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Supplementary Methods

Exome sequencing in C3HN and B6N

Total DNA obtained from each one C3HN and B6N mouse was sheared into approximately
300-bp fragments using a Covaris sonicator (Covaris, Woburn, MA, USA). Paired-end
exome libraries were prepared using the SureSelect Mouse All Exon Kit (Agilent) following
the manufacturer's instructions. Sequencing was performed using the HiSeq 2000 platform
(IMumina). Base calling was performed by the Illumina pipeline with default parameters.
Obtained reads were mapped to the mouse genome (mm10) using the Burrows-Wheeler
Aligner (BWA) version 0.5.9 with default parameters. Duplicate reads were marked with the
Picard version 1.53 and excluded from downstream analyses. Coverage of the targeted bases
was assessed by GATK DepthOfCoverage *. SNVs and indels were called by using the

GATK UnifiedGenotyper3. The minimum phred-scaled confidence threshold was set as 50.

SNVs were selected from the regions £ 20 Mbp from the central position of each
previously genotyped Sequence-Tagged Sites (STS) marker. One SNV marker from each
megabase was primarily chosen using the following criteria: 1) specifically detected in either
the B6N or C3HN strain, 2) homozygous, 3) with a PASS flag and 4) nearest to the central
position of each megabase. If there were SNVs reported in dbSNP 128 within £ 0.25 Mbp of
the central position of each megabase, we selected a marker from SNVs in dbSNP (that might
not be the SNV nearest to the central position). The regions with no SNVs satisfying these
criteria were skipped. If the distance between two markers was less than 0.25 Mbp, one
marker was excluded. The list of the 148 selected SNV markers is shown in Supplementary

Table 1.



QTL analysis: Bayesian method

Reanalysis of PPI-QTL was performed by increasing the density of the analyzed markers. To
perform fine mapping, single nucleotide variant (SNV) markers were selected from the six
previously identified loci (chrl, chr3, chr7, chrl0, chrl1, chri3) for PPI % To this end, exome
sequencing of inbred C3HN and B6N mouse strains was performed and markers were
selected as described in the supplementary methods. The 148 additionally selected SNV
markers (Supplementary Table 1) were genotyped in 1,012 F2 mice by Illumina BeadArray
genotyping (Illumina Golden Gate assay) on the BeadXpress platform as per the
manufacturer’s instructions and were added to the analysis. First, we applied a composite
interval mapping method * for 86 dB-PPI to scan relevant QTLs using Windows QTL

Cartographer v2.5 (https://brcwebportal.cos.ncsu.edu/qgtlcart/\WQTL Cart.htm) on autosomal

chromosomes only, as no QTL signal was detected on the X chromosome in the previous
analyses 2. In the present analysis, the gender of the mice was taken into consideration. The
results were expressed as LOD scores, and a threshold of LOD score corresponding to a
genome-wide significance level of 1% was determined to be 4.16 with 1000 repetitions of the
permutation test. Subsequently, Bayesian multiple QTL mapping was conducted for fine
mapping of QTLs at the 86 dB prepulse level. In Bayesian method, we located a putative
QTL on each marker and estimated the posterior probability that the QTL had a nonzero

significant effect. The phenotype of the i F2 mouse, y;, was written as the following

statistical model:

N
yi=u+sb + Z(Vz uga; +nvydy) +e;
=1

where p was the intercept of the model, b was the gender effect, s; was a covariate indicating

the gender of the ith mouse with s; =0 and 1 corresponding to male and female, respectively,


https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm

N was the number of markers on which putative QTLs were located, u; and v were the
covariates indicating the genotype of the ith mouse at the Ith marker, with u; =1, 0, -1 and v;
=0, 1, 0 for homozygous for the B6 type and heterozygous and alternative homozygous for
the C3 type, respectively, a, and d, were additive and dominance effects of the Ith marker, x
and 7 were indicator variables with 5 = 1 or 0 meaning the inclusion or exclusion of the
additive effect at the QTL in the model fitting, respectively, and analogously, 7 =1 or 0 for
inclusion or exclusion of dominance effect, and e; was the residual error assumed to follow a

normal distribution with mean 0 and variance ..

