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Supplementary Methods

Poisson mixture distributions

Let Y denote the effective contact process, which is a combination of the Poisson contact

process and the distribution of individual reproduction numbers. When assuming a

constant rate R for the transmission process, Y follows a Poisson distribution with

constant rate, Y ∼ Po(R). When accounting for individual variation, the rate itself is

assumed to follow a distribution (ν), leading to a Poisson mixture distribution Y ∼ Po(ν).

The variance of a mixture distribution Y is given by V ar(Y ) = E(Y 2) +
[
E(Y )

]2. Using

the probability generating function Q(s) we can obtain the variance for each mixture,

following

E(Y ) = Q(1)(1)

E(Y 2) = Q(1)(1) +Q(2)(1),

where Q(n)(1) is the nth derivative of Q(s), evaluated at s = 1. If the individual

reproduction numbers ν follow a distribution with pdf fν(λ), then the PGF of the Poisson

mixture distribution is given by

Q(s) =

∫ ∞
0

e−λ(1−s)fν(λ)dλ. (1)

Alternatively, for these Poisson mixture distributions, the variance equals the sum of the

mean and variance of the mixing distribution fν(λ) [1]. Let X be a random variable and

define Y as Y |X = y ∼ Po(x). Then using the law of total expectation,

E[Y ] = E[E[Y |X]] = E[X]

since E[Y |X] = X, the variance can be obtained as

V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]) = E[X] + V ar(X).

We consider different distributions for ν, resulting in different mixture distributions for

Y , each with mean R:

• ν is constant (R) → Y ∼ Poisson(R)

• ν ∼ Gamma with shape α and rate β → Y ∼ Negative-Binomial(µ, k) with mean

µ and dispersion parameter k

• ν ∼ Weibull with shape p and scale l → Y ∼ Poisson-Weibull(p, l) with shape p

and scale l
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• ν ∼ Lognormal with mean µlog and standard deviation σlog → Y ∼ Poisson-

lognormal(µlog, σlog) with mean µlog and standard deviation σlog

• ν ∼ generalized-Gamma with scale a and shape parameters d and p→ Y ∼ Poisson-

generalized Gamma(a, d, p) with scale a and shape parameters d and p

In the following sections we will describe the different mixture distributions Y ∼ Poisson(ν)

that will be used (in this notation x represents the number of secondary cases).

Negative binomial

The negative binomial distribution is a Poisson mixture where the individual reproduction

number ν follows a Gamma distribution, i.e. ν ∼ Ga(α, β) with shape α and rate β. The

density function of the negative binomial distribution is given by

f(x;α, β) =
βα

Γ(α)x!
· Γ(x+ α)

(1 + β)x+α
(2)

where the mean is given by µ = α/β. The probability generating function of the negative

binomial distribution [2] is given by

Q(s) =

(
1 +

µ

k
(1− s)

)−k
(3)

and hence the variance is µ(1 + µ
k ) = α

β (1 + 1
β ), and the dispersion parameter k is given

by µ2

σ2−µ .

Poisson-lognormal

Consider a Poisson mixture where ν ∼ Log-N(µlog, σlog) where σlog and µlog are the

standard deviation and mean on the log-scale. The density function of the Poisson-

lognormal distribution is given by

f(x;µlog, σlog) =

∫ ∞
0

e−λλx

x!
· 1

λ · σlog ·
√

2π
e
−

(ln(λ)−µlog)
2

2·σ2
log dλ (4)

where the mean is given by eµlog+
σ2log

2 . The probability generating function is given by

Q(s) =
e
−
µ2log

2σ2
log

σlog
√

2π

∫ ∞
0

1

λ
e
−λ(1−s)−

log(λ)2−2µloglog(λ)

2σ2
log dλ (5)

and hence the variance is eµlog+
σ2log

2 +
[
(eσ

2
log − 1)e2µlog+σ2

log
]
.
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Poisson-Weibull

Consider a Poisson mixture where ν ∼Weibull(p, l) with shape p and scale l. The density

function of the Poisson-Weibull distribution is given by

f(x; p, l) =
p

x! · lp

∫ ∞
0

e−λ−(λl )pλx+p−1dλ (6)

where the mean is given by lΓ( 1
p + 1). The probability generating function is given by

Q(s) =

∫ ∞
0

p

lp
e−λ(1−s)−(λl )pλp−1dλ (7)

and hence the variance is lΓ( 1
p + 1) + l2

[
Γ(1 + 2

p )−
(

Γ(1 + 1
p )
)2
]
.

