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SUMMARY
RET receptor tyrosine kinase plays vital developmental and neuroprotective roles inmetazoans. GDNF family
ligands (GFLs) when bound to cognate GFRa co-receptors recognize and activate RET stimulating its cyto-
plasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood.
Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing inter-
domain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a
ligand-engaged zebrafish RETECD-GDNF-GFRa1a complex indicates conformational changes within a
clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular
clamp with a flexible calcium-dependent arm that adapts to different GFRa co-receptors, while its rigid
arm recognizes aGFL dimer to align bothmembrane-proximal cysteine-rich domains.We also visualize linear
arrays of RETECD-GDNF-GFRa1a suggesting that a conserved contact stabilizes higher-order species. Our
study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing
of receptor dimers by GFL ligands.
INTRODUCTION

Neurotrophic factors fulfill an essential function to support and

protect both developing and mature neurons (Henderson et al.,

1994). This neuroprotective therapeutic potential has led to an in-

terest in understanding how they engage and activate their cell

surface receptors (Airaksinen and Saarma, 2002; Allen et al.,

2013). The glial cell line-derived neurotrophic factor (GDNF) fam-

ily ligands (GFLs) constitutes an important family of neurotrophic

factors that includeGDNF (Durbec et al., 1996), Neurturin (NRTN)

(Kotzbauer et al., 1996), Artemin (ARTN) (Baloh et al., 1998b),

Persephin (PSPN) (Airaksinen and Saarma, 2002; Milbrandt

et al., 1998), and more recently GDF15 (Emmerson et al., 2017;

Hsu et al., 2017; Mullican et al., 2017; Yang et al., 2017). Each

of these soluble factors are covalent dimeric ligands and are

members of the cystine knot/transforming growth factor b

(TGF-b) superfamily (Hinck et al., 2016). Each GFL has a cognate

GFRa (GFR) co-receptor that associate as GDNF-GFRa1 (Caca-

lano et al., 1998), NRTN-GFRa2 (Baloh et al., 1997), ARTN-
694 Structure 29, 694–708, July 1, 2021 ª 2021 The Authors. Publish
This is an open access article under the CC BY license (http://creative
GFRa3 (Baloh et al., 1998a), PSPN-GFRa4 (Thompson et al.,

1998), and GDF15-GFRAL (Emmerson et al., 2017; Hsu et al.,

2017; Mullican et al., 2017; Yang et al., 2017) complexes,

respectively. The GFL co-receptors typically consist of three

related helical domains (D1 to D3) and are anchored at the mem-

brane either through glycosylphosphatidylinositol linkages

(GFRa1-4) or by a transmembrane helix (GFRAL). The bipartite

GFL-GFR complexes are recognized by the RET receptor

tyrosine kinase (RTK) forming ternary RET-GFL-GFR complexes

(Cacalano et al., 1998; Durbec et al., 1996; Jing et al., 1996;

Treanor et al., 1996). Engagement of GFL-GFR by RET

triggers RET auto-phosphorylation of critical tyrosine residues

to activate intracellular signaling pathways (Ibáñez, 2013; Mulli-

gan, 2014).

RET has four consecutive cadherin-like domains (CLD(1-4))

and a membrane-proximal cysteine-rich domain (CRD) in its

extracellular domain (RETECD) (Anders et al., 2001). The CLD do-

mains diverge significantly, in sequence, structure, and arrange-

ment from classical cadherins (calcium-dependent adhesion)
ed by Elsevier Ltd.
commons.org/licenses/by/4.0/).

mailto:neil.mcdonald@crick.ac.uk
https://doi.org/10.1016/j.str.2020.12.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2020.12.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Crystal structure and flexibility of the zRET CLD(1-4) module

(A) Schematic of zebrafish RET receptor tyrosine kinase. CLD, cadherin-like domains; CRD, cysteine-rich domain; TM, transmembrane helix; JM, juxtamembrane

domain; KD, kinase domain.

(B) Orthogonal views of zRETCLD1-4 colored as in (A). The calcium-binding site between CLD(2-3) has three calcium ions as green spheres with coordinating

ligands as sticks and waters as red spheres.

(C) Close-up view of the coordination shell for the three calcium atoms between CLD2 and CLD3.

(D) Close-up of the interface between CLD3 and CLD4 centered on R272, selected side chains shown as sticks and dashed lines for hydrogen bonds.

(E) Superposition of chains A and B within the crystallographic asymmetric unit.
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(Anders et al., 2001; Brasch et al., 2012; Kjær et al., 2010). For

example, the CLD(1-2) pair form a closed clamshell arrangement

(Kjær et al., 2010). Calcium ions are critical for RET folding

consistent with the conservation of calcium-coordinating motifs

between CLD2 and CLD3 (Anders et al., 2001; Kjær and Ibáñez,

2003; van Weering et al., 1998). Biochemical efforts to map the

bipartite GDNF-GFRa1 binding site within RETECD to a mini-

mal-binding domain have implicated the entire RETECD region.

This contrasts many receptor-ligand interaction RTKs that

frequently map to an ~200 amino acid minimal-binding domain

(Lemmon and Schlessinger, 2010). Two key interactions be-

tween RETECD-GFRa1 and RETECD-GDNF were identified from

electron microscopy structures of RETECD bound to GDNF/

NRTN and GFRa1/GFRa2, although lacking a CRD structure

(Bigalke et al., 2019; Goodman et al., 2014). A study by Li et al.

(2019) revealed a human RETECD structure, including the CRD,

in complex with several GFL ligands. In this analysis, the D1

domain of GDNF-GFRa1 or GDF15-GFRAL complexes with

RETECD were missing. Moreover, little information about confor-

mational changes upon ligand binding was evident.

We report an X-ray structure of zebrafish RETCLD�4 and a

cryo-electron microscopy (cryo-EM) structure of the zebrafish

RETECD-GDNF-GFRa1a complex. We observe plasticity within
RETCLD1-4 and define the extent of conformational changes

induced by ligand-co-receptor binding. Conformational adapta-

tions are observed between RET and GFRa contacts even

across clades, whereas a more strictly conserved interaction is

observed between GFL and RET-CRD close to the transmem-

brane region.We show diversity in GFL co-receptor engagement

by RET and describe RETECD-GDNF-GFRa1a multimers on

cryo-EM grids generating linear arrays.

RESULTS

Crystal structure of zebrafish RET CLD(1-4) indicates
localized flexibility
Crystals were obtained for a zebrafish RET construct spanning

residues 22–504 (zRET22-504) with glycosylation site mutations,

N259Q, N308Q, N390Q, and N433Q (defined hereafter as

zCLD(1-4)red.sug.). Diffraction data from these crystals led to a

structure determination at 2.2 Å resolution (Figure 1; Table 1).

The final zCLD(1-4)red.sug. model contains residues 22–498 and

includes 7 N-linked glycans well resolved in the electron density

(Figure S1A). The crystals adopted the triclinic space group P1

and contained twomolecules of CLD(1-4)red.sug. within the asym-

metric unit. Each had a similar overall structure but with different
Structure 29, 694–708, July 1, 2021 695



Table 1. Crystallography data processing and refinement

statistics

zCLD(1-4)red.sug.
zGDNFmat.-

GFRa1aDD1

Wavelength (Å) 0.9787 0.9795

Resolution range (Å) a 65.96–2.20

(2.28–2.20)

50.76–2.2

(2.28–2.2)

Space group P 1 P 21 21 2

Unit cell dimensions

a, b, c (Å) 51.17, 70.50,

105.44

125.07, 55.54,

70.96

a, b, g (�) 105, 101, 100 90, 90, 90

Total no. of reflections 229,073 (22,789) 51,646 (5,054)

Unique reflections 67,550 (4,539) 25,823 (1,368)

Multiplicity 3.4 (3.4) 2.0 (2.0)

Completeness (%) 91.28 (66.36) 91.93 (53.94)

Mean I/sI 7.09 (1.92) 14.30 (3.15)

Wilson B factor (Å2) 28.88 20.87

Rmerge 0.073 (0.68) 0.056 (0.37)

Rmeas 0.087 (0.81) 0.079 (0.53)

Rpim 0.046 (0.43) 0.056 (0.37)

CC½ 0.996 (0.70) 0.997 (0.80)

CC 0.999 (0.91) 0.999 (0.94)

Resolution used

for refinement

65.96–2.20 50.76–2.20

Reflections used

in refinement

62,771 (4,522) 23,743 (1,363)

Reflections used

for Rfree

3,098 (255) 1,152 (57)

Rwork 0.232 (0.316) 0.199 (0.247)

Rfree 0.277 (0.383) 0.230 (0.248)

CC (work) 0.895 (0.615) 0.888 (0.723)

CC (free) 0.884 (0.553) 0.888 (0.800)

No. of non-hydrogen

atoms

7,997 2,736

Macromolecules 7,289 2,434

Ligands 539 83

Solvent 169 219

Protein residues 980 309

RMSD

Bond lengths (Å) 0.009 0.006

Bond angles (o) 1.08 0.74

Ramachandran

plot (%)

Favored 96.6 97.03

Allowed 3.0 2.97

Outliers 0 0.0

Rotamer outliers (%) 0 0.0

Clashscore 14.56 4.03

Average B factor (Å2) 41.31 30.19

Macromolecules 39.53 28.99

Ligands 67.62 55.09

Solvent 33.82 34.06

Table 1. Continued

zCLD(1-4)red.sug.
zGDNFmat.-

GFRa1aDD1

No. of TLS groups 8 1

PDB: 7AMK 7AB8

RMSD, root-mean-square deviation.
aValues in parentheses are for highest-resolution shell.
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hinge angles between CLD2 and CLD3, pointing to flexibility

within RET (Figure 1E).

The overall structure of zCLD(1-4)red.sug showed that all CLDs

have the predicted canonical seven b strand sandwich architec-

ture of cadherin domains (Figure S1B) (Shapiro and Weis, 2009).

The amino-terminal CLD1 is packed against CLD2 in a fold-over

clamshell arrangement as anticipated from human RET, while

CLD(2-4) forms a ‘‘C-shape’’ (Figure 1B). The zCLD(1-2) clam-

shell has a surprisingly large overall root-mean-square deviation

(RMSD) of 18.9 Å over 229Caswhen superposedwith hCLD(1-2)

(Winn et al., 2011). Key features contributing to this structural

divergence are a shuffled disulfide connectivity, a lack of a b

hairpin and a longer CLD1 helix a1 between higher and lower

vertebrates (Figure S1C) (Kjær et al., 2010).

The irregular CLD2-b1 (residues 153–160) is largely separated

from themain CLD2 sheet and lies between CLD1-b1 and CLD2-

b7, anchored largely through CLD2-b2 side chains (such as R172

and R176) rather than main-chain interactions (Figure S1D). One

end of CLD2-b1 is tethered through packing of two short a heli-

ces fromCLD2-b1 and CLD2-b2, while the other end is anchored

by aromatic side chains from residues amino-terminal to CLD1-

b1. This configuration contributes to a substantial internal cavity

between CLD1 and CLD2, with a surface volume of ~510 Å3 (Fig-

ure S1D). We note that analysis of the published human CLD(1-2)

(Kjær et al., 2010) (PDB: 2X2U) also revealed a similar but smaller

internal cavity of ~324 Å3 (Figure S1D) (Abagyan et al., 1994; An

et al., 2005; Fernandez-Recio et al., 2005). On the opposing side

of the clamshell interface, CLD1-b2 and CLD2-b2 contribute

through both side- and main-chain interactions.

The limited size of the CLD(2-3) interface is typical of a cal-

cium-dependent cadherin domain pair, with three calcium ions

(Ca-1/Ca-2/Ca-3) and their coordinating ligands dominating

the interface (Figure 1C) (Shapiro and Weis, 2009). Ca-1 and

Ca-2 lie in close proximity (3.9 Å apart in chain A) and share three

coordinating ligands, the side chains of E164, E218 (CLD2), and

D253 (CLD3). Ca-1 is exposed to the solvent at the edge of

CLD2, with the coordination sphere completed with D216 and

two water molecules, one of which is coordinated by with

N165 (Figure 1C). The Ca-2 coordination sphere includes

D253, a main-chain carbonyl from E251 (CLD2), and D287

(CLD3), which is a ligand shared with Ca-3 (Figure 1C). Ca-3 is

buried within CLD3 and located 6.9 Å away from Ca-2, the coor-

dination shell is completed with the side chains of D252, D285,

N299, and D363 and the main-chain carbonyl of N254

(Figure 1C).

CLD3 consists of 135 amino acids and is the largest RET CLD.

It shows the greatest structural divergence of all CLDs (~5 Å

RMSD) compared with the smaller canonical cadherin domains

(Figure S1B) (Shapiro and Weis, 2009). Additional elements
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within CLD3 include a loop insertion between b2 and b3 adjacent

to the calcium-binding site, an a helix between b3 and b4, and a

much longer pair of antiparallel b strands, b4 and b5. Unusually,

CLD3 lacks any disulfide bonds and its CLD4 interface is offset at

one side of the domain giving a pronounced curvature to the

entire CLD(1-4) module. CLD3 has five potential glycosylation

sites, two of which were removed by site-directed mutagenesis

in zCLD(1-4)red.sug and three are visible in the electron density

(Figure S1A). These features collectively ensure that CLD3 plays

a crucial role in the stability and curvature of the zCLD(1-4)

module.

