650 non-expressed	N/A	0.70
SoDoPE (Solubility- Weighted Index)	Training set: PSI:Biology, <i>E. coli</i> (6)	Binary	8,238 soluble, 3,978 insoluble	N/A	0.71
	Independent test set: eSOL, <i>E. coli</i> (7)	Continuous	3,198	0.50 (P=9.46 × 10 ⁻²⁰⁶)	N/A

Table S1. Performance metrics of TIsigner and SoDoPE (1, 2).

Table S2. Performance metrics of Razor (8).

Classifier	Dataset (references)	Sample size	мсс	AUROC	AUPRC	Cleavage site	
						Precision	Recall
Eukaryotic SP	SignalP 5.0 benchmarking set (9)	211 SPs, 7,246 non-SPs	0.815	0.98	0.85	0.565	0.597
	Independent test set	287 SPs, 52,055 non-SPs	0.405	0.96	0.61	0.136	0.596
Toxin SP	Training set (10, 11)	261 toxin SPs, 1,738 non-toxin SPs	0.741	0.89	0.74	N/A	N/A
	Independent test set (10, 11)	47 toxin SPs, 194 non-toxin SPs	0.769	0.98	0.93	N/A	N/A
Fungal SP	Training set (11)	121 fungal SPs, 1,843 non-fungal SPs	0.506	0.87	0.48	N/A	N/A
	Independent test set (11)	18 fungal SPs, 269 non-fungal SPs	0.60	0.94	0.75	N/A	N/A

^a P-value below machine's underflow level.

AUROC and AUPRC, areas under the receiver operating characteristic curve and precision-recall curve, respectively; GFP, green fluorescent protein, MCC, Matthew's correlation coefficient, PSI:Biology, Protein Structure Initiative: Biology; YFP, yellow fluorescent protein.

References

- 1. Bhandari,B.K., Lim,C.S. and Gardner,P.P. (2021) Protein yield is tunable by synonymous codon changes of translation initiation sites. *bioRxiv*, doi:10.1101/726752.
- 2. Bhandari,B.K., Gardner,P.P. and Lim,C.S. (2020) Solubility-Weighted Index: fast and accurate prediction of protein solubility. *Bioinformatics*, **36**, 4691–4698.
- 3. Cambray,G., Guimaraes,J.C. and Arkin,A.P. (2018) Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. *Nat. Biotechnol.*, **36**, 1005–1015.
- 4. Dvir,S., Velten,L., Sharon,E., Zeevi,D., Carey,L.B., Weinberger,A. and Segal,E. (2013) Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast. *Proc. Natl. Acad. Sci. U. S. A.*, **110**, E2792–801.
- 5. Noderer,W.L., Flockhart,R.J., Bhaduri,A., Diaz de Arce,A.J., Zhang,J., Khavari,P.A. and Wang,C.L. (2014) Quantitative analysis of mammalian translation initiation sites by FACS-seq. *Mol. Syst. Biol.*, **10**, 748.
- 6. Seiler,C.Y., Park,J.G., Sharma,A., Hunter,P., Surapaneni,P., Sedillo,C., Field,J., Algar,R., Price,A., Steel,J., *et al.* (2014) DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. *Nucleic Acids Res.*, **42**, D1253–60.
- Niwa,T., Ying,B.-W., Saito,K., Jin,W., Takada,S., Ueda,T. and Taguchi,H. (2009) Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. *Proc. Natl. Acad. Sci. U. S. A.*, **106**, 4201–4206.
- 8. Bhandari,B.K., Gardner,P.P. and Lim,C.S. (2021) Razor: annotation of signal peptides from toxins. *bioRxiv*, doi:10.1101/2020.11.30.405613.
- 9. Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G. and Nielsen, H. (2019) Signal P 5.0 improves signal peptide predictions using deep neural networks. *Nat. Biotechnol.*, **37**, 420–423.
- 10. Jungo,F., Bougueleret,L., Xenarios,I. and Poux,S. (2012) The UniProtKB/Swiss-Prot Tox-Prot program: A central hub of integrated venom protein data. *Toxicon*, **60**, 551–557.
- 11. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res.*, **47**, D506–D515.