Supplementary Data

Structure of the mammalian adenine DNA glycosylase MUTYH: insights into the base excision repair pathway and cancer.

Teruya Nakamura^{1,2,*}, Kohtaro Okabe¹, Shogo Hirayama¹, Mami Chirifu¹, Shinji Ikemizu¹, Hiroshi Morioka¹, Yusaku Nakabeppu³ and Yuriko Yamagata^{1,4}

¹ Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuoku, Kumamoto, 862-0973 Kumamoto, Japan

² Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan

³ Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

⁴ Shokei University and Shokei University Junior College, 2-6-78, Kuhonji, Chuo-ku, Kumamoto, 862-8678 Kumamoto, Japan

* To whom correspondence should be addressed. Tel: +81-96-371-4638; Fax: +81-96-371-4638; Email: tnaka@gpo.kumamoto-u.ac.jp

Table of contents

Table S1 Figures S1 to S8 References

	MUTYH-DNA complex			CTD-PCNA
	Form I	From II	Phasing	complex
Data collection				
Wavelength (Å)	1.0	0.98	1.7	0.98
Space group	1222	1222	1222	$P6_3$
Unit-cell lengths (Å)	a = 74.3, b =	a = 71.7, b =	a = 72.1, b =	a = b = 87.8, c
	107.2, <i>c</i> = 156.4	108.5, <i>c</i> = 158.5	108.8, <i>c</i> = 158.5	= 124.4
Resolution range (Å)	46.89-2.45	42.53-1.97	42.53-2.75	36.40-2.70
	(2.49-2.45)	(2.00-1.97)	(2.80-2.75)	(2.77-2.70)
No. of observed reflections	146,029	290,882	223,653	157,014
No. of unique reflections	23,331	43,985	30,921	14,970
Completeness (%)	99.8 (97.2)	99.4 (98.8)	98.8 (97.9)	99.9 (100)
R _{merge} (%)	9.4 (61.9)	5.3 (57.6)	7.7 (59.2)	4.3 (119.1)
< /0 >	23.6 (1.5)	33.1 (1.9)	54.1 (9.3)	29.9 (2.3)
Refinement statistics				
Resolution range (Å)	46.89-2.45	42.53-1.97		36.40-2.70
No. of reflections used	23,315	43,974		14,938
Completeness (%)	99.6	99.2		99.9
R _{work} /R _{free} (%)	19.8/22.1	17.8/19.7		23.5/28.6
R.m.s.d. in bonds (Å)	0.003	0.006		0.002
R.m.s.d. in angles (deg.)	0.585	0.832		0.498
Ramachandran plot				
Favoured (%)	97.0	97.8		91.9
Allowed (%)	3.0	2.2		8.1

 Table S1. Data collection and refinement statistics.

mouse	MKKLQASVRS-HKKQPANHKRRTRALSSSQAKPSSLDGLAKQKRE
human	${\tt MTPLVSRLSRLWAIMRKPRAAVGSGHRKQAASQEGRQKHAKNNSQAKPSACDGLARQPEE}$
b.st	MTRETER
	[4Fe-4S] 6-helix barrel
mouse	ELLQASVSPYHLFSDVADVTAFRSNLLSWYDQEKRDLPWRNLAKEEANSDRRAYAVWVSE
human	VVLQASVSSYHLFRDVAEVTAFRGSLLSWYDQEKRDLPWRRRAEDEMDLDRRAYAVWVSE
b.st	FPAREFQRDLLDWFARERRDLPWRKDRDPYKVWVSE . *: .**.*: :*:****** . * *****
mouse	VMLQQTQVATVIDYYTRWMQKWPKLQDLASASLEEVNQLWSGLGYYSRGRRLQEGARKVV
human	VMLQQTQVATVINYYTGWMQKWPTLQDLASASLEEVNQLWAGLGYYSRGRRLQEGARKVV
b.st	VMLQQTRVETVIPYFEQFIDRFPTLEALADADEDEVLKAWEGLGYYSRVRNLHAAVKEVK ******:* *** *: :::::*.*: **.*: : * ******* *.*:::*
mouse	EELGGHMPRTAETLQQLLPGVGRYTAGAIASIAFDQ <mark>VTGVVDGNVLRVLCRVRAIGADPT</mark>
human	EELGGHMPRTAETLQQLLPGVGRYTAGAIASIAFGQATGVVDGNVARVLCRVRAIGADPS
b.st	TRYGGKVPDDPDEFSR-LKGVGPYTVGAVLSLAYGVPEPAVDGNVMRVLSRLFLVTDDIA . **::* .: :: * *** **.**: *:*:***** ***.*: : *:
mouse	STLVSHHLWNLAQQLVDPARPGDFNQAAMELGATVCTPQRPLCSHCPVQSLCRAYQRVQR
human	STLVSQQLWGLAQQLVDPARPGDFNQAAMELGATVCTPQRPLCSQCPVESLCRARQRVEQ
b.st	KPSTRKRFEQIVREIMAYENPGAFNEALIELGALVCTPRRPSCLLCPVQAYCQAFAEG ::: :.::: .** **:* :**** ***:** * ***:: *:* .
IDC	COLSAI.PGRPDIFECALNTROCOLCLTSSSPWDPSMGVANFPRKASRPPREEVSAT
human	EOLLASGSLSGSPDVEECAPNTGOCHLCLPPSEPWDOTLGVVNFPRKASRKPPREESSAT
b.st	
	CTD • • • • • • • • • • • • • • • • • • •
mouse	CVVEQPGAIGGPLVLLVQRPDSGLLAGLWEFPSVTLEPSEQHQHKALLQELQRWCGPLPA
human	${\tt CVLEQPGALG-AQILLVQRPNSGLLAGLWEFPSVTWEPSEQLQRKALLQELQRWAGPLPA}$
b.st	AVLADDEGRVLIRKRDSTGLLANLWEFPSCETDGADGKEKLEQM-VGEQYGLQV .*::::::::::::::::::::::::::::::::::::
mouse	IRLQHLGEVIHIFSHIKLTYQVYSLALD-QAPASTAPPGARWLTWEEFCNAAVSTAMKKV
human	${\tt thlrhlgevvhtfshikltyqvyglalegqtpvttvppgarwltqeefhtaavstamkkv}$
b.st	ELTEPIVSFEHAFSHLVWQLTVFPGRLVHGGPVEEPYRLAPEDELKAYAFPVSHQRV .:****: *: ** .:*: *: ::*
mouse	FRMYEDHROGTRKGSKRSOVCPPSSRKKPSLGOOVLDTFFORHIPTDKPNSTTO
human	FRVYOGOOPGTCMGSKRSOVSSPCSRKKPRMGOOVLDNFFRSHISTDAHSLNSAAO
b.st	WREYKEWASGVRRPD