The CLD(3-4) interface diverges substantially from classical

cadherins and has previously confounded efforts to predict the

precise CLD(3-4) domain boundaries (Anders et al., 2001). It

lacks calcium ions and has a predominantly hydrophobic char-

acter, with peripheral hydrophilic interface contacts (Figure 1D).

Hydrophobic contacts include CLD3 side chains F270 and V349

that pack against CLD4 F418 and I421 side chains and are teth-

ered by V384 from a rigid connecting linker with sequence P383-

V384-P385. An exception to the hydrophobic character of the

interface is the buried R272 side chain from the CLD3-b1-b2

loop (Figure 1D). The aliphatic portion of R272 packs against

V349, V384, and I421, while its guanidinium head engages

main-chain carbonyls on the CLD3-b5-b6 loop and the CLD3-

CLD4 linker (Figure 1D). This residue is equivalent to R287 in

humans, a known site of mutation in a severe form of Hirsch-

sprung’s disease (R287Q), highlighting the crucial nature of this

residue for folding (Attie et al., 1995; Pelet et al., 1998).

Differences in the CLD interface size indicate flexibility be-

tween CLD2 and CLD3 but rigidity between CLD3 and CLD4.

This is supported by superpositions of the two independent mol-

ecules of zCLD(1-4)red.sug demonstrating plasticity in the tapered

CLD(2-3) interface (Figure 1E). Superimposing chain B onto

chain A, aligned through CLD(1-2), reveals that the rigid CLD(3-

4) module pivots about the CLD(2-3) calcium-binding site inter-

face with a variation of 12.3�, which leads to a difference of

18.4 Å at the furthest point from the CLD(2-3) interface (Fig-

ure 1E). Subtle angular differences proximal to the calcium

ions, propagating down the module lead to a tightening of the

C-shaped structure between chain A and chain B.

Cryo-EM structure of the ternary zebrafish GDNF-
GFRa1a-RETECD complex
A reconstituted complex was assembled consisting of the

zRETECD (residues 1–627), a C-terminal truncated zGFRa1a

(zGFRa1aD1-3) covering residues 1–353, and an N-terminal trun-

cated zGDNF, residues 135–235 (zGDNFmat.), defined hereafter

as zRGa1a from RET-GDNF-GFRa1a (Figures 2A and S2). The

zRGa1a complex homogeneity and stability was improved by

crosslinking using the GraFix technique (Kastner et al., 2008).

An initial cryo-EM dataset (dataset 1) collected on the reconsti-

tuted zRGa1a yielded a 3D cryo-EM map that confirmed a

2:2:2 stoichiometry (see Figure S3), consistent with size-exclu-

sion multi-angle laser light scattering data (Figure S2) and similar

to recently published human RET complexes (Bigalke et al.,

2019; Li et al., 2019). The map displayed substantial anisotropic

resolution due to particle orientation bias on the grids. To over-

come this, a second dataset was collected with a sample grid

tilted at an angle of 30� (dataset 2) (see Figure S3). The combined
particles from both datasets were used to generate an initial 3D

volume with C2 symmetry applied in CryoSPARC-2 (Punjani

et al., 2017). Additional processing with symmetry expansion in

RELION-3 (Kimanius et al., 2016; Scheres, 2012; Zivanov et al.,

2018), improved the anisotropy and resolution of the map by ad-

dressing flexibility at the 2-fold symmetry axis, to produce amap

with a nominal resolution of 3.5 Å (Figures 2C, S4, S5A, and S5B).

Subsequent analysis of this final map with 3DFSC indicated that

there were a limited number of particles contributing to the Z di-

rection of the 3D reconstruction, which resulted in the resolution

in that direction being limited to ~10 Å (Figure S4) (Tan

et al., 2017).

The zRGa1a cryo-EM map resembles a figure-of-eight with a

molecular 2-fold centered at the crossover point (Figure 2B).

To enable building of a full structure into themap, we determined

a crystal structure of zGDNFmat-zGFRa1a151-353 lacking domain

D1 (referred to hereafter as zGFRa1aDD1) at 2.2 Å (see the STAR

Methods and Figure S5C). We then fitted crystal structures for

zRET CLD(1-4) and zGDNFmat-zGFRa1aDD1 into the symmetry-

expanded map (Figure S5C) together with homology models

for the zRETCRD and zGFRa1aD1. An initial model for zRETCRD

was generated from the hRETECD-hGFRa2-NRTN structure (Li

et al., 2019) and for zGFRa1aD1 from the hGFRa2-NRTN (Sand-

mark et al., 2018) structure by substituting zebrafish sequences

followed by model optimization using Swiss-Model (Schwede

et al., 2003) and Modeller (Webb and Sali, 2016), respectively.

The initial structure was refined against the symmetry-expanded

map and rebuilt, before placing it into the C2-averaged map for

further refinement in PHENIX (Adams et al., 2010) (Table 2; Fig-

ures S5A and S5B). The final near complete structural model

has a crosscorrelation of 0.63 against this map with highest-res-

olution features close to GDNF and zRETCLD4�CRD (Figure S5).

N-Acetylglucosamine (GlcNAcb1-Asn) glycan rings linked to

asparagine sites were also evident in the map. Density was

also evident for zGFRa1aD1, sandwiched between zGFRa1aD3

and zRETCLD1, at a similar position to GFRa2D1 (Bigalke et al.,

2019; Li et al., 2019; Sandmark et al., 2018) (Figure 2D).

The final structure shows zGDNF at the core of the complex

flanked by two zGFRa1aD1-3 co-receptors, both of which are

further enveloped by two ‘‘G’’-shaped RETECD molecules (Fig-

ure 2D). The spur of the RETECD G shape is formed by the CRD

domain making contacts with both GDNF protomers and

zGFRa1a, as first predicted from lower-resolution negative stain

EM analysis (Goodman et al., 2014) as well as other structures

(Bigalke et al., 2019; Li et al., 2019). There are two major inter-

faces between zRETECD and its ligand-co-receptor at opposite

ends of zRETECD, each is well defined in the cryo-EM map with

side-chain level information (Figure 2D). The dominant interac-

tion is between zCLD(1-3) and GFRa1D3 (defined hereafter as

the site 1), with a key second site between zCRD and a concave

surface presented by the GDNF dimer and a loop from GFRa1

(defined hereafter as site 2) (Figure 2D). Site 2 shows a close

equivalence to the ‘‘low’’ affinity TGF-b receptor I binding site

for TGF-b (Groppe et al., 2008; Kirsch et al., 2000) and is also

used by other TGF-b superfamily ligands (Hinck et al., 2016).

Site 1 on zRET involves elements from the CLD(1-2) clamshell

structure and the CLD(2-3) calcium-binding region (Figure 2D).

Both contacts engage the zGFRa1 domain D3 (zGFRa1D3) close

to helix a4, its preceding loop and helix a1 . Together these
Structure 29, 694–708, July 1, 2021 697



Figure 2. Cryo-EM structure of the zRETECD-zGFRa1aD1-3-zGDNFmat. (zRGa1a) complex

(A) Schematic of zRETECD, zGFRa1aD1-3, and zGDNFmat., color coded according to Figure 1A.

(B) Orthogonal views of the reconstituted zRGa1a complex cryo-EM map, projecting down the approximate molecular dyad or perpendicular to it. The cryo-EM

map is segmented and colored by protein, with zRETECD cyan, zGFRa1aD1-3 green, and zGDNFmat. orange.

(C) Symmetry-expanded map of zRGa1a half-complex, with the map segmented and colored by protein as in (B).

(D) The final model of the zRGa1a complex built into the C2 symmetry map, colored light gray. The domains are colored as in Figure 1 with zRETECD: for GFRa1a

domains D1-3 are pale green, green, and dark green, respectively; the twomolecules of zGDNFmat. are orange and pale orange. Two sites of interactionwithin the

zRGa1a complex are highlighted in red dashed boxes, labeled as site 1 (zGFRa1a-zRET) and site 2 (zGDNF-zRET). Interaction residues are highlighted as sticks

and the backbone represented as a cartoon.
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zGFRa1 elements form a wedge-shaped surface to access the

calcium-binding region of zRETCLD(2-3). This interface covers a

total area of 846 Å2 and comprises both hydrophilic and electro-

static interactions, as calculated by PDBePISA (Krissinel and

Henrick, 2007). The isolated CLD2-b1 strand bridges between
698 Structure 29, 694–708, July 1, 2021
the CLD1-CLD2 interface, running antiparallel to the zGFRa1D3

helix a4. Hydrophilic side chains from helix a4 interact with

CLD2-b1 main chain as well as two proximal strands; CLD1-b1

andCLD1-b7 (Figure 2D). The side chain fromR330 of zGFRa1D3

helix a4, lies close to themain-chain carbonyl of I157 fromCLD2-



Table 2. EM data acquisition and processing statistics

zRGa1a

C2 map

zRGa1a

symmetry-

expanded map

zR15AL

negative

stain map

EMDB: EMD-11822 EMD-11822 EMD-11777

PDB: 7AML

Magnification 46,296 46,296 40,719

Voltage (kV) 300 300 120

Electron exposure

(e�/Å2)

48.6 48.6 –

Defocus

range (mm)

1.4–3.5 1.4–3.5 1.0–1.5

Pixel size (Å) 1.08 1.08 3.44

Symmetry

imposed

C2 C1 C2

Initial particle

images

2,424,600

(dataset 1),

1,393,023

(dataset 2)

– 27,551

Final particle

images

382,547

(360,189

dataset 1

and 22,358

dataset 2)

765,094 6,519

Map

resolution (Å)

3.3 3.5 26

FSC threshold 0.143 0.143 0.143

Map resolution

range (Å)

12–3.3 11–3.5

Refinement

Initial model, PDB: 7AMK, 7AB8

Model resolution (Å) 4.2

FSC threshold 0.5

Map sharpening B factor (Å2) �75

Non-hydrogen atoms 16,020

Protein residues 1,996

Ligands 8

N-Glycans 16

Protein 122.4

Ligands 111.6

Bond lengths (Å) 0.004 (0)

Bond angles (�) 0.646 (6)

Validation

MolProbity score 1.85

Clashscore 9.45

Poor rotamer (%) 0.89

Favored 94.94

Allowed 5.06

Disallowed 0.0

RMSD, root-mean-square deviation.
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b1 and the side chain of E326 is positioned near the side chains

of N247 and Y249 (hydroxyl). The loop preceding helix a4 of

zGFRa1aD3 is anchored between the CLD3-b2-b3 loop and the

CLD3-b4-b5 loop; main chain-main chain interactions form be-
tween P290 from the CLD3-b2-b3 loop and S321 of

zGFRa1aD1-3 (Figure 2D). The main chain of N323 from the

loop preceding a4 of zGFRa1aD1-3 appears to interact with the

guanidinium head of R333 from CLD3-b4, and the side chain

of N323 interacts with the main chain of D250 at the calcium-

binding site (Figure 2D).

Site 2 interaction involves the zRETCRD and a concave ‘‘sad-

dle’’-shaped surface formed by both protomers of the

zGDNFmat. dimer and a loop from zGFRa1aD2 (Figure 2D). This

agrees with our previous assignment of this site as a ‘‘shared’’

site (Goodman et al., 2014). The interface is mainly hydrophobic

in character and has a surface area of 598 Å2. The surface con-

tains three main elements; a b-turn from zGFRa1D2 centered on

R180, residues 156–159 (LGYR) and residues 222–224 (HTL)

from the fingers of one GDNF protomer (GDNF1) and residues

176–179 (DATN) with the ‘‘heel’’ helix of the second protomer

(GDNF2). These residues engage G588 and Y589 from the

CRD-b3-b4 loop (Figure 2D) and make van der Waals’s contacts

to the I546 side chain from the CRD-b1-b2 loop (Figure 2D). A hy-

drophobic interaction is evident between I586 from the CRD-b3-

b4 loop and the T179 from the loop preceding the zGDNF2 heel

(Figure 2D). The remaining contacts are mainly hydrophilic in

nature between the heel of GDNF2 and the CRD. From the

heel of zGDNF2; N180GDNF interfaces with the amide of G587,

and K182 of GDNF2 interacts with E613. This contact is consis-

tentwith the absence of a crosslink in the XL-MSdata (Figure S6).

The zRETCRD b5-b6 b turn is 2 amino acids shorter than hRETCRD

allowing it to engage amino-terminal residues 138–140 of

zGDNF2 with a likely salt bridge between E607 and R140.

Also, H222 from zGDNF1 is likely to contact E590 (equivalent

to E595 in human RET, a known Hirschprung’s mutation site)

(So et al., 2011).