Poisson-generalized Gamma

Consider a Poisson mixture where ν ∼ GG(a, d, p) where a denotes the scale parameter

and d and p denote the shape parameters. The density function of the Poisson-generalized

Gamma distribution is given by

f(x; a, d, p) =
p

ad · x! · Γ(dp )

∫ ∞
0

λx+d−1 · e−(λa )p−λdλ (8)

where the mean is given by a
Γ( d+1

p )

Γ( dp )
. The probability generating function is given by

Q(s) =

∫ ∞
0

p

adΓ(dp )
λd−1e−λ(1−s)−(λa )pdλ (9)

and hence the variance is a
Γ( d+1

p )

Γ( dp )
+ a2

[
Γ( d+2

p )

Γ( dp )
−
(

Γ( d+1
p )

Γ( dp )

)2
]
.

Simulation study

In our simulation study, the between-sample variability was obtained as follows

SE(x̂) =

√√√√ 1

B − 1

B∑
i=1

(x̂i − ¯̂x)2

where B is the number of datasets, x̂i is the parameter estimate obtained for simulated

dataset i and ¯̂xi is the sample mean. Then the mean squared error can be obtained as

MSE = (¯̂x− x̂i)2 + SE(x̂)2.
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Expected vs. realized proportions of transmission

The approach used by Lloyd-Smith et al. [3] is based on the distribution of the individual

reproduction number ν, so it is only based on the inherent transmission potential (which

is a combination of contacts and biological infectiousness) of individuals, not taking into

account stochasticity in the transmission process. In this case, the expected proportion

of cases responsible for a certain amount of transmission only depends on the level of

overdispersion, and is more or less equal for each R (Figure S1). The approach used

by Endo et al. [4] is based on the offspring distribution for the number of secondary

cases, taking into account inherent individual variation as well as stochasticity in the

transmission process. This can be interpreted as the realized proportion of cases responsible,

as opposed to the expected proportion. In this case, the proportion responsible for a

certain amount of transmission depends on the level of overdispersion as well as the

reproduction number R (Suppl. Fig. S1a). Comparing the two approaches, Suppl. Fig.

S1b shows that the first approach results in lower expected proportions of transmission

(i.e. a higher p80%), and the difference between the two approaches increases as the level

of overdispersion decreases.

Figure S1: Proportion of transmission due to a certain proportion of infectious cases for (a)

varying R with k fixed at 0.4, and (b) varying levels of overdispersion k and R fixed at 2.5.
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Essentially, the rate of the Poisson transmission process determines the overdispersion

in the number of secondary cases R. This can either be a constant (no variation), or be

taken from a distribution to allow for individual variation and hence create overdispersion.

Suppose this rate is assumed to follow a Gamma distribution, then the result is a negative

binomial offspring distribution with mean R and dispersion parameter k. When the

overdispersion level k is very high (→∞), this indicates that there is no variation in the

population (the variance of the Gamma distribution will be zero), which would imply

the individual reproduction number to be constant. Then one would expect the relation

between a and p to be linear when using Lloyd-Smith et al.’s approach [3]. When using

the negative binomial distribution (i.e. the complete offspring distribution) to obtain the

proportion responsible, this linear relation is not observed because it still accounts for

variation due to the stochastic Poisson transmission process (Suppl. Fig. S1b).

To account for the uncertainty in point estimates of a and p when these are based on

the continuous approximation proposed by Endo et al. [4], we extend the method used

by Lloyd-Smith et al. [3] by replacing the integral by a summation. Let f(x) represent

the probability mass function (pmf) of the offspring distribution and F (x) the cdf of the

offspring distribution. The cdf for disease transmission is then defined as

Ftrans(x) =
1

R

x∑
u=0

uf(u) (10)

and denotes the proportion of transmission that is due to infectious cases with their

number of secondary cases r ≤ x. As before, we should find x such that 1−Ftrans(x) = p

where x then denotes the threshold value of the reproduction number for which 1 −