In a Bayesian framework, these parameters and indicator variables were evaluated
based on their posterior distributions constructed from the prior distributions and the
distribution of observed samples, including yi, uy and vy (i=1,2,...,n; I=1,2,...,N). The
posterior distributions can be empirically established by sampling values of the parameters
and indicator variables via the Markov chain Monte Carlo (MCMC) sampling procedure,
which is time-consuming. Instead, we applied a variational approximation method to
effectively obtain the posterior expectations of the parameters and indicator variables *. This
variational Bayes method was originally utilized in the context of genomic selection °, where
a model predicting breeding values from SNP genotypes, which is analogous to the model
considered here, is constructed to enable individuals with superior genetic performance to be
effectively selected based on their SNP genotypes in animal and plant breeding *. The
existence of QTLs with significant effects was judged using the posterior expectations of
indicator variables, # and r, for additive and dominance effects, which were regarded as the
posterior probabilities of the putative QTLs being fitted in the model. As a result of this
variational Bayes analysis, we found no QTLs with a significant dominance effect; thus, only

the plot of the posterior expectations of y is shown in Figure 1C.



Conservation analysis of Cdh23 ¢.753 G>A variant

Since the only coding variant that differed between the B6N and C3H mouse in the
Chromosome 10 QTL region was Cdh23 c.753 G>A; (rs257098870; chr10:60530947-
60530947; mm10/GRCm38), we further compared the conservation of this variant/region
among 15 eutherian mammals (Mus musculus, Mus Spretus (SPRET/EIj), Rattus norvegicus,
Oryctolagus cuniculus, Callithrix jacchus, Macaca mulatta, Gorilla gorilla, Homo sapiens,
Pongo abelii, Bos taurus, Ovis aries, Sus scrofa, Canis familiaris, Felis catus, Equus
caballus) and rodents; which included 15 inbred mouse strains (C57BL/6NJ, NZO/HILtJ,
AlJ, BALB/cJ, AKR/J, C3H/HeJ, CBA/J, DBA/2J, FVB/NJ, NOD/ShiLtJ, 129S1/SvimJ,
LP/J, WSB/EiJ, CAST/EiIJ, and PWK/PhJ), along with Mus Spretus and Rattus norvegicus.
Alignments for the variant and flanking regions were downloaded from Ensembl

(https://www.ensembl.org/ ) and visualized using Jalview (https://www.jalview.org/).

Generation of Cdh23 ¢.753G allele knock-in mice by CRISPR/Cas9n-mediated genome
editing

Briefly, B6N zygotes obtained by in vitro fertilization were microinjected with the cocktail
constituting 5 ng/mL Cas9 nickase mRNA (System Biosciences, Mountain View, CA), 5
ng/mL each of two short guide RNAs (sgRNAS) (Supplementary Table 2), which were
synthesized in vitro (T7 gRNA Smart Nuclease Synthesis Kit, System Biosciences) according
to the manufacturer’s instructions, and 5 ng/mL single-stranded oligodeoxynucleotide
(ssODN) (Supplementary Table 2). Injected zygotes were transplanted into the uteruses of
pseudopregnant dams, and the resulting pups were obtained by cesarean section. The target
region of the Cdh23 gene was directly sequenced from the PCR products amplified from the
template DNAs extracted from the tails of the pups. Additionally, the PCR products were

subcloned and sequenced in founders with knocked-in alleles. Promising founders were
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selected, and upon their reaching sexual maturity, in vitro fertilization was performed with
B6N strain-derived oocytes to check germline transmission and to obtain mice with
heterozygous mutated alleles. Furthermore, the heterozygous mice were intercrossed to
produce homozygote knock-in and wild-type control littermates for further experiments.