Two further contacts with zRET are indicated but are less well

defined in the map. A limited interface between zRETCLD1 and

GFRa1D1 is observed allowing zRETCLD1 and GFRa1D1 domains

to be placed and the interaction is very similar to that seen in the

RETECD-NRTN-GFRa2 structure (Li et al., 2019). Second, resi-

dues immediately after the CRD from residues 615 to 627 are

poorly ordered. This acidic stretch includes 12 residues likely

to pass beneath the highly basic GDNF ligand (pI of 9.3 for

mature zGDNF) before entering the plasma membrane. The final

residue in RETECD observed is P617, which is separated by a dis-

tance of 40.9 Å from the dimer equivalent residue. A lower map

contour shows density for these residues beneath theGDNFmo-

lecular 2-fold axis consistent with RETECD-NRTN-GFRa2 (Biga-

lke et al., 2019).

Clade-specific features influence ligand binding affinity
Comparison of site 1 of zRET in both the crystal and cryo-EM

structure reveals differences in the conformation of residues

288–298 from a CLD3 loop (Figure 3A). In the absence of ligand,

this loop packs against CLD3 core (loop ‘‘down’’ position) inter-

acting with the b4 strand. In the presence of the ligand, this loop

forms a central part of the interface with zGFRa1aD3 and is repo-

sitioned upward (loop-‘‘up’’) toward the calcium ions and en-

gages L247 of helix a1 of zGFRa1aD2 (Figure 3A). No equivalent

interaction is observed for the human RET CLD3 structure (Fig-

ure 3B). The cryo-EM map clearly shows zGFRa1aD3 side-chain

contacts with Y292 and how this residue shifts substantially
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Figure 3. Ligand-co-receptor-induced conformational changes in zRETECD

(A) The CLD3-b2-b3 loop is shown in yellow as sticks (i) projects ‘‘downward’’ in the view shown for zRET CLD(1-4) (see the orientation of Y292 side chain) and (ii)

projects ‘‘upward’’ to engage the GFRa1D2 a1 helix (green sticks) in the zRGa1a structure.

(B) The shorter CLD3-b2-b3 loop and extra helix from the human RETECD-NRTN-GFRa2 structure (PDB: 6Q2O) shown as olive colored sticks, domains colored as

in Figure 1.

(C) Sequence alignment of RET CLD3-b2-b3 loop sequences by Espript (http://espript.ibcp.fr) (Robert and Gouet, 2014).

(D) Binding curves and calculated KD values for zRETECDwt and mutant (zRETECDP291-Q296:AAG) binding to zGFRa1a2-zGDNF2 measured by MST, with a minimum

of n = 3 repeats for the WT and the mutations with the SE represented.

(E) (i) Electron density map calculated using m2Fo-DFc coefficients over the CLD3-b2-b3 loop, yellow sticks and contoured at 1.0s. (ii) Coulombic potential cryo-

EM map for CLD3-b2-b3 loop from the zRGa1a complex (black mesh). Calcium ions are represented as pale green spheres.
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relative its unliganded position (Figure 3C). This movement of

18.5 Å (hydroxyl-hydroxyl) or 8.3 Å (Ca-Ca) also results in main

chain amides from P290 and V291 of the CLD3-b2-b3 loop lying

close to themain-chain carbonyl of S320 from zGFRa1aD3, form-

ing a pseudo-b sheet interaction (Figure 3A).

In view of the critical role of this loop in the zRET co-receptor

recognition, it is surprising that loop CLD3-b2-b3 contains an

‘‘indel’’ of two extra amino acids Y292 and P293, unique to lower

vertebrates (Figure 3D). The equivalent shorter loop in human

RET adopts a helical turn connecting the two b strands (Fig-

ure 3C) (Li et al., 2019). To probe the contribution of the CLD3-

b2-b3 loop to zGDNF-zGFRa1a binding, we truncated the

residues P290-Q296 to AAG and assessed its ligand binding

properties by microscale thermophoresis (MST). Surprisingly

loop truncation improved binding affinity for the ligand-co-

receptor by 5-fold compared with wild-type (WT) zRETECD,

with a dissociation constant (KD) of 18 nM (±5 nM) compared

with 90 nM (±15 nM) for WT zRET (Figure 3E). This increase in

affinity implies either that higher vertebrates RETECD have a

higher affinity for ligand than their lower vertebrate counterparts

or that the loop contributes to an auto-inhibitory function in lower

vertebrates. Taken together, our structural results show an
700 Structure 29, 694–708, July 1, 2021
unexpected conformational change in a clade-specific loop

proximal to the CLD(2-3) calcium sites.

Comparisons of interfaces within ternary RET complexes

either between species (human and zebrafish GDNF-GFRa1)

or paralogs (Neurturin-GFRa2 and GDF15-GFRAL) reveal

considerable variation in contacts at site 1 and nearly identical

contacts at site 2. This translates into a substantial variation in

the size of these interfaces (Table S1).

One contributing factor to these variations is the additional con-

tacts seenbetween helix a1 of zGFRa1D3 and residues 288–298 of

zRET. Another example is GFRAL, which makes multiple addi-

tional contacts through residues 247–266, centered on the disul-

fide C252-C258. These contacts engage residues flanking the b

hairpin atY76/R77andR144/Y146on theCLD1b7strand.Bothel-

ements are unique to higher-vertebrate RET and contribute to the

ligand-free RET dimer interface (Kjær et al., 2010; Li et al., 2019).

Comparison of all available liganded RETECD structures at site

2 consistently show a spacing of 44.2–47.0 Å between each pair

of CRD C termini (measured at residue E613/620 in zRET/hRET)

within an RET dimer (Figures 4A–4C). This suggests a stringent

requirement for CRD spacing to couple the transmembrane

and intracellular modules. We note this distance is defined by

http://espript.ibcp.fr


Figure 4. Different GFL ligands establish a conserved spacing between RET CRD-CRD pairs in their respective ternary complexes

(A) Separation between the Ca of E613 (equivalent to E620 of hRET) from both molecules of zRETECD within the zRGa1a structure.

(B) Equivalent distance between the Ca E620 from both molecules of hRETECD from the hRETECD-NRTN-GFRa2 (PDB: 6Q2O) structure.

(C) Equivalent separation between the Ca E620 from the two molecules of hRETECD from the hRETECD-GDF15-GFRAL (PDB: 6Q2J) structure. The overall

structure is represented as a cartoon and the Ca2+ ions are represented as spheres. RET is colored cyan, teal, and pale cyan in zRGa1a, hRETECD-NRTN-GFRa2,

and hRETECD-GDF15-GFRAL structures, respectively. GFRa1a, GFRa2, and GFRAL are colored green, dark green, and pale green, respectively. GDNF, NRTN,

and GDF15 are colored orange, red, and light pink, respectively.
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the geometric length of a GFL ligand dimer and the position of

the CRD relative to the dyad-axis of GDNF, presumed to sit

above the RET transmembrane region.

Structure-function analysis of zRET-GDNF-GFRa1a
interaction sites
The importance of each zRET interaction site on ligand-complex

assembly was probed by mutation of the GDNF co-receptor at

site 1 or GDNF at site 2. Surface residue heatmaps identified the

loop-helix a4 element of zGFRa1aD3 contributes residues N323,

E326, and E327 to the RET-co-receptor interface and are present

in most GFRa sequences (Figure 5A). These residues were

mutated to alanine, both individually and as a triple mutant. Using

solution-based MST, affinity measurements of zGDNFmat.
WT-

zGFR1a1aD1�3
N323A and zGDNFmat.

WT-zGFR1a1aD1�3
E326A,E327A

complexes binding to fluorescently labeled zRETECD indicated

only a modest impact, with a 2-fold decrease in affinity of

E326A-E327A, corresponding to a KD of 0.17 ± 0.039 mM versus

0.090 ± 0.015 mM for zGDNF mat.
WT-zGFR1a1aD1�3

WT (Figure 5B).

However, when combined as a triple mutation, zGDNFwt-

zGFR1a1aD1�3
N323A,E326A,E327A, a 25-fold reduction in affinity

was observed (KD of 2.35 ± 0.653 mM) (Figure 5B).
To probe the contribution of site 2 interface residues (Figure 5C)

L156, Y158, L224, and E220/H222 of zGDNFmat. were selected

for mutation to alanine and prepared using insect cells co-

expressed with WT zGFRa1aD1-3. The L224A and E220A/H222A

mutations adversely affected the expression of zGDNFmat.

and could not be evaluated. MST was used to test the

affinity of zGDNFmat.
L156A-zGFRa1aD1�3

WT and zGDNFmat.
Y158A-

zGFRa1aD1�3
WT toward zRETECD. A 2-fold decrease in affinity

observed for zGDNFmat.
Y158A toward zRETECD, whereas no

substantial loss in affinity was observed for zGDNFmat.
L156A (Fig-

ure 5D). We interpret the minimal effect of these mutations to

zGDNFmat. on zRETECD binding is indicative of a low-affinity inter-

action site relative to the zCLD(1-3)-zGFRa1aD3 site 1. Taken

together, the data for zRET loop deletion and targeted zGFR1a

and zGDNF mutations point to site 1 being the dominant high-

affinity binding site despite both sites being required for ternary

complex assembly.

Different D1 domain orientation between GDNF and
GDF15 co-receptor complexes
In the zRGa1a cryo-EM structure, the GFRa1D1 domain packs

against GFRa1D3 using a linker with a conserved SPYE motif
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Figure 5. Mutational analysis of zGDNF and zGFRa1 site 1 and 2 interactions with zRETECD

(A) Heatmap of the sequence conservation between hGFRa paralogs, and zGFRa1a mapped onto the structure of zGFRa1a D2-D3 domains reported here.

Residues are colored by similarity (red highly similar to yellow through to white, least similar). Two orthogonal views are shown. Right panel, close-up of site 1 and

conserved zGFRa1a residues.

(B) Binding curves and KD values obtained using MST for zGFRa1aD1-3 and mutations assessed in complex with zGDNFmat., with a minimum of n = 3 repeats for

the WT and the mutations with the SE represented.

(C) Heatmap of the sequence similarity betweenGDNF paralogs depicted as a surface representation, mapped onto zGDNF138-235. Right panel, close-up of site 2

contact between RETCRD and zGDNF dimer.

(D) MST binding curves and KD values for zGDNF and mutations L156A and Y158A probed in complex with WT zGFRa1a binding to zRETECD.
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that is retained in all co-receptor sequences except GFRa4 and

GFRAL (Figure 6A). We therefore hypothesized that GFRALD1

may require different contacts with RET through a distinctive

D1-D2 linker sequence. To explore this possibility, a ternary

complex was assembled comprising the hRETECD, hGDF15mat.

(hGDF15195�380), and hGFRALD1-3 (hGFRAL18-318) (referred to

hereafter as hR15AL) (Figure 6B) and crosslinked using GraFix

(Figure S7). A low-resolution negative stain envelope was pro-

duced with a total of 6,519 particles with C2 symmetry averaging

applied (Figures 6C and S7). While the overall shape of the enve-

lope is similar to that of the zRGa1amap with a winged figure-of-

eight appearance, it was evident that the wings are at a more

acute angle to one another than in the zRGa1a cryo-EM map

corresponding to a more ‘‘upright’’ hR15AL complex than the

zRGa1a complex (Figure 6C).

Docking the recently published hRETECDGDF15mat.

GFRAL129-318 cryo-EM structure (PDB: 6Q2J) (Li et al., 2019)
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into the low-resolution envelope corroborated the more upright

position of both hRET copies. It also revealed substantial den-

sity not accounted for by the fitted model, located beneath

CLD(1-2) and flanking domains 2 and 3 (D2 and D3) of GFRAL

(Figure 6C). The lack of domain 1 (D1) in the fitted model indi-

cates that the area of unoccupied density is most likely the

location of GFRALD1 (Figure 6C). Such a position is in marked

contrast to that of zGFRa1aD1 in zRGa1a (Figure 6D). This indi-

cates a substantial plasticity in GFRAL as the most divergent

GFR family member, explaining its lack of sequence conserva-

tion within the D1-D2 linker. It also emphasizes further the abil-

ity of RETECD to accommodate a variety of ligand-co-receptor

geometries from the flatter ARTN-GFRa3 to the upright

GDF15-GFRAL complex, as shown by Li et al. (2019). Some

flexibility was apparent within the zGFRa1aD1-zGDNFmat. co-

receptor-ligand complex itself and had been noted previously

(Parkash and Goldman, 2009). The 2:2 complex X-ray crystal



Figure 6. Divergent GFRa1/GFRAL co-receptor D1 domain positions within the RETECD ternary complex

(A) The D1-D2 domain linker motif (SPYE), highlighted in cyan is conserved between zGFRa1a, GFRa1, GFRa2, and GFRa3. It is missing from the shorter GFRa4

that lacks a D1 domain altogether and from the divergent GFRAL.

(B) Schematic diagram of human RETECD, GFRAL, and GDF15 construct boundaries used and individual domains annotated as in Figure 1.