Ftrans(x) is the proportion of transmission due to cases with r > x. The proportion

of cases responsible for a proportion p of transmission is then found as P (X > x) =

1 − P (X ≤ x) = 1 − F (x). However, in the discrete case it is unlikely that there exists

an integer x such that 1 − Ftrans(x) exactly equals p. Therefore we need to define two

values for this threshold, x1 and x2, such that Ftrans(x1) < 1 − p < Ftrans(x2). The

proportion of cases a responsible for a range p of transmission is then given by the range[
1− F (x2), 1− F (x1)

]
.
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Figure S2: Proportion of transmission due to a certain proportion of infectious cases for varying

levels of overdispersion (k = 0.08 (full), k = 0.44 (dashed), k = 3.2 (dotted)) and R fixed at 1.2,

for the negative binomial vs. Poisson-lognormal distribution.

Discrete Pareto distribution

Wong & Collins [5] examined the tail behavior of the empirical offspring distribution

Z, focusing on SSEs resulting in more than 6 secondary cases and found that this was

inconsistent with exponential decay but rather exhibited fat-tail behavior. Based on these

results they argue that the tail of Z can be described by a generalized Pareto distribution.

For completeness, we investigate whether a discrete Pareto distribution [6] would perform

better than the Poisson mixtures in describing the offspring distribution in our three data

examples. The discrete Pareto distribution has probability mass function

f(x) = θlog(1+x) − θlog(2+x)

where 0 < θ < 1 is the shape parameter. We fit this distribution to each COVID-19
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dataset and found that it does not provide a better fit in terms of AIC (Suppl. Table S1)

compared to the Poisson mixtures. It does seem to provide a slightly better fit in the tail

for the India and Rwanda data, but does not adequately capture the proportion of cases

that generate zero or only one secondary case (Suppl. Fig. S3).

Table S1: AIC values for the fit of a discrete Pareto distribution in addition to the other

distributions to each COVID-19 dataset.

Dataset Pareto NB POLN POWB POGG

Hong Kong 597.141 593.925 590.009 591.747 592.738

India 166616.4 163974.5 162980.6 163530.8 163286.5

Rwanda 1030.718 1015.261 1013.073 1014.350 1015.667
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(a)

(b)

(c)

Figure S3: Left panels show the fit of the discrete Pareto distribution to the observed (triangles)

offspring distribution, right panels show the goodness-of-fit (deviations from the straight line

indicate a lack of fit, r denotes the Pearson correlation coefficient), for the data from (a) Hong

Kong, (b) India, and (c) Rwanda. 9



Supplementary Results

Table S2: Simulation study results for N = 10, 000. R and σ denote the offspring mean and standard deviation,

respectively. SE(x̂) is the between-sample variability of x̂ and is used to obtain the standardized bias (Std. bias).

Smaller MSE indicates higher accuracy. Best fit denotes the proportion of simulations where the fitted model has

the lowest AIC. Asterisks indicate whether the bias is larger than |0.5SE(x̂)|.