Figure S1. Sequence alignment of MUTYH and *B. stearothermophilus* MutY. Alignment was performed using Clustal W (1). The ligands of the Zn-binding motif are shown in red.

Figure S2. Coordination and electron densities of Zn-binding motif. (A) Form I. The $2F_o - F_c$ map (cyan, 1.0 σ), the $F_o - F_c$ map (green and red, ±3.5 σ), and the anomalous difference Fourier map calculated using X-ray with a wavelength of 1 Å (pink, 3.5 σ) are shown as meshes. (B) Form II. A neighbouring symmetry mate in Form II is shown in white. (C) Cys215 forms a hydrophobic core close to the Zn-binding motif.

Figure S3. Particle size distribution of the MUTYH-DNA complex (1 mg/mL, at 298 K) by DLS analysis. The complex is monodisperse with an intensity of 100 %, a radius of 3.4 nm, and a polydispersity of 11.9%. The estimated molecular mass of the complex by DLS is 57 k.

Figure S4. Structural comparison of MUTYH and MutY. (A) Structural comparison between the mouse MUTYH-DNA complex (slate and white) and the NTD of human MUTYH (orange, PDB ID: 3N5N). The IDC and DNA binding regions are indicated by circles. (B) Superposition of the MutY-DNA complex (yellow, PDB ID: 3G0Q) onto the mouse MUTYH-DNA complex (slate).

Figure S5. Interactions between the six-helix barrel domain and the CTD. (A) Overall view of the MUTYH-DNA complex. The interacting region is indicated by a red circle. (B) Interactions in MUTYH. The conserved residues between mice and humans are labelled in red. (C) Interactions in MutY (PDB ID: 3G0Q).

Figure S6. Electron densities of 8-oxoG and AP site. (A) 8-OxoG. The $2 F_o - F_c$ map (cyan, 1.0 σ) and the $F_o - F_c$ map (green and red, ±3.5 σ) are shown as meshes. (B) AP site.

Figure S7. Activity measurement of MUTYH. (A) Adenine DNA glycosylase activity of MUTYH (45–487) (wild type, C300S, and F415A/S416A). G* indicates 8-oxoG. The data represent the mean \pm SD of three independent experiments. The k_2 values (min⁻¹) of the wildtype and C300S were 0.17 \pm 0.01 and 0.14 \pm 0.01, respectively. The k_3 values (min⁻¹) of the wildtype and C300S were 0.008 \pm 0.002 and 0.005 \pm 0.002, respectively. The k_2 values of MUTYH (45–487) are lower than those of the full-length MUTYH in the previous report (2). The data of F415S/S416A could not be fitted due to its very weak activity. (B) Adenine DNA glycosylase activity of MUTYH (45–515) (wild type and Δ L) in the presence of PCNA.

Figure S8. Crystal packing and electron densities of CTD-PCNA. (A) Crystal packing of the CTD-PCNA crystal. (B) Electron densities of PCNA, the PIP box, and the CTD. The 2 $F_o - F_c$ map (blue or cyan, 1.0 σ), the $F_o - F_c$ map (green and red, ±3.5 σ), and the composite omit map with the anneal method (orange, 1.0 σ) are shown as meshes.

References

- Larkin,M.A., Blackshields,G., Brown,N.P., Chenna,R., McGettigan,P.A., McWilliam,H., Valentin,F., Wallace,I.M., Wilm,A., Lopez,R., *et al.* (2007) Clustal W and Clustal X version 2.0. *Bioinformatics*, 23, 2947–2948.
- Engstrom, L.M., Brinkmeyer, M.K., Ha, Y., Raetz, A.G., Hedman, B., Hodgson, K.O., Solomon, E.I. and David, S.S. (2014) A zinc linchpin motif in the MUTYH glycosylase interdomain connector is required for efficient repair of DNA damage. *J. Am. Chem. Soc.*, **136**, 7829–7832.