(C) (i) Negative stain EM envelope of a reconstituted hRETECD2-hGDF152-hGFRAL2 (hR15AL) complex docked with hR15AL (PDB: 6Q2J) revealing additional map

potential indicated by a green Gaussian volume (generated from a D1 domain homologymodel). (ii) Cryo-EMmap of zRGa1a (light gray) superposed with the final

model (colored as in Figure 2) with GFRa1aD1 shown (light green Gaussian volume at 5 Å2).

(D) Comparison of co-receptor D1 domain position and interfaces (i) GFRALD1 makes different contacts to domains D2-D3 (green), GFRALD1 shown as a 30 Å2

Gaussian volume (light green), and GDF15 (salmon). (ii) zGFRa1aD1 contacts and colored as in Figure 2. zGFRa1aD1 represented as a 5 Å2 Gaussian volume

(light green).
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structure in the absence of RETECD has a distance of 127.9 Å

between K325 of each GFRa1a protomer whereas in the pres-

ence of RETECD this distance increases to 131.3 Å (Figure S8).

Further studies are required tomap in detail the additional inter-

actions provided by GFRALD1 to bind RET. We conclude that

plasticity is not only evident within RETECD in accepting

different GFL ligand-co-receptor geometries but also points

to different roles for domain D1 between paralogs.

Linear arrays of RETECD-GDNF-GFRa1a observed on
cryo-EM grids
Cryo-EMmicrographs of the non-crosslinked sample of zRGa1a

revealed significant orientation bias of the zRGa1a particles and

a single predominant view projecting down the zRGa1a molecu-

lar by 2-fold (Figure 7A). Upon closer inspection using RELION

particle reposition (Zivanov et al., 2018) a homotypic interaction

between zRGa1a particles was observed throughout the grids

resulting in linear arrays of complexes (Figure 7A). These arrays

can consist of between two and four particles in length. We
analyzed 3,756 randomly picked particles from 14 micrographs.

Using an interparticle distance of 214.2 Å (170 pixels) from the

centroid of one particle to the centroid of neighboring particles

(x, y coordinates from the star file), 4,132 particle pairs were

defined. A 3D surface distribution plot of the difference in psi an-

gles (Dc) for pairs of particles against the distance between their

centroids was calculated (Figure 7B), the c angles are generated

in RELION 2D classification (Kimanius et al., 2016; Zivanov et al.,

2018). An error of 3� exists within the plot due to the angular sam-

pling value used during 2D classification. The 3D plot revealed

that particles at a distance of 181 ± 3 Å from one another have

an average Dc of 4.5� ± 2.3�, using a minimal frequency of Dc

to average distance of the more than 0.5 (Figure 7B). The recur-

rent and repetitive nature of this end-to-end contact for neigh-

boring particle pairs was further captured in a 2D class average,

which used 1,194 particle pairs (2,388 individual particles)

(Figure 7C).

Using the information gathered from the particle pair analysis,

two copies of the zRGa1a complex structure were aligned with
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Figure 7. Evidence for linear arrays of zRGa1a particles on cryo-EM grids

(A) Close-up of a representative micrograph for zRGa1a showing the particle orientation bias by fitting the dominant 2D class average view into picked particles

and a recurring linear array of particles highlighted within pale cyan boxes.

(B) Statistical distribution of the difference between the angle psi (Dc) between two particles and their separation distance. Here the angle c is defined for each

particle as the angle of rotation of each particle required to align it onto the 2D class average.

(C) 2D class average from automated particle picking containing two adjacent zRGa1a particles.

(D) The zRGa1a-zRGa1a interface highlighted with a black box. The angle and separation between each complex is based on the peak maxima coordinates from

(B) assuming both particles are at the same Z height.

(E) An electrostatic potential surface with selected side chains for the homotypic zRETCLD2 interface.

(F) Close-up of the CLD2 contact, highlighting interface residues.

(G) Conservation of representative RET sequences at the CLD2-CLD2 interface shown with an asterix.
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an interparticle distance ~180 Å apart and an angle of 4.5� be-

tween the two copies (Figure 7D). Observations of both the single

particle as well as the 2D class averages generated for a pair of

zRGa1a complexes show that the two wings of the figure-of-
704 Structure 29, 694–708, July 1, 2021
eight structure do not appear to be symmetrical, with a slightly

more acute angle appearing between zGFRa1a and zGDNF on

the sides in contact with one another in the neighboring particles

(Figures 7A and 7C). The interparticle interaction site observed
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on cryo-EM grids maps to a predominantly hydrophobic surface

of CLD2, centered on V192 and V202 (Figures 7E and 7F). This

hydrophobic patch is conserved between lower and higher ver-

tebrates and is flanked by both basic (R232) and acidic clusters

(D203, D204, and E239) that reciprocally neutralize each other

across the zRGa1a-zRGa1a interface (Figure 7G). We note a

highly conserved glycosylation site at N185 of CLD2 (found in

both higher and lower vertebrates) is situated on the periphery

of the multimerization interface (Figure 7G, glyco-site 3). In a

linear array context, this glycan could potentially interact with

calcium ion Ca-1 (near the CLD(2-3) junction) of an adjacent

ternary complex to complete its coordination shell in trans.

Further analyses are required to demonstrate a functional role

for this multimeric interaction for full-length RET in a cellular

context. Nevertheless, the high-sequence conservation within

the interface points to an important role beyond ligand-co-re-

ceptor interaction.

DISCUSSION

Here, we establish principles for understanding the assembly of

RET ligand-co-receptor complexes. We rationalize how RET can

accept a range of activating GFL-co-receptor binary complexes

through conformational adaptations between RET and co-re-

ceptor. By using crystallography and cryo-EM we define the ar-

chitecture and ligand recognition properties of zebrafish RETECD

and compare this with the human RETECD. Our results provide

four main insights; (1) there is conformational flexibility at the

CLD(2-3) interface of RETECD that contributes to optimized ad-

aptations at the co-receptor binding site; (2) there are conforma-

tional differences between unliganded and liganded RET

centered on a clade-specific RET loop; (3) a strict spatial separa-

tion of RETECD C termini within the ternary complex is imposed

by each CRD interaction with a GFL dimer; (4) differences in

co-receptor engagement and putative higher-order multimers

of ligand-bound RET suggest divergent interactions at each level

of receptor engagement.

Previous insights into GFL-co-receptor recognition from nega-

tive stain and cryo-EM have revealed two main contact sites in

RET (Bigalke et al., 2019; Goodman et al., 2014; Li et al.,

2019). These structures explained why an intact calcium-loaded

RETECD is required for GDNF-GFRa1 binding as the GFRa1D3

loop-helix a4/GFRa1D2 helix a1 wedge targets the calcium-

dependent CLD(2-3) hinge while the GDNF dimer targets the

CRD. The GFRa1 wedge may act as a sensor for calcium bound

to RET implicating calcium not only in promoting RET folding but

also proper recognition by co-receptor for signaling (Nozaki

et al., 1998). The RETCRD interaction with both protomers of a

GDNF dimer is directly equivalent to the binding site of ‘‘low-af-

finity’’ TGF-b/BMP family of type 1 receptors for TGF-b

(‘‘knuckles’’ and ‘‘thumb’’) (Hinck et al., 2016). Whereas the

TGF-b ‘‘fingers’’ engage the high-affinity TGF-b receptor, equiv-

alent to GFRa co-receptors binding to GFL fingers.

Several studies identified a role for site 1 contacts close to

N323 in RET ternary complex formation (Goodman et al., 2014;

Bigalke et al., 2019; Li et al., 2019). The strikingly distinctive con-

tactsmade by different GFRa homologs at site 1 suggest confor-

mational adaptations enable the recognition of multiple GFRa

co-receptors and different GFR2GFL2 geometries. Our findings
suggest that engagement of ligand-co-receptor through the cal-

cium-dependent CLD(2-3) hinge promotes a remodeling of the

lower-vertebrate-specific loop and may precede site 2 RETCRD

engagement. This could involve either a pre-assembled RET-

GFRa complex or presentation of GFRa after dimerization by

GFL, before RETCRD interaction. We show here from substitution

of zGDNF residues in site 2 (L156A and Y158A) that these con-

tacts do not appear to play a dominant role in ternary complex

assembly. This contrasts with a study showing mutation of

Y119 to E in Neurturin (equivalent to Y158 of zGDNF) disrupted

ternary complex formation and signaling (Bigalke et al., 2019).

Given the analogous RETCRD contacts at site 2 for each GFL

dimer are proximal to the RET transmembrane segment, this

suggests an organizing role for signal transduction in addition

to contributing to ligand recognition.

The D1 domain is missing from previous structures of GDNF-

GFRa1 and GDF15-GFRAL, but had been observed for NRTN-

GFRa2 alone or bound to hRETECD (Bigalke et al., 2019; Li

et al., 2019). We were able to place the GFRa1 domain D1 adja-

cent to zRETCLD1, consistent with previous negative stain EM

models (Goodman et al., 2014). As previously shown, the D1

proximity to RETCLD1 is not essential for ternary complex forma-

tion. We present evidence for a quite different contact position

for the GFRAL D1 domain adjacent to GFRAL D2 and D3 do-

mains, on the outside of RET and underneath its ‘‘wings.’’ This

explains the absence of the otherwise conserved SPYE motif

common to GFRa1/2/3 motifs at the D1 and D3 interface. This

position for theGFRALD1 domain arises from amore upright po-

sition for GFRAL observed than GDNF-GFRa1 complexes (Li

et al., 2019). While the functional significance of this difference

is yet to be understood, it could impact on ligand-biased

signaling outputs or the assembly of higher-order multimers,

such as those observed for zRGa1a.

We and others have provided structural evidence for RET di-

mers in the absence of a ligand-co-receptor through a CLD1-2

dimer interface involving R77 and R144 side chains (Kjær

et al., 2010; Li et al., 2019). Here, we describe a ligand-depen-

dent linear array of zGDNF-zGFRa1a-zRETECD complexes

observed throughout the cryo-EM micrographs. This dominant

mode of multimerization observed on micrographs is mediated

by a homotypic hydrophobic patch on an exposed part of

CLD2 (CLD2-CLD2 interface). The arrangement is distinct from

but compatible with the ‘‘stacked’’ interaction observed be-

tween two hNRTN-hGFRa2-hRETECD ternary complexes by Li

et al., 2019. The stacked interaction involved contacts between

hRETCLD4 andNRTN andwas reported to influence the rate of re-

ceptor endocytosis.We do observe occasional stacked particles

packed in this manner but we cannot conclude their significance

at this point and the zRETCLD4 stacked interface is not

conserved. These findings suggest that a signaling-competent

RETECD conformation is likely to involve higher-order multimers

consistent with findings for other RTKs, such as EphR (Seiradake

et al., 2010), EGFR (Needham et al., 2016), and DDR1 (Corcoran

et al., 2019) RTKs. Therefore, a crucial aspect of receptor activa-

tion beyond the positioning of the RET transmembrane regions

within a dimeric assembly may prove to be their arrangement

within higher-order clusters.

In summary, this study reveals several under-appreciated as-

pects of GFL-co-receptor binding to RET, including receptor
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flexibility, clade-specific adaptations, and conformational

changes. All these features reveal a substantial tolerance within

RET to accommodate different GFL-co-receptors using a flexible

arm. It also suggests that a key requirement for coupling ligand

binding to RET activation is a strict spatial separation between

CRD C termini within RET dimers imposed by the geometric di-

mensions of each GDNF family ligand. The next challenge will be

to visualize such arrangements of a full-length RET multimer in a

membrane context and to use this knowledge in the design of

bothantagonistandagonistbiologicals thatwith therapeuticutility.
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Lenoir, G., Lyonnet, S., and Billaud, M. (1998). Various mechanisms cause

RET-mediated signaling defects in Hirschsprung’s disease. J. Clin. Invest.

101, 1415–1423.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,

Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017).

CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determina-

tion. Nat. Methods 14, 290–296.

Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures

with the new ENDscript server. Nucleic Acids Res. 42, W320–W324.

Rohou, A., and Grigorieff, N. (2015). CTFFIND4: fast and accurate defocus

estimation from electron micrographs. J. Struct. Biol. 192, 216–221.

de la Rosa-Trevı́n, J.M., Otón, J., Marabini, R., Zaldı́var, A., Vargas, J., Carazo,

J.M., and Sorzano, C.O.S. (2013). Xmipp 3.0: an improved software suite for

image processing in electron microscopy. J. Struct. Biol. 184, 321–328.

de la Rosa-Trevı́n, J.M., Quintana, A., del Cano, L., Zaldı́var, A., Foche, I.,
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McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation

of high-quality protein multiple sequence alignments using Clustal Omega.

Mol. Syst. Biol. 7, 539.

So, M.T., LeonThomas, Y.Y., Cheng, G., TangClara, S.M., Miao, X.P., Cornes,

B.K., Ngo, D.N., Cui, L., NganElly, S.W., LuiVincent, C.H., et al. (2011). RET

mutational spectrum in Hirschsprung disease: evaluation of 601 Chinese pa-

tients. PLoS One 6, e28986.