Data generating

model

σ (k) Fitted

model

Bias SE(x̂) Std. bias MSE Best

fit

R̂ σ̂ R̂ σ̂ R̂ σ̂ R̂ σ̂

Poisson NB -0.0001 0.0025 0.0089 0.0062 -0.8345 39.6070 0.0001 0.0001 0.3060

PoLN -0.0003 0.0025 0.0090 0.0064 -3.2752 38.3755 0.00001 0.0001 0.1670

PoWB 0.0003 0.0031∗ 0.0090 0.0061 3.4151 51.5682 0.0001 0.0001 0.4940

PoGG 0.0001 0.0032∗ 0.0090 0.0063 1.1868 49.9982 0.0001 0.0001 0.0330

NB 1 (3.2) NB -0.0003 -0.0001 0.0102 0.0110 -3.1029 -1.1811 0.0001 0.0001 0.5260

PoLN -0.0002 0.0015 0.0102 0.0114 -2.1566 13.1819 0.0001 0.0001 0.1710

PoWB -0.0003 -0.0020 0.0102 0.0109 -3.0582 -18.6363 0.0001 0.0001 0.2960

PoGG -0.0003 -0.0008 0.0102 0.0115 -3.2947 -6.8577 0.0001 0.0001 0.0070

1.5 (0.44) NB -0.0011 -0.0024 0.0147 0.0268 -7.6078 -8.9771 0.0002 0.0007 0.8450

PoLN 0.0392∗ 0.5053∗ 0.0166 0.0671 235.8058 753.6438 0.0018 0.2598 0.0000

PoWB 0.0008 0.0462∗ 0.0148 0.0308 5.1606 149.7747 0.0002 0.0031 0.0070

PoGG -0.0006 -0.0036 0.0152 0.0305 -3.8462 -11.8622 0.0002 0.0009 0.1480

3 (0.08) NB 0.0009 0.0042 0.0303 0.1158 2.8391 3.5873 0.0009 0.0134 -

PoLN 1.2265∗ 130.5016∗ 0.1873 26.5420 654.7167 491.6793 1.5393 17735.15 -

PoWB - - - - - - - - -

PoGG 0.0745∗ 0.1850∗ 0.1252 0.2509 59.5224 73.7035 0.0212 0.0972 -

PoLN 1 (3.2) NB -0.0002 -0.0037 0.0100 0.0109 -1.6911 -34.3200 0.0001 0.0001 0.2140

PoLN -0.0002 -0.0006 0.0100 0.0114 -1.5593 -5.1894 0.0001 0.0001 0.7620

PoWB -0.0002 -0.0056∗ 0.0100 0.0109 -1.4735 -51.0669 0.0001 0.0002 0.0230

PoGG -0.0004 -0.0024 0.0100 0.0112 -3.6593 -21.3130 0.0001 0.0001 0.0010

1.5 (0.44) NB -0.0005 -0.1585∗ 0.0144 0.0283 -3.7409 -559.3826 0.0002 0.0259 0.0000

PoLN -0.0004 -0.0002 0.0143 0.0497 -2.8452 -0.3733 0.0002 0.0022 0.9780

PoWB -0.0028 -0.1252∗ 0.0145 0.0323 -18.9971 -387.6966 0.0002 0.0167 0.0000

PoGG -0.0063 -0.0912∗ 0.0143 0.0365 -43.9418 -249.7971 0.0002 0.0097 0.0220

3 (0.08) NB -0.0007 -1.1417∗ 0.0296 0.0860 -2.4218 -1327.6740 0.0009 1.3108 0.0000

PoLN -0.0017 -0.0100 0.0262 0.2117 -6.4958 -4.7241 0.0007 0.0449 1.0000

PoWB -0.0339∗ -1.0079∗ 0.0201 0.0703 -169.0068 -1433.1900 0.0016 1.0209 0.0000

PoGG 0.0550 -0.7524 0.3930 1.2907 13.9920 -58.2917 0.1575 2.2321 0.0000

PoWB 1 (3.2) NB -0.0002 -0.0010 0.0099 0.0107 -1.7634 -9.1319 0.0001 0.0001 0.2770

PoLN -0.00003 -0.0005 0.0099 0.0110 -0.3245 -4.1545 0.0001 0.0001 0.0260

PoWB -0.0002 -0.0029 0.0099 0.0105 -1.7105 -27.0875 0.0001 0.0001 0.5760

PoGG -0.0001 -0.0025 0.0099 0.0106 -0.7852 -23.7951 0.0001 0.0001 0.1210

1.5 (0.44) NB -0.0002 -0.0423∗ 0.0156 0.0284 -1.5173 -148.7519 0.0002 0.0026 0.0240

PoLN 0.0262∗ 0.3438∗ 0.0171 0.0615 153.8501 559.0264 0.0010 0.1220 0.0000

PoWB -0.0004 -0.0009 0.0156 0.0319 -2.3372 -2.7970 0.0002 0.0010 0.8500

PoGG -0.0007 -0.0026 0.0156 0.0340 -4.3863 -7.6866 0.0002 0.0012 0.1260

3 (0.08) NB -0.0001 -0.6792∗ 0.0294 0.0976 -0.3416 -696.1316 0.0009 0.4708 -

PoLN - - - - - - - - -

PoWB -0.0021 -0.0194 0.0358 0.1794 -5.9692 -10.8080 0.0013 0.0325 -

PoGG 0.0247 -0.2845 0.1120 0.3334 22.0196 -85.3332 0.0132 0.1921 -

PoGG 1 (3.2) NB 0.0003 0.0004 0.0097 0.0106 2.8584 3.3602 0.0001 0.0001 0.4290

PoLN 0.0003 0.0013 0.0097 0.0109 3.5454 11.9935 0.0001 0.0001 0.1940

PoWB 0.0003 -0.0013 0.0096 0.0105 2.8438 -12.6182 0.0001 0.0001 0.3450