Routine genotyping by Sanger sequencing was performed to verify the allele knock-in.
Analysis of auditory brainstem response

Briefly, mice were anesthetized by intraperitoneal injection of sodium pentobarbital
(Somunopentil; 60-80 mg/kg) diluted in saline and were placed on a heating pad to maintain
body temperature at 37°C during ABR evaluation. Needle electrodes were placed
subcutaneously into the vertex (reference), right ear (active), and left ear (ground). The tone
stimulus was produced by a speaker (ES1 spc; BioResearch Center Nagoya, Japan) probe
inserted into the auditory canal of the right ear. The ABR thresholds from right ears in 13-
week-old and 6-month-old mice (Cdh23 c.753G>A; AA vs GG genotypes) were measured
with tone-pip stimuli at 8, 16 and 24 kHz generated by System3 (TDT). The resulting ABR
waveforms were bandpass-filtered (< 3 kHz and > 100 kHz), amplified 1,000 times (AC
PreAmplifier, P-55, Astro-Med Inc.) and recorded using the PowerLab 2/25 System (AD
Instruments) for 10 microseconds. A total of 500 recordings were averaged. The waveform
data were analyzed by LabChart v.7 (AD Instruments). The ABR thresholds were obtained
for each stimulus by reducing the sound pressure level (SPL) for 10 dB steps (80 dB to 10
dB) to identify the lowest level at which an ABR pattern could be reliably detected. The ABR
threshold was confirmed for consensus by independent evaluation of three investigators

blinded to the genotype of the tested mice.



Gene expression analysis

Total RNA was extracted using the miRNeasy Mini kit (QIAGEN GmbH, Hilden, Germany),
and single-stranded cDNA was synthesized using the SuperScript VILO cDNA synthesis kit
according to the manufacturer’s instructions. The mRNA levels for the target genes
(Supplementary Table 3) were quantified by real-time quantitative RT-PCR using TagMan
Gene Expression Assays, performed in triplicate, based on the standard curve method,
normalized to GAPDH/Gapdh as an internal control. To test the role of the Cdh23 ¢.753G>A
variant as a cis expression QTL (e-QTL) for Cdh23 expression, digital PCR was performed in
mouse brain samples from the subthalamic region/zona incerta and pontine region using
standard procedures and TagMan Gene Expression Assays in a QuantStudio™ 3D Digital
PCR System (Life Technologies Co., Carlsbad, CA, USA). Values outside the mean = 2 SD

in the group were considered outliers and were omitted from the analyses.

Design, library preparation, sequencing for MIP

Genomic DNA was isolated from blood samples obtained from human subjects using
standard methods. MIPs were designed for the CDH23 gene using MIPgen °

(http://shendurelab.github.io/MIPGEN/), targeting the coding exons and the flanking exon-

intron boundaries of the gene (GRCh37 build) and covering all transcripts. A total of 152

MIPs were designed for CDH23, aligning to the design parameters as reported previously .

A total 50 ng of genomic DNA, 250 fmol of 5’-phosphorylated MIPs mixture, 1.5 pL
of 10X Ampligase DNA ligase buffer (Epicentre), 0.3 uM dNTP (Invitrogen, Carlsbad, CA,
USA), 0.2 uL Hemo Klentaq (New England Biolabs, NEB, Ipswich, MA, USA) and 1 U
Ampligase (Epicentre biotechnologies, Madison, WI, USA) were added to molecular
biology-grade water for a total of 15 pL. After denaturation (95°C) for 10 minutes and

incubation for (60 °C) for 22 hours, linear probes and the remaining genomic DNA were


http://shendurelab.github.io/MIPGEN/

removed by exonuclease treatment. Next, the captured material was amplified by PCR using
barcoded reverse primers. At first, 48 samples PCR product were pooled, purified and
sequenced by Illumina MiSeq (Illumina, San Diego, CA, USA) system with 150 bp paired-
end reads. Depend on the read number of each MIPs, rebalanced the mixture ratio. After that,
operated same method using rebalanced MIP-mixture, 384 samples (3 sets) PCR product
were pooled, purified and sequenced by Illumina HiSeq2000 (Illumina) Rapid mode with 150

bp paired-end reads.