Tan, Y.Z., Baldwin, P.R., Davis, J.H., Williamson, J.R., Potter, C.S., Carragher,

B., and Lyumkis, D. (2017). Addressing preferred specimen orientation in sin-

gle-particle cryo-EM through tilting. Nat. Methods 14, 793–796.

Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart,

P.H., Hung, L.W., Read, R.J., and Adams, P.D. (2007). Iterative model building,

structure refinement and density modification with the PHENIX AutoBuild

wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69.
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Recombinant protein: human RET (aa 1-635, ref# P07949) This paper N/A

Recombinant protein: human GFRAL (aa ref# Q6UXV0) This paper N/A

Recombinant protein: human GDF15 (aa ref# Q99988) This paper N/A

Critical commercial assays

Monolith Protein Labeling RED-NHS 2nd generation

(Amine Reactive)

Nanotemper Cat# MO-L001

Nanotemper hydrophobic capillaries Nanotemper Cat# MO-KO23

Deposited data

zRETCLD1-4 crystal structure This paper PDB: 7AMK

zGFRa1150-353-zGDNF135-235 complex crystal structure This paper PDB: 7AB8

zRET22-595- zGFRa129-353-zGDNF135-235 complex cryo-EM

structure

This paper PDB: 7AML

The zRGa1a C2 symmetry / the zRGa1a symmetry expanded

cryo-EM maps

This paper EMD11822

The hR15AL negative stain EM map This paper EMD11777

hRETCLD1-2 crystal structure Kjær et al., 2010 PDB: 2X2U

hRETECD-GDF15mat.GFRAL129-318 cryo-EM structure Li et al., 2019 PDB: 6Q2J

hGDNF-hGFRa1D2-D3 crystal structure Parkash and Goldman (2009) PDB: 3FUB

hGFRa2-neurturin crystal structure Sandmark et al., 2018 PDB: 5MR4

hRETECD-GFRa2-neurturin cryo-EM structure Li et al., 2019 PDB: 6Q2O

C-cadherin ectodomain crystal structure Boggon et al., 2002 PDB: 1L3W

N-cadherin EC1 domain crystal structure Shapiro et al., 1995 PDB: 1NCI

N-cadherin EC1 domain solution structure Koch et al., 2004 PDB: 1OP4

Protocadherin Beta 1 EC1-3 crystal structure Rubinstein et al., 2015 PDB: 4ZPL

Protocadherin Alpha C2 EC1-3 crystal structure Rubinstein et al., 2015 PDB: 4ZPM

Protocadherin Gamma C5 EC1-3 crystal structure Rubinstein et al., 2015 PDB: 4ZPO

Protocadherin Gamma A8 EC1-3 crystal structure Rubinstein et al., 2015 PDB: 4ZPS

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

E-cadherin domains 1 and 2 Nagar et al., 1996 PDB: 1EDH

Experimental models: cell lines

Human: Expi293 cells Thermo Fisher Cat# A14527

Insect: Sf21 cells Thermo Fisher Cat# 11497013

Insect: Hi Five cells Thermo Fisher Cat# B85502

Insect: Drosophila S2 cells Thermo Fisher Cat# R69007

Recombinant DNA

Plasmid: pCEP Kohfeldt et al., 1997 N/A

Plasmid: pCEP-hGFRAL-Histag This paper N/A

Plasmid: pCEP-hGDF15-Histag This paper N/A

Plasmid: pExpreS2.1 Expres2ion Biotech Cat# S2-11A-001

Plasmid: pExpreS2.1-hRET1-635-Tev-Avi-Ctag This paper N/A

Plasmid: pBacPak Clontech Laboratories, Inc. Cat# 631410

Plasmid: pBacPak-Mellitin1-20-zGDNF135-235 This paper N/A

Plasmid: pBacPak-zGFRa1a1-35n3-3C-Tev-ProteinA This paper N/A

Plasmid: pBacPak-zRET1-619-3C-TEV-ProteinA This paper N/A

Plasmid: pBacPak-zRET1-504(N259Q, N308Q, N309Q, N433Q) -

3C-TEV-ProteinA

This paper N/A

Software and algorithms

NanoTemper analysis software NanoTemper v1.2.231

GraphPad Prism GraphPad Software Inc. http://www.graphpad.com/

scientific-software/prism/

DIALS Waterman et al., 2016,

Winter et al., 2018

https://dials.github.io/

iMosflm & SCALA Winn et al., 2011 www.ccp4.ac.uk/

PHASER McCoy et al., 2007 http://www.phaser.cimr.cam.ac.uk/

PHENIX Adams et al., 2010 http://www.phenix-online.org/

Coot Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/

Personal/pemsley/coot/

RELION Scheres, 2012,

Kimanius et al., 2016,

Zivanov et al., 2018

https://github.com/3dem/relion

Scipion de la Rosa-Trevı́n et al., 2016 http://scipion.i2pc.es/

Xmipp de la Rosa-Trevı́n et al., 2013 http://scipion.i2pc.es/

Gautomatch K. Zhang, MRC LMB https://www.lmb.cam.ac.uk/kzhang/

CryoSparc Structa Biotechnology Inc.

Punjani et al., 2017

https://cryosparc.com/

3DFSC Tan et al., 2017 https://3dfsc.salk.edu/,

https://github.com/LyumkisLab/3DFSC

PyMOL DeLano Scientific LLC http://www.pymol.org/

Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Proteome Discoverer v.2.3 with XlinkX node Thermo Fisher, Liu et al., 2015,

Kao et al., 2011

Cat# OPTON-30795/30799

xiNET Combe et al., 2015 Crosslinkviewer.org
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact N.Q.M

(neil.mcdonald@crick.ac.uk).
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Materials availability
The study did not generate new unique reagents.

Data and code availability
The coordinates for the zRET-CLD(1-4), zGDNF-zGFRa1a and zRGa1a are available in the PDB with the primary accession code

7AMK, 7AB8 and 7AML, respectively. The zRGa1a C2 symmetry applied map, the zRGa1a symmetry expanded map and the

hR15AL negative stain envelopes are available on the EMDB with accession codes EMD-11822 and EMD-11777, respectively.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Expi293 cells were used in this study and were grown in suspension in Freestyle 293 Expression media. SF21 and Hi Five insect cells

were also used in this study and were grown in serum-free media. Finally Drosophila S2 cells were used in this study and were grown

in Ex-Cell420 medium. Additional details are provided in the Method Details section.

METHOD DETAILS

Zebrafish RET CLD(1-4) expression and purification
Zebrafish RET1-504 (zCLD(1-4)red.sug.) was designed with glycosylation site mutations N259Q, N308Q, N390Q and N433Q to aid in

crystallisation. This construct was cloned into a pBacPAK-LL-vector together with a 3C-cleavable C-terminal Protein A tag. A recom-

binant baculovirus was prepared using the FlashBAC system (2B Scientific). For protein production, SF21 cells were grown to a cell

density of 13106 and incubated with recombinant virus for 112 hours at 27�C. The media was harvested and incubated with IgG

sepharose (Sigma), with 1 ml of resin slurry to 1 l of media, whilst rolling at 4�C for 18 hrs. The resin was recovered and washed

with 5 column volumes (c.v.) of 20 mM Tris (pH 7.5), 200 mMNaCl, 1 mMCaCl2 then incubated with 1:50 (w/w) PreScission Protease

(GE Healthcare) for 18 hrs at 4�C. The eluted zCLD(1-4)red.sug. was further purified using a SuperDex 200 (GE Healthcare).

zCLD(1-4)red.sug. crystallisation and X-ray data collection
The purified zCLD(1-4)red.sug. was concentrated to 12 mg/ml. Vapour diffusion drops were set up with 2 ml of protein and 2 ml of pre-

cipitant; 50 mMMES (pH 6.2), 31.5 % PEGMME 350 (v/v), against 90 ml of precipitant. After 24 hrs of equilibration seeding was per-

formed using Crystal probe (Hampton Scientific). Crystals grew over 14 days at which point they were harvested and flash frozen in

liquid nitrogen.

zCLD(1-4)red.sug. x-ray data processing and structure determination
Data from these crystals was collected at the Diamond Light Source, initially on beamline I04 and finally on beamline I03. The data

was processed with XIA2 utilising DIALS (Winter et al., 2018), before further processing through STARANISO (Tickle et al., 2018) for

anisotropy correction to give a 2.08 Å dataset (cut to 2.20 Å for refinement owing to low completeness in the outer shells). Crystals

belonged to the triclinic space group P1 with cell dimensions shown in Table 1. Molecular replacement was used as implemented in

PHASER (McCoy et al., 2007) to initially locate two copies of CLD1-2 (PDB code 2X2U). The positions of the two associated copies of

CLD4 were then determined, utilising an ensemble of the following seven models (superposed by secondary structure matching in

COOT): 1L3W (resid A 6-99)(Boggon et al., 2002), 1NCI (resid A 6-99)(Shapiro et al., 1995), 1OP4 (resid A 40-123)(Koch et al., 2004),

4ZPL (resid A 206-314)(Rubinstein et al., 2015), 4ZPM (resid B 207-317)(Rubinstein et al., 2015), 4ZPO (resid A 205-311)(Rubinstein

et al., 2015) and 4ZPS (resid A 205-313)(Rubinstein et al., 2015). Initial refinement with PHENIX.REFINE was followed by automated

model building with PHENIX.AUTOBUILD (Terwilliger et al., 2007) which completed most of the two polypeptide chains present. Cy-

cles of manual model building with COOT and refinement with PHENIX.REFINE (Afonine et al., 2012) followed. Insect cell glycosyl-

ation sites were modelled and checked using PRIVATEER (Agirre et al., 2015), with additional libraries, describing the linkages be-

tween monomers generated, and used initially in refinement to maintain a reasonable geometry.

zGDNFmat.-zGFRa1aD1-3 expression and purification
Baculoviruses for zebrafish GFRa1a1-353 (zGFRa1aD1-3) and zebrafish GDNF135-235 (zGDNFmat.) were produced using the pBacPAK-

LL-zGFRa1aD1-3-3C-ProteinA construct and the pBacPAK-LL-melittin1-20-zGDNFmat.-3C-ProteinA respectively and FlashBacGold

viral DNA (2B Scientific) using standard protocols (2B Scientific). Recombinant baculoviruses producing either zGDNFmat. or

zGFRa1D1-3 were used with SF21 insect cells. The protein was expressed one of two methods. (1) 6 x 2 L flasks containing

500 ml of SF21 cells grown to a cell density of 1 x 106 in SFIII media (Gibco, ThermoFisher), were each infected with 10 ml of the

zGDNFmat. baculovirus stock and 2 ml of the zGFRa1D1-3 baculovirus stock for 86 hrs at 27�C. (2) 4 x 2L flasks containing 300 ml

of SF21 cells grown to a cell density of 5 x 106 in SFIII media, were each infected with 30 ml of the zGDNFmat. baculovirus stock

and 6 ml of the zGFRa1D1-3 baculovirus stock, with 12 ml of yeastolate (50 x stock, Sigma Aldrich), 12 ml lactalbumin (50 x stock,

Sigma-Aldrich) and 6 ml glucose (5 M) for 86 hrs at 27�C. Cells were pelleted at 3500 xg and the media containing the secreted

2:2 zGFRa1aD1-3-zGDNFmat. complex was pooled. A 1 ml slurry of IgG sepharose resin (GE Healthcare) was added to 1 l of media

and incubated at 4�C for 18 hrs. The resin was recovered and washed with 5 column volumes of 20 mM Tris (pH 7.0), 150 mM NaCl

and 1 mM CaCl2, resuspended in 2 column volumes of the same buffer and incubated with GST-3C (20 ml at 8 mg/ml) for 16 hours.
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zGDNFmat
.-zGFRa1D1-3 was further purified using size exclusion chromatography using a Superdex 200 (16/600) (GE Healthcare) in

20 mM Tris (pH 7.0), 100 mM NaCl and 1 mM CaCl2.

zGDNFmat.-zGFRa1aD1-3 crystallisation and structure determination
Purified zGDNFmat.-zGFRa1D1-3 was concentrated to 2.5mg/ml. 100 nl of protein was dispensedwith 100 nl of precipitant onto sitting

well trays (MRC-2 drop trays) which comprised 100mMTris (pH 8.0), 5% (w/v) PEG 20,000, 3.7% (v/v) acetonitrile and 100mMNaCl.