PoGG 0.0003 -0.0001 0.0097 0.0105 2.9638 -1.0649 0.0001 0.0001 0.0320

1.5 (0.44) NB 0.0002 -0.0365∗ 0.0150 0.0279 1.1275 -130.9008 0.0002 0.0021 0.0540

PoLN 0.0265∗ 0.3350∗ 0.0164 0.0605 161.2018 553.5758 0.0010 0.1159 0.0000

PoWB 0.0002 0.0020 0.0150 0.0314 1.3855 6.3352 0.0002 0.0010 0.8460

PoGG 0.0013 -0.0050 0.0197 0.0357 7.7309 -14.0632 0.0003 0.0013 0.1000

3 (0.08) NB 0.0005 -0.5106∗ 0.0306 0.1068 1.6531 -478.0705 0.0010 0.2721 -

PoLN - - - - - - - - -

PoWB - - - - - - - - -

PoGG -0.0006 0.0100 0.0835 0.4455 -0.7113 2.2512 0.0070 0.1986 -
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Table S3: Simulation study results for N = 1, 000 and σ = 3. R and σ denote the offspring

mean and standard deviation, respectively. SE(x̂) is the between-sample variability of x̂ and is

used to obtain the standardized bias (Std. bias). Smaller MSE indicates higher accuracy. Best

fit denotes the proportion of simulations where the fitted model has the lowest AIC. Asterisks

indicate whether the bias is larger than |0.5SE(x̂)|.

Data generating

model

Fitted

model

Bias SE(x̂) Std. bias MSE

R̂ σ̂ R̂ σ̂ R̂ σ̂ R̂ σ̂

NB NB -0.0011 0.0024 0.0925 0.3602 -1.1412 0.6659 0.0086 0.1298

PoLN 1.3022∗ 166.1481 0.5455 136.6879 238.7127 121.5529 1.9932 46288.79

PoLN NB 0.0022 -1.1342∗ 0.1004 0.3012 2.2437 -376.5902 0.0101 1.3772

PoLN 0.0042 0.0711 0.0828 0.6851 5.0550 10.3782 0.0069 0.4744

PoWB NB -0.0023 -0.6856∗ 0.0968 0.3240 -2.3432 -211.648 0.0094 0.5750

PoLN - - - - - - - -

PoGG NB 0.0060 -0.4761∗ 0.0969 0.3340 6.2351 -142.5361 0.0094 0.3382

PoLN 0.4082∗ 21.7365 0.4178 58.6039 97.7133 37.0904 0.3412 3906.8950

Figure S4: Fit of the different distributions, Hong Kong data [7]. Triangles show the observed

offspring distribution.
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Figure S5: Goodness-of-fit for the different distributions, Hong Kong data [7]. Deviations

from the straight line indicate a lack of fit, with downward deviations indicating underestimation

and upward deviations indicating overestimation. r denotes the Pearson correlation coefficient.

Figure S6: Fit of the different distributions, India data [8]. Triangles show the observed

offspring distribution.
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Figure S7: Goodness-of-fit for the different distributions, India data [8]. Deviations from the

straight line indicate a lack of fit, with downward deviations indicating underestimation and

upward deviations indicating overestimation. r denotes the Pearson correlation coefficient.

Figure S8: Fit of the different distributions, Rwanda data. Triangles show the observed

offspring distribution.
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Figure S9: Goodness-of-fit for the different distributions, Rwanda data. Deviations from the

straight line indicate a lack of fit, with downward deviations indicating underestimation and

upward deviations indicating overestimation. r denotes the Pearson correlation coefficient.

Figure S10: Relation between standard deviation and degree of overdispersion. For higher

standard deviation, the negative binomial parameter k decreases, indicating more overdispersion.
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