Variant annotation and analysis

In accordance with the Genome Analysis ToolKit (GATK) best practices ®, raw reads were
mapped to the genome (GRCh37 build) using Burrows-Wheeler Aligner (BWA MEM)
(0.7.5a-r405) which was further converted to .bam files using Picard-tools (1.137). The
GATK (3.4-46) was used for indel realignment, base-quality recalibration, and variant
discovery. Individual variant calling was performed with the GATK Haplotype Caller,
followed by multi-sample genotyping, and subsequently the variants were hard filtered.
Variants with Quality score (QUAL) < 30.0, quality by depth (QD) < 5.0, genotype quality
(GQ) < 20.0, heterozygous allele balance (ABHet) > 0.75, homopolymer run (HRun) >= 4,
and clustered variants were excluded from the analysis. Variants were further annotated using
ANNOVAR for deleteriousness ° and was filtered for only missense and loss of function
(LoF) variants (stop gained, stop lost, start lost, and variants on splice donor and acceptor
sites). In addition we also annotated the variants with REVEL tool *°. Since we were
interested in the variants exclusively present in cases, we excluded the variants that were

present in Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/) for global

population, Integrative Japanese Genome Variation Database (iJGVD) (3.5KJP) by Tohoku

Medical Megabank Organization (ToMMo) (https://ijgvd.megabank.tohoku.ac.jp/) and

Human Genetic Variation Database (HGVD) (http://www.hgvd.genome.med.kyoto-u.ac.jp/)

8


http://exac.broadinstitute.org/
https://ijgvd.megabank.tohoku.ac.jp/
http://www.hgvd.genome.med.kyoto-u.ac.jp/

for Japanese population. The identified variants were further validated by the Sanger

sequencing.
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Supplementary Figure 1: Experimental descriptions (A) Schematic representation describing
evaluation of prepulse inhibition (PPI) (B) linkage analysis scheme for quantitative trait loci (QTL)
analysis (C) chromosome 10 QTL for PPI at different prepulse levels
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Supplementary Figure 3: Cdh23 expression in marmoset brain sections. (A) RNA in situ
hybridization data shows pattern of Cdh23 expression is conserved in primates as evidenced
from neonatal and 3 months marmoset (Callithrix jacchus) brain sections
(https://gene-atlas.brainminds.riken.jp/) |
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Supplementary Figure 4: Cdh23 gene and the putative causal variant c.753G>A (rs257098870).
(A) Gene structure of Cdh23 gene with the putative causal variant marked (B) Electropherogram
showing the ¢.753G>A variant alleles in B6N and C3HN mice strains (C) The variant (synonymous
coding) does not cause amino acid change (P251P), (D) but results in tissue-dependent skipping of the
exon 9, in varying levels. The frequency of the variant allele is relatively high as observed from the
mouse genome project data, indicating strain specificity and lack of conservation
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Supplementary Figure 5: Experimental descriptions (A) Schematic representation describing
CRISPR-Cas9n mediated genomic editing for knocking in C3HN-specific G allele of Cdh23 ¢.753G>A
variant in B6N genetic background and the expected outcome of experiments by knocking in G allele.
(B) Targeted genomic loci for genomic editing and designs for short guide RNA (sgRNA) and
single-stranded oligodeoxynucleotide (ssODN) (C) Experimental strategy for generating genome edited
mouse.
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Supplementary Figure 6: Cdh23 alternative splicing in inbred B6N mouse strain and
prepulse inhibition (PPI) levels in Cdh23 ¢.753G allele knock-in mice. Comparative analysis
of Cdh23 alternative splicing in the brain and inner ear from inbred B6N mouse strains showed
tissue-specific alternative splicing of exon 9, which is lesser in brain (pontine and subthalamic
region compared to the inner ear. The higher level of exon 9 containing transcripts in the inner ear
from the Cdh23 ¢.753G allele knock-in mouse was in agreement with the inbred strains with G
allele, thus underscoring successful knock-in.
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Supplementary Figure 7: Scanning electron microscopy (SEM) images of hair cells. Stereocillia
morphology (middle area) is preserved in 6 months old Cdh23 ¢.753G allele knock-in mouse (GG) in B6
genetic background, when compared to the Cdh23 ¢.753A allele littermates (AA), which showed loss of
hair cells, indicating age-related hearing loss
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CDH23: Cadherin related 23
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10 73337683 c T  p.Arg256Cys  CDH23 1T
10 73434873 c G p.Thragsser  CDH23 T[T
10 73494096 G A p.val1402Met cDH23 | T DY P | T|T
10 73571298 T C  p.Phe3077leu CDH23 B T|T
10 73571717 C T  p.Arg3109Cys CDH23 B | T|T
10 73468881 G C  p.Vall04sleu CDH23 B B|B T[T
10 73330674 c T  pPro2sileu CDH23|[T[B[B 1T
10 73498394 G A p.Serl4soAsn CDH23 [ T|B[B T|T
10 73544798 c T  p.Argl8s8scys CDH23 [T|P|P T[T
10 73553202 G A pGlu2173lys CDH23 [T|P|B N[ T[T
10 73567077 c T  pSer274lleu CDH23 [T[B|P BRI
10 73337686 A G pllezs7val  coH23 [T|B[B|NEBAN|T[T[T
10 73439175 A T  pGInsosieu coH23 [T]B[B[NEBAN|.[T]T
10 73491830 G A pval12esmet cpH23 [T|B[B[NEY L] . [T[T
10 73500622 A G pHisis11Arg coH23 [ T|B[B[NIBIN] . [T[T
10 73468899 G A pvaliosule cpH23 [T|B[B[N[N[N].[T[T
10 73550915 A G plle2ozeval  coH23 [ T[B[BIN|N[N]. . [T[T
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https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#ljb42-dbnsfp-non-synonymous-variants-annotation