A volume of 90 ml of precipitant solution was dispensed into the well and the trays were then incubated at 22�C. Crystals of

zGDNFmat.-zGFRa1D1-3 formed after 30 days. Crystals were harvested after 55 days and frozen in liquid N2 with 30 % (v/v) ethylene

glycol used as a cryo-protectant. Data was collected on I04 at Diamond using PILATUS 6MProsport+ detector. The X-ray diffraction

data collected was reduced and integrated using DIALS (Waterman et al., 2016;Winter et al., 2018) at the Diamond Light Source. The

structure was phased by molecular replacement in PHASER (McCoy et al., 2007) and in CCP4 (The CCP4 Suite, 1994; Winn et al.,

2011) using the human GDNF-GFRa1 starting model (PDB 3FUB) (Parkash & Goldman (2009)). Model refinement was performed us-

ing COOT (Emsley and Cowtan, 2004; Emsley et al., 2010) and PHENIX.REFINE (Adams et al., 2010; Afonine et al., 2012) against the

dataset that was reduced and integrated using the STARANISO (Tickle et al., 2018) at a resolution of 2.2 Å. Glycosylation sites were

validated using PRIVATEER (Agirre et al., 2015).

zRETECD-zGDNFmat.-zGFRa1aD1-3- (zRGa1a) complex expression and purification
A recombinant baculovirus was prepared to produce zRETECD (residues 1-626) using the pBacPAK-LL-zRETECD-3C-Protein A

construct and FlashBac viral DNA (2B Scientific) using standard protocols and as described above. To produce zRETECD either

one of two separate protocols were used; (1) SF21 insect cells grown using SFIII media in 63500 ml flasks to a cell density of

13106 were then infected with 2 ml of the baculovirus that contained zRETECD for 86 hrs at 27�C, (2) 4 x 2L flasks containing

300ml of SF21 cells grown to a cell density of 5.5 x 106 in SFIII media, were each infected with 6 ml of the zRETECD baculovirus stock,

with 12 ml of yeastolate (50 x stock, Sigma-Aldrich), 12 ml lactalbumin (50 x stock, Sigma-Aldrich) and 6ml glucose (5 M) for 86 hrs at

27�C. Cells were pelleted at 3500 g and the media containing secreted zRETECD was pooled and 1 ml of IgG sepharose resin (GE

Healthcare) was added to 1 l of media and incubated at 4�C for 18 hrs. The resin was recovered and washed with 5 column volumes

of 20 mM Tris (pH 7.0), 150 mM NaCl and 1 mM CaCl2, then resuspended in 2 column volumes of the same buffer. Purified 2:2

zGFRa1aD1-3-zGDNFmat. complex was then added directly. The sample was incubated for 45 min at 4�C. The resin with the zRGa1a

complex was then recovered and washed with 5 c.v. of 20 mM Tris (pH 7.0), 150 mM NaCl and 1 mMCaCl2 buffer, resuspended in 2

column volumes of buffer and incubated with GST-3C (20 ml at 8 mg/ml) for 18 hours at 4�C. The eluted zRGa1a complex was further

purified using size exclusion chromatography using a Superdex 200 (16/600) (GE Healthcare) in 20 mM HEPES (pH 7.0), 150 mM,

NaCl and 1 mM CaCl2.

To prepare a cross-linked sample, 100 ml of purified zRGa1a (4mg/ml) was applied on top of a 5-20% (w/v) sucrose gradient which

contained a 0-0.1 % (v/v) glutaraldehyde gradient, the gradient was buffered with 20 mM HEPES (pH 7.0), 150 mM NaCl and 1 mM

CaCl2. Ultracentrifugation was performed at 33,000 r.p.m (SW55 rotor) for 16 hours at 4�C. The sucrose gradient was fractionated in

125 ml fractions, the glutaraldehyde was quenched with 1 M Tris (pH 7.0), to a final concentration 100 mM. The fractions that con-

tained cross-linked zRGa1a were pooled and further purified by Superdex200inc 10/300 (GE Healthcare) in a buffer of 20 mM Tris

(pH 7.0), 150 mM NaCl and 1 mM CaCl2, in order to remove the sucrose from the crosslinked zRGa1a complex.

zRGa1a cryo-electron microscopy sample preparation
To prepare cryo-EM grids, 1.2/1.3 300mesh CuQuantifoil� grids 300 mesh grids were glow discharged using 45mA for 30 s using a

Quorum Emitech K100X. For the untilted dataset (Dataset 1), 4 ml of crosslinked zRGa1a sample, at 0.1 mg/ml, was applied to the

grids, using a Vitrobot Mark IV (Thermo Fisher) with the parameters; 90 s wait time, 5 s blot time at 22�C with 100 % humidity.

The same glow discharge parameters were used for the grids for the tilted dataset (dataset 2), 4 ul was applied to the grid at 4�C

and a 20 s wait with 3 s blot time under 100 % humidity. For the non-crosslinked zRGa1a sample, the same glow discharge param-

eters were used for 1.2/1.3 300mesh CuQuantifoil� grids 300mesh grids. 4 ml of non-crosslinked zRGa1a at 0.1 mg/ml was applied

to the grids with the same parameters as those used for the grids prepared for dataset 1, these grids were used for dataset 3.

Cryo-EM data acquisition: Datasets 1 to 3
Frozen-hydrated grids of the crosslinked zRGa1a sample were imaged on a Titan Krios electron microscope (Thermo Fisher) oper-

ating at 300 kV at the Francis Crick Institute. Movies were captured on a BioQuantumK2 detector (Gatan) in countingmode at 1.08 Å/

pixel and with an energy filter slit width of 20 eV. Dataset 1 was collected with a 0� tilt angle, a defocus range of 1.4-3.5 mm and

comprised a total of 6105 movies. For dataset 2, 6375 movies were collected in total using a tilt angle of 30� and the same defocus

range used for dataset 1. Movies from datasets 1 and 2 had an exposure of 1.62 e-/Å2 per frame for a total electron exposure of

48.6 e-/Å2. The dose rate was 6.4 e-/pixel/sec and exposure time was 9 seconds/movie. For dataset 3, frozen-hydrated grids of

non-crosslinked zRGa1a were collected on a Talos Arctica microscope (Thermo Fisher) operating at 200 kV at the Francis Crick Insti-

tute. A total of 1705movies were captured on a Falcon 3 detector in integratingmode at 1.26 Å/pix and a defocus range of 1.5-3.0 mm.

Movies from dataset 3 had an exposure of 6.07 e-/Å2 per frame which led to a total exposure of 60.66 e-/Å2. All datasets were

collected using EPU version 1.9.0 (Thermo Fisher).
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Cryo-EM data processing of crosslinked zRGa1a (dataset 1)
MotionCorr2 (Zheng et al., 2017) was used to correct for motion in themovie frames in Scipion 1.2 (de la Rosa-Trevı́n et al., 2016). The

contrast transfer function was estimated using CTFfind4.1(Rohou and Grigorieff, 2015). 5855 micrographs were selected from data-

set 1 and initial particle picking was performed with RELION-2.1 manual picking, 4899 particles were extracted with RELION-2.1 (Ki-

manius et al., 2016) particle extract function (de la Rosa-Trevı́n et al., 2016) with a box size of 340 and binned two-fold. 2D

classification was performed using RELION 2D classification, with 20 initial classes. Six classes were used to pick a subset of

3000 micrographs using RELION-2.1 autopicking in Scipion 1.2, giving 638,000 particles with box size 340, binned 2 fold. These

were classified using 2D classification in RELION-2.1. Twelve classes were selected for picking using Gautomatch [K. Zhang,

MRC LMB (www.mrc-lmb.cam.ac.uk/kzhang/)] to pick 2,424,600 particles, which were extracted with a box size of 340 pixels

and binned 2-fold using RELION-2.1 2D class averaging was performed in CryoSPARC-2 (Punjani et al., 2017) leading to

1,156,517 particles which were extracted using RELION-2.1 (Kimanius et al., 2016; Scheres, 2012) with a box size of 320 pixels.

Cryo-EM data processing of crosslinked zRGa1a (tilted dataset 2)
Dataset 2 was processed and corrected for motion correction and CTF estimation as described above. A total of 4848 micrographs

were used to pick particles semi-automatically with Xmipp and 69,386 particles were extracted with a box size of 360 pixels using

RELION-2.1 (Kimanius et al., 2016; Scheres, 2012) in Scipion1.2 (de la Rosa-Trevı́n et al., 2016). 2D classification was then performed

using RELION automatic picking leading to 1,183,686 particles being extracted using RELION-2.1 (Kimanius et al., 2016; Scheres,

2012; Zivanov et al., 2018) with a box size of 340 binned 2-fold. Subsequent 2D classification in RELION-2.1 (Kimanius et al., 2016;

Scheres, 2012) lead to 12 classes whichwere used byGautomatch [K. Zhang,MRC LMB (www.mrc-lmb.cam.ac.uk/kzhang/)] to pick

1,393,023 particles. The particles were extracted with RELION-2.1 (Kimanius et al., 2016; Scheres, 2012) with a box size 320, 2-fold

binned, were imported into CryoSPARC-2 (Punjani et al., 2017) and 2D classification generated 208,057 particles from 3175 micro-

graphs. These particles were re-extracted with a box size of 320 and per-particle CTF estimation was performed using GCTF

(Zhang, 2016).

Combining and processing cryo-EM datasets 1 and 2 for crosslinked zRGa1a
Dataset 1 and 2 were combined and an initial 2D classification was performed in CryoSPARC-2 on the 1,364,574 particles (Afonine

et al., 2018). Following this, 1,242,546 particles underwent two heterogeneous refinements using 5 classes with strict C2 symmetry

applied in CryoSPARC-2 (Punjani et al., 2017) lead to a homogeneous refinement with 468,922 particles. Once re-imported into Sci-

pion1.2, RELION 2D class averaging was implemented to generate 364,158 and 22,358 particles from dataset 1 and dataset 2,

respectively (Kimanius et al., 2016; Scheres, 2012). Particle polishing was performed in RELION-2.1 (Kimanius et al., 2016). Once

imported into CryoSPARC-2, 2D class averaging removed any further particles, yielding 382,547 particles used for a homogeneous

refinement followed by a non-uniform refinement with C2 symmetry applied. This final reconstruction gave a resolution of 3.3 Å as

calculated using the ‘gold’ standard (FSC=0.143) (Punjani et al. 2017). Symmetry expansion was performed in RELION-2.1 and 3D-

refinement with masking was performed with no symmetry applied (Kimanius et al., 2016; Scheres, 2012). Postprocessing in RE-

LION-2.1 of the final symmetry expanded reconstruction with a resolution 3.5 Å (Figure S4) (Kimanius et al., 2016; Scheres, 2012).

Building the zRGa1a complex into the final cryo-EM map
To build a full ligand-co-receptor complex, the zGDNFmat.-zGFRa1DD1 crystal structure described here was used together with a ho-

mology model of domain D1 (zGFRa129-121) generated by MODELLER from the GFRa2-neurturin crystal structure (PDB 5MR4)

(Sandmark et al., 2018; Webb and Sali, 2016). For zRET, chain A of the CLD(1-4) module described here was used together with

a CRD model generated with SwissPROT (Schwede et al., 2003) using the structure of hRETECD in complex with GFRa2-neurturin

(PDB 6Q2O)(Li et al., 2019; Webb and Sali, 2016). The zGDNF-zGFRa1 and zRETECD structures were then docked into the symmetry

expandedmap using PHENIX (Adams et al., 2010). Themodel was refined at 4.2 Å against the sharpenedmap using PHENIX_REAL_

SPACE_REFINE (Afonine et al., 2018) and manual model building and model refinement was done in COOT (Emsley and Cowtan,

2004; Emsley et al., 2010). The final symmetry expanded model was used to generate the 2:2:2 zRGa1a model, which was placed

in the C2 averaged map using PHENIX (Adams et al., 2010) using PHENIX_REAL_SPACE_REFINE (Afonine et al., 2018). Glycosyl-

ation sites were validated using PRIVATEER (Agirre et al., 2015). Protein-protein interface areas were calculated using PDBePISA

(Krissinel and Henrick, 2007). All images of maps were produced in Chimera (Pettersen et al., 2004) and structure-based figures

were rendered in PyMOL (Schrodinger, 2015).

Cryo-EM data processing for a non-crosslinked zRGa1a sample (dataset 3)
MotionCorr2 (Zheng et al., 2017) was used to correct for motion in the movie frames in RELION-3 (Zivanov et al., 2018). The contrast

transfer function was estimated using CTFfind4.1 (Rohou and Grigorieff, 2015). 384 micrographs were selected from and initial

particle picking was performed with RELION-3 manual picking, 951 particles were extracted with RELION-3 (Zivanov et al., 2018)

particles extract with a box size of 320 and binned 2 fold. 2D classification was performed using RELION-3 2D classification, with

10 initial classes ( Zivanov et al., 2018). One class, due to the orientation bias, was selected and used by RELION autopick to

pick from a subset of 81 micrographs. This gave 19,715 particles picked and extracted with a box size of 320 pixels using RE-

LION-3. These particles were sorted in RELION-3 and 15,519 were then were classified using RELION 2D classification. A total of

11070 particles were used from 81 micrographs to explore the linear particle arrays observed for the zRGa1a complex.
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For the 2D classification of the isolated zRGa1a particle pairs initial picking performed with RELION-3 manual picking yielded 239

particles that were extracted with a box size of 420 pixels. 2D classification was performed and one class was used to for RELION

autopick, yielding 4567 particles that were extracted using RELION extract with a box size of 400 pixels from 81 micrographs.

RELION 2D classification produced the final 2D of the isolated zRGa1a pair with 1194 particle pairs (2388 individual particles) (Ziva-

nov et al., 2018).

Analysis of zRGa1a multimer formation on cryo-EM grids
Following 2D class averaging in RELION-3, the final 11070 particles were repositioned onto 81micrographs collected from cryo-grids

prepared from the non-crosslinked zRGa1a sample using RELION particle reposition. A Python script was written to extract the

particle number, psi angle (c) and Cartesian coordinates of particle pairs from the 2D class average STAR file. Particle pairs were

detected through analysing each single particle and locating surrounding particles within 214.2 Å (170 pixels), using their extracted

Cartesian coordinates. A subset of 14micrographswas used, where a total of 3756 individual particles lead to 4132 particle pairs. The

distance between each particle pair was determined using their X and Y coordinates. The c angles were corrected to positive inte-

gers, andwere permitted to bewithin the 180� range due to the C2 symmetry of the complex. The difference between the two positive

c angles from the particle pairs (Dc) was calculated as an absolute value. Distance between the particles and theDc between particle

pairs was calculated and plotted on a 3D surface plot with the bins every 2 Å and every 2.6�, respectively.

Human RETECD expression and purification
A codon-optimised human RETECD (hRETECD) cDNA encoding residues 1-635 followed by a TEV-cleavable Avi and C-tag was cloned

into a pExpreS2.1 vector (ExpreS2ion Biotechnologies, Hørsholm, Denmark) with Zeocin resistance. A stable pool of S2 cells,

secreting hRETECD, was generated by transfecting 25 ml of S2 cells grown in Ex-Cell420 medium (Sigma) with 10 % (v/v) FBS at

a density of 53106 cells/ml using 12.5 mg of DNA and 50 ml of ExpresS2-Insect TR (53). Stably transfected cells were selected

with 2 mg/ml Zeocin with repeated medium exchange. The culture was expanded to 1 litre in a 5L glass-flask and the supernatants

collected after 7 days.

For purification, 1 ml of C-tag capture resin (ThermoFisher) was added to a cleared and filtered S2 supernatant and incubated for

18 hrs at 4�C. The resin was pelleted and washed several times with PBS before eluting bound hRETECD by competition with PBS

containing 200 mg/ml SEPEA peptide. At this point, the affinity and biotinylation tags were removed by digestion with TEV (a 1:10 ratio

of TEV protease:RET). The purified hRETECD was further purified by size-exclusion using a Superdex200 10/300 with a 50 mM Tris

(pH 7.5), 100 mM NaCl buffer.

Human GDF15mat.-GFRALD1-3 complex expression and purification
Both human GFRAL21-352 (referred to hereafter as hGFRALD1-3) and hGDF15198-308 (referred to hereafter as hGDF15mat.) were cloned

into a pCEP vector with an N-terminal BM40 secretion sequence. The hGFRAL construct had a C-terminal 6 His tag. The constructs

were co-transfected into Expi293 cells (Life Tech) using polyethylimine. The transfected cells were incubated in Freestyle media at

37�C, 8% CO2 with 125 rpm shaking. Conditioned media was harvested after 5 days, and Tris pH 8.0 and imidazole added to a final

concentration of 10 mM and 20 mM respectively. The media was incubated with Ni-NTA agarose beads whilst rolling at 4�C for 2

hours. The beads were recovered and washedwith 20mMTris (pH 7.4), 137mMNaCl and the protein was eluted with 20mMHEPES

(pH 7.4), 137mMNaCl and 500mM imidazole. The protein was concentrated to ~5mg/ml. This protein was further purified by Super-

dex 200 increase size exclusion chromatography in buffer 20 mM HEPES (pH 7.4), 137 mM NaCl to give a pure 2:2 GDF15-GFRAL

complex.

hRETECD-hGDF15mat.-hGFRALD1-3 (hR15AL) complex assembly and purification
An excess of purified hRETECD (300 ml, 1.1 mg/ml) was incubated with purified hGDF15-hGFRAL (300 ml, 0.75 mg/ml) for 1 hr whilst

mixing at 4�C in the presence of 10-fold excess heparan sulfate DP-10 (20 mM) (Iduron, UK). The hR15AL complex was further purified

by size exclusion chromatography using a Superdex 200 increase in to 20 mM HEPES (pH 7.0), 150 mM NaCl and 1 mM CaCl2. For

sample crosslinking, 100 ml of the hR15AL complex (0.75 mg/ml) was applied on top of a 5-20 % (w/v) sucrose gradient which con-

tained a 0-0.1% (v/v) glutaraldehyde gradient, the gradient was buffered with 20mMHEPES (pH 7.0), 150mMNaCl and 1mMCaCl2.

Ultracentrifugation was performed at 33,000 rpm for 16 hours at 4�C. The sucrose gradient was fractionated in 125 ml fractions, the

glutaraldehyde was quenched with 1M Tris (pH 7.0), to a final concentration 100 mM. The fractions were assessed using SDS-PAGE

and fractions that contained the complex were used for negative stain.

hR15AL negative stain preparation, data acquisition and processing
Cu 200 mesh carbon coated grids were glow discharged under vacuum using 45 mA for 30 s. A sample of 4 ml of the crosslinked

hR15AL undiluted from the GraFix column was applied to the charged grid and left for 30 s and the excess removed by blotting

and placing the grid, sample side facing the solution, in 10 ml of 2 % (w/v) uranyl acetate solution in d.H2O, and blotting immediately

twice, followed by placing the grid in the 3rd 10 ml drop sample side facing down and leaving it in solution for 1 min, followed by a final

blot until almost all the solution has been wicked off. The grid was then left to dry for 5 mins.

Micrographs were collected on a BMUltrascan 1000 2048x2048 CCD detector using a Tecnai Twin T12 (Thermo Fisher) at 120 kV

with a defocus range of 1-1.5 mm and with a 1 s exposure time. A total of 299 micrographs were collected and particles were picked
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using Xmipp (de la Rosa-Trevı́n et al., 2013) semi-automated picking, in Scipion1.2 (de la Rosa-Trevı́n et al., 2016). This gave 27,551

particles were extracted with RELION-2.0 particle extraction (Kimanius et al., 2016; Scheres, 2012). 2D class averaging was

performed with RELION-2.0 (Kimanius et al., 2016; Scheres, 2012). The resulting 16,159 particles were used to generate an initial

model using RELION 3D ab-initio model. 3D classifications with 5 classes were performed using RELION-2.0 3D classification

(Kimanius et al., 2016; Scheres, 2012). 6519 particles were taken forward into the final reconstruction a resolution of 25.8 Å using

RELION-2.0 3D refinement (Kimanius et al., 2016; Scheres, 2012). The data processing was done in Scipion1.2 (de la Rosa-Trevı́n

et al., 2016).

Microscale thermophoresis (MST) measurement of zRETECD binding affinity
MSTmeasurements were performed at 25�C in 20 mMHEPES (pH 7.0), 150mMNaCl, 1 mMCaCl2 and 0.05% (v/v) Tween-20 using

a Nanotemper Monolith NT.115 (Nanotemper). To measure the affinity of zGFRa1D1-3-zGDNFmat. towards zRETECD; zRETECD was

labelled with NHS-RED 2nd generation dye (Amine Reactive) using the labelling kit (Nanotemper). A 1:1 serial dilution of unlabelled

zGFRa1D1-3-zGDNFmat. (WT and mutants) was performed. The samples were incubated with the labelled zRETECD-NHS-RED

(50 nM, fluorophore, 83.7 nM zRETECD) for 10 mins at 22�C. Hydrophobic treated capillaries were filled with the serially diluted sam-

ples (Nanotemper). The MST run was performed using a Monolith 1.115 with the LED power and MST both set to 20 %, with a mea-

surement time of 20 sec. Tomeasure the affinity of zGFRa1D1-3-zGDNFmat. towards zRETECDP291-Q296;AAG; zRET
ECD

P291-Q296;AAG was

labelled with NHS-RED 2nd generation dye (Amine Reactive) using the labelling kit (Nanotemper), and the procedure was carried out

as above with zRETECDP291-Q296;AAG-NHS-RED (50 nM, fluorophore, 80.7 nM zRETECD).

Surface conservation analysis and heatmaps for different GFL-GFR ligand-coreceptor pairs
The sequence for the globular domains of zGFRa1a (Uniprot Q98TT9) was aligned to hGFRa1 (Uniprot P56159), hGFRa2 (Uniprot

O00451), hGFRa3 (Uniprot O60609), hGFRa4 (Uniprot Q9GZZ7), and hGFRAL (Uniprot Q6UXV0), using Clustal Omega.(Sievers

et al., 2011) The sequence of the mature zGDNF (Uniprot Q98TU0) was aligned to hGDNF (Uniprot P39905), hNRTN (Uniprot

Q99748), hARTN (Uniprot Q5T4W7), hPSPN (Uniprot O60542), and hGDF15 (Uniprot Q99988) using Clustal Omega (Sievers et al.,

2011). Using these alignments, residues were categorised based on residue type and a heat mapwas generated and values mapped

onto a surface representation on the zGFRa1aD2-D3. D1was excluded from the analysis due to themajor differences between each of

the co-receptors; which is missing hGFRa4 and is located in a completely different position in hGFRAL. Each of the categories for

residue type are as follows; aromatic residues (F, W, and Y), aliphatic residues (A, I, L, and V), residues containing an alcohol func-

tional group (S and T), positively charged residues (R and K), negatively charged residues (D and E), and residues containing an amide

bond in the side chain (N and Q), and C, G, H and M were counted individually. The sequence similarity was numbered from 0-1,

0 indicating no similarity at all and 1 indicating the residue type was identical between the GFR or GFL family members respectively.

The value for each residue in the sequence were represented as a surface colour coded with the highest residue similarity in red (1)

through yellow (0.5) to white (0).

QUANTIFICATION AND STATISTICAL ANALYSIS

Binding kinetics were derived from theMST binding curves using the NanoTemper analysis software version 1.2.231, with each point

determined by averaging data obtained between 10 and 15 sec on theMST curve for each capillary. Fractional binding values from an

entire concentration rangewere derived by normalising the values from 0 to 1 inMicrosoft Excel, with visual inspection to check these

concentrations corresponded to the plateau in MST signal at low and high ligand concentrations. Data for at least three such binding

experiments were imported into Graphpad Prism 8.0.0 and, due to the proximity of the apparent binding constant and fluorescently-

labelled RET receptor concentration, subjected to a non-linear regression fit using a quadratic equation to determine the KD.
Structure 29, 694–708.e1–e7, July 1, 2021 e7
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Supplementary Figure 1: Structural analysis of human RET CLD1-4red.Sug. A) Asparagine-linked sites (N-linked) within the zRETCLD1-4 module and final 
electron density map calculated using m2Fo-DFc coefficients contoured at 1.0 σ corresponding to each N-linked glycosylation site are shown. B) Calculated 
RMSD values (and sequence identity) between each of the cadherin like domains from zCLD1-4red.sug. and E-cadherin domains 1 and 2 (PDB 1EDH)(Nagar et 
al., 1996) and N-cadherin domain 1 (PDB 1NCI)(Shapiro et al., 1995). C) Disulfide swapping evident between higher and lower vertebrates; zCLD1-2 (in cyan 
and blue) aligned with the hCLD12 structure (in pale cyan and pale blue, PDB 2X2U), with close-ups of the cysteine within the structure. The two unpaired 
cysteines unique to hRET were mutated to arginine (C87R) and a serine (C216S) to aid structure determination of hRETCLD1-2 (Kjær et al., 2010). D) Analysis 
of the zCLD1-2 clamshell interface; orthogonal views of the cavity (shown in mesh) within CLD1-2 for both zebrafish (i) and human (ii) (PDB 2X2U)(Kjær et al., 
2010). (iii) The residues incorporated into the CLD1-2 clamshell interface; CLD2-β1 stabilised with R242 (CLD2-β6), R172 and R176 (CLD2-β2) the latter of 
which also interact with Q27 and E32 (CLD1-β1). In all cases the structures are represented as a cartoon and the residues are represented as sticks with 
individual domains are coloured as follows; CLD1 in cyan, CLD2 in blue, CLD3 in magenta and CLD4 in grey. All images were rendered in PyMOL (Schrodinger, 
2015). Related to Figure 1. 



 

 

 
Supplementary Figure 2: Purification of individual zRGα1a components and crosslinking of the zRGα1a ternary complex. Size exclusion profiles of 
A) 2.zGFRα1a29-353-zGDNF135-235, B) zRETECD (shown here as zRETECM for extracellular module) and C) zRGα1a D) SEC-MALLS trace of the purified zRGα1a 
E) SDS-PAGE of fractionated GraFix stabilised zRGα1a sample. F) Size exclusion profile of the crosslinked zRGα1a sample.Related to STAR methods. 