SIFT (sift)
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PolyPhen 2 HVar (pp2_hvar)
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RadialSVM
LR

REVEL
CADD_phred

GERP++ (gerp++)

D: Deleterious (sift<=0.05); T: tolerated (sift>0.05)

D: Probably damaging (>=0.957), P: possibly damaging (0.453<=pp2_hdiv<=0.956); B: benign (pp2_hdiv<=0.452)
D: Probably damaging (>=0.909), P: possibly damaging (0.447<=pp2_hdiv<=0.909); B: benign (pp2_hdiv<=0.446)
D: Deleterious; N: Neutral; U: Unknown
A" ("disease_causing_automatic"); "D" ("disease_causing"); "N" ("polymorphism"); "P" ("polymorphism_automatic")

H: high; M: medium; L: low; N: neutral. H/M means functional and L/N means non-functional

D: Deleterious; T: Tolerated

D: Deleterious; T: Tolerated
D: Deleterious; T: Tolerated
higher scores are more deleterious
higher scores are more deleterious
higher scores are more deleterious

Supplementary Figure 9: CDH23 variants Identified in Japanese individuals with schizophrenia.
Patient-specific novel rare loss of function (LoF) variants predicted by in silico tools. There variants were

very rare and observed in individual cases.
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Supplementary Figure 10: hiPSCs generated from a healthy individual with rs769896655
(c.753G>A) variant and the linkage disequilibrium pattern of the PPl GWAS hit in Japanese
population (A) Bright field images of hiPSC established from a healthy subject (TKUR120) heterozygous
(G/A) for the variant rs769896655, neurospheres, and neurons derived from the hiPSC are shown, which
was used for testing the allele specific expression in CDH23 transcript. (B) Significant variant from the
GWAS of PPI in schizophrenia, rs7082486 in CDH23, was located downstream of the the variant
rs769896655 (c.753G>A) with considerable linkage disequilibrium (LD) in Japanese population
(https://ldlink.nci.nih.gov/?tab=home). Since the variant rs769896655 was not represented in the
1000genome data, the exact LD value could not be estimated
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