 

 

 



 
Supplementary Figure 3: zRGα1a cryo-EM data processing workflow. A) Non-tilted particles dataset 1 and B) tilted particles dataset 2 were processed 
independently. C) Combined particles from both datasets 1 and 2 and workflow. Software packages used; CryoSPARC2 (Punjani et al., 2017), CTFFind4.1 
(Rohou and Grigorieff, 2015), Gautomatch [K. Zhang, MRC LMB (www.mrc-lmb.cam.ac.uk/kzhang/)], GCTF (Zhang, 2016), MotionCor2 (Zheng et al., 2017)  
RELION (Kimanius et al., 2016; Scheres, 2012; Zivanov et al., 2018), Scipion (de la Rosa-Trevín et al., 2016), Related to Figure 2. 



 
Supplementary Figure 4: zRGα1a single particle cryo-EM reconstruction. A) Representative micrographs from the non-tilted dataset (i) and the dataset 
collected with a tilt angle of 30° (ii). B) Twenty-five 2D class averages from all the particles in the final reconstruction. C) The C2 averaged cryo-EM map is 
coloured by local resolution and was generated by the locRes option in CryoSPARC2 (Punjani et al., 2017) using blue for 2.5 Å resolution areas, green for 4.5 
Å and red for 6.5 Å resolution. A total of 382,574 particles were generated using CryoSPARC2 (Punjani et al., 2017), non-uniform refinement and postprocessed 
in RELION (Kimanius et al., 2016; Scheres, 2012; Zivanov et al., 2018). Two orthogonal views of the zRGα1a complex are shown. D) Angular distribution of 
the particles in the C2 averaged map. E) Fourier shell correlation curve of the C2 averaged map. F) A 3DFSC (Tan et al., 2017) plot generated from the C2 
averaged map. G) Two views orthogonal of the symmetry expanded map, generated using particles expansion in RELION (Kimanius et al., 2016; Scheres, 
2012; Zivanov et al., 2018). H) Two orthogonal views of the angular distribution from the symmetry expanded map. I) The Fourier shell correlation curves from 
the symmetry expanded map showing an overall resolution of 3.5 Å. Images of the maps were rendered using Chimera (Pettersen et al., 2004). Related to 
Figure 2. 

 



Supplementary Figure 5: Cryo-EM map to zRGα1a model correlation and electron density map quality for zGDNF138-235zGFRα1a151-353 structure A) 
The C2 averaged map and model with sections of each domain highlighted. The residues are represented as sticks and the mainchain as ribbon, the maps 
are shown as mesh. B) (i) Map-to-model Fourier shell correlation between the C2 averaged cryo-EM map and the zRGα1a model. (ii) Cross correlation between 
each residue in the model and the C2 averaged map. Correlation statistics were provided with the use of the full maps and two half maps in each case using 
Phenix cryo-EM model validation tools (Afonine et al., 2018). C) Final 2.2 Å zGDNF-zGFRα1a structure showing the crystallographic asymmetric unit contains 
a single copy of zGDNF138-235zGFRα1a151-353. The insets reveal the final electron density calculated for different areas of the structure using m2Fo-DFc 
coefficients and contoured at 1.0 σ. The glycosylation site located on N150 of GDNF (i), the binding site of zGFRα1a that interacts with RET CLD(2-3) calcium 
site (ii), and the disulfide bond network in zGDNF (iii). Images were rendered in Chimera (Pettersen et al., 2004) or PyMOL (Schrodinger, 2015).Related to 
Figure 2. 

 



 
Supplementary Figure 6: Mapping interactions within the zRGα1a complex by XL-MS (Cross-Linking Mass Spectrometry). A) Intermolecular crosslinks 
identified between lysine side-chains from RETECD, zGFRα1aD1-D3 and zGDNFmat. highlighted in the C2 zRGα1a model, close-ups of the residues in the insets; 
RETCLD1-zGFRα1aD1(i), RETCLD3-zGFRα1aD3(ii) and RETCRD-zGFRα1aD2-zGDNFmat (iii). B) Intramolecular crosslinks between lysine side-chains from RETECD, 
zGFRα1aD1-D3 and zGDNFmat. highlighted in the C2 zRGα1a model, close-ups of the residues in the insets; RETCLD3 (i), RETCRD/ zGDNFmat.  (ii) zGFRα1aD1-D3 
(iii). (iv) Shows an intramolecular crosslink between CLD1 and CLD3 indicating flexibility at the calcium binding site. The crosslinked peptides highlighted with 
* do not have any structural model therefore are not shown in the model. The crosslinked peptide highlighted with # represents domain 1 of zGFRα1a cross-
linked to zGDNF which has a distance of ~59 Å. This may indicate that zGFRα1aD1 is quite mobile consistent with the poorer quality of the map for this domain. 
The overall C2 zRGα1a model is represented as a cartoon with the crosslinks formed between lysines using disuccinimidyl sulfoxide (DSSO) represented as 
red lines between crosslinked lysines represented as sticks. The model is coloured according to its domains; CLD1 in cyan, CLD2 in blue, CLD3 in magenta, 
CLD4 in grey, CRD in yellow, zGFRα1aD1 in pale green, zGFRα1aD2 in green, zGFRα1aD3 in dark green and zGDNF in orange. All images were rendered in 
PyMOL (Schrodinger, 2015). Related to STAR methods. 



 
Supplementary Figure 7: hR15AL sample preparation and EM data processing. Size exclusion profiles and Coomassie-stained SDS-PAGE gels of A) 
hGDF15-hGFRAL and B) hRET-hGDF15-hGFRAL (hR15AL). C) fractions from the GraFix (Gradient Fixation) of hR15AL. D) A representative negative stain 
micrograph of the hR15AL-XL complex. E) The data processing pipeline leading to the final negative stain envelope of hR15AL. F) The particle distribution in 
the negative stain envelope with C2 symmetry applied. G) Projection matching, performed using Xmipp projection match (De la Rosa-Trevín et al., 2013), 
between the RELION (Kimanius et al., 2016; Scheres, 2012; Zivanov et al., 2018) showing 2D class averages from the particles that comprise the final 
reconstruction and different views of the 3D envelope. Related to Figure 6. 



 

 

Supplementary Figure 8: Evidence for limited conformational flexing of zGDNF-zGFRα1a in the presence or absence of zRETECD. A) The crystal 
structure of a 2:2 zGDNF-zGFRα1a is shown as a cartoon, with GDNF in light orange, zGFRα1aD2 in light green and zGFRα1aD3 in green. The distance 
between K325 from symmetry-related molecules of zGFRα1a is highlighted in cyan and the angle between the K325-A172 from one molecule of zGFRα1 and 
K325 in the second molecule of zGFRα1a in red. B) 2:2 ligand:co-receptor zGDNF-zGFRα1aD2-D3 built into the cryo-EM zRGα1a structure, represented as a 
cartoon, with zGFRα1aD2, zGFRα1aD3 and zGDNF in green, forest green and orange, respectively, and zRETECD in grey. The distance between K325 from 
symmetry-related molecules of zGFRα1a highlighted in cyan and the angle between the K325-A172 from one molecule of zGFRα1 and K325 in the second 
molecule of zGFRα1a in red, there are two angles calculated using these residues in the C2 averaged structure highlighted in parts (i) and (ii) of the figure. All 
images were rendered in PyMOL (Schrodinger, 2015). Related to Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 



 

SUPPLEMENTARY TABLES 

 

 

 

 

 

 

 

 

 LIGAND    CO-RECEPTOR    RET  
 zGDNF hGDNF hNRTN hGDF15 zGFRα1 hGFRα1 hGFRα2 hGFRAL zRET hRET 
           
LIGAND           
zGDNF 1530Å    866Å    347Å  
zGDNF*         251Å  
hGDNF  1003Å    961Å    187Å 
hGDNF*          148Å 
hNRTN   2006Å    843Å   296Å 
hNRTN*          218Å 
hGDF15    1398Å    577Å  407Å 
hGDF15*          369Å 
           
CO-RECEPTOR           
zGFRa1         846Å  
hGFRa1          872Å 
hGFRa2          960Å 
hGFRAL          1094Å 

 

Interface sizes (averaged over both protomers) calculated by PDBePISA 

* Contact surface to the second protomer of GFL dimer 

 

Supplementary Table 1: Major interface sizes for ternary complexes of hRET/zRET, GFRα1/α2/GFRAL and 
GDNF/NRTN/GDF15. Related to STAR methods. 

 

  



SUPPLEMENTARY DOCUMENT S1 

XL-MS analysis of the zRETECD-GFRα1-GDNF complex: 

All chemicals were purchased from Sigma at the highest purity unless otherwise stated. A total of 200 ng protein in 

20 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM CaCl2 was cross-linked using 1 mM disuccinimidyl sulfoxide 

(DSSO)(Kao et al., 2011) (Thermo Fisher Scientific) with mild shaking for 15 min at 37 °C. The reaction was 

quenched using a final concentration of 5% hydroxylamine for a further 15 min at 37 °C. The sample was 

subsequently alkylated, reduced and proteolysed. To do this, the sample was dried to completion using vacuum 

centrifugation and resolubilised with sonication into 8 M urea. Cysteine reduction was carried out using 2.5 mM 

TCEP for 30 min at 37 °C and alkylated in the dark using 5 mM iodoacetamide at room temperature for 30 min. The 

urea was diluted to 1 M using 50 mM triethylammonium bicarbonate and proteins were proteolysed using trypsin 

(Pierce) at 1:50 w/w trypsin:protein overnight at 37 °C. The solution was acidified to pH 2-3 using trifluoroacetic acid 

(TFA) and desalted using in house built STAGE tips made using Empore SPE C18 disks (3M, 66883-U). The eluent 

was then dried to completion. 

 

Liquid Chromatography Mass Spectrometry 

Peptides were reconstituted in 0.1 % TFA (v/v) and chromatographically resolved using an Ultimate 3000 

RSLCnano (Dionex) HPLC. Peptides were first loaded onto an Acclaim PepMap 100 C18, 3 µm particle size, 100 

Å pore size, 20 mm x 75 µm ID (Thermo Scientific, 164535) trap column using a loading buffer (2 % acetonitrile 

(MeCN) (v/v) and 0.05 % TFA in 97.95 % H2O) with a flow rate of 7 µL/min. Chromatographic separation was 

achieved using an EASY-Spray column, PepMap C18, 2 µm particles, 100 Å pore size, 500 mm x 75 µm ID (Thermo 

Scientific, ES803). The gradient utilised a flow of 0.275 µL/min, starting at 98 % mobile A (0.1% formic acid, 5 % 

dimethyl sulfoxide (DMSO) in H2O) and 2 % mobile B (0.1 % formic acid, 75 % MeCN, 5% DMSO and 19.9 % H2O). 

After 3 min mobile B was increased to 8 % over 3 min, increased to 25 % over 69 min, to 45 % over 35 min, further 

increased to 90% in 17 min and held for 5 min. Finally, mobile B was reduced back to 5 % over 3 min for the rest of 

the acquisition. 

 

MS1 data were acquired in real time over 150 minutes using an Orbitrap Fusion Lumos Tribrid mass spectrometer 

in positive, top speed mode with a cycle time of 5 s. The chromatogram (MS1) was captured using 60,000 resolution, 

a scan range of 375-1500 with a 50 ms maximum injection time, and 4e5 AGC target. MS2 dynamic exclusion with 

repeat count 2, exclusion duration of 30 s, 20 ppm tolerance window was used, along with isotope exclusion, a 

minimum intensity exclusion of 2e4, charge state inclusion of 3-8 ions and peptide mono isotopic precursor 

selection. Precursors within a 1.2 m/z isolation window were then fragmented using 25 % normalised collusion-

induced dissociation (CID), 100 ms maximum injection time and 5 e4 AGC target. Scans were recorded using 

30,000 resolution in centroid mode starting 120 m/z. MS3 spectra containing peaks with a mass difference of 

31.9721 Da were further fragmented with a 43 % normalised higher collision induced dissociation, using a 2 m/z 



isolation window, 150 ms maximum injection time and 2e4 AGC target. 4 scans were recorded using an ion trap 

detection in rapid mode starting at 120 m/z. 

 

Data analysis. 

Data processing was carried out using Proteome Discoverer Version 2.3 (ThermoFisher Scientific) with the XlinkX 

node(2017; Liu et al., 2015). The acquisition strategy was set to MS2_MS3 mode. The database comprised solely 

of the specific zRETECD, zGFRα1aD1-3 and GDNFmat. sequences. Trypsin was selected as the proteolytic enzyme 

allowing up to two missed cleavages with a minimal peptide length of five residues. Masses considered were in 

the range of 0.3-10 kDa. The precursor mass tolerance, FTMS fragment mass tolerance, and ITMS Fragment 

Mass Tolerance were set to 10 ppm, 20 ppm and 0.5 Da respectively. A static carbamidomethyl (+57.021 Da) 

modification was utilised for cysteine residues, with an additional dynamic modification for oxidation (+15.995 Da) 

on methionine residues. The False Discovery Rate (FDR) threshold was set to 0.05 with percolator as the 

strategy. The list of reported cross-linked spectral matches were manually examined and cross-links with spectra 

that did not contain acceptable b and y ion coverage were excluded. The reduced list was exported to 

crosslinkviewer.org (Combe et al., 2015) in order to graphically view the cross-links. 
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