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S1 Appendix

Modeling of Tumor-induced angiogenesis

Model Equations for biological movement and reaction

We use the Anderson-Chaplain model [1] to simulate the formation of blood vessel
networks in response to tumor-generated chemical gradients, as depicted in Fig 1. This
model describes the spatio-temporal evolution of three dependent variables, namely
endothelial tip cells, tumor angiogenic factor (TAF), and fibronectin. Endothelial tip
cells emerge from a parent blood vessel and migrate towards the tumor in response to
spatial gradients of TAF. In practice, tumors secrete multiple TAFs, including vascular
endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF); in the
Anderson-Chaplain model, TAF can be viewed as a generic factor. Tip cells migrate by
chemotaxis up spatial gradients and also exhibit a small amount of random diffusion.
Fibronectin, a major component of the extracellular matrix, also influences tip cell
movement; tip cells move, via haptotaxis, up spatial gradients of fibronectin. For a 2D
Cartesian geometry, the evolution of the tip cell density can be represented by the
following continuous partial differential equation:

∂n

∂t
= Dn∆n− χ0∇ · (n∇c)−∇ · (ρ0n∇f) (1)

where n = n(t, x, y) denotes tip cell density at time t and spatial position (x, y),
f = f(t, x, y) denotes fibronectin concentration, and c = c(t, x, y) denotes TAF
concentration. The parameters D, χ, and ρ parameterize tip cell diffusion, chemotaxis,
and haptotaxis, respectively.

Fibronectin is assumed to be produced and consumed by tip cells and to remain
bound to substrate ECM after its production. The evolution of fibronectin
concentration can be represented by the following partial differential equation:

∂f

∂t
= ωn− µnf, (2)

where the parameters ω and µ parameterize fibronectin production and consumption,
respectively.

TAF is assumed to be secreted by the tumor and to diffuse on a scale faster than the
endothelial cell migration. We assume tip cells consume TAF while migrating towards
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the tumor. The evolution of TAF concentration can be represented by the following
partial differential equation:

∂c

∂t
= Dc∆c− λnc, (3)

where the parameters Dc and λ parameterize TAF diffusion and consumption by tip
cells, respectively. Following [1], we will replace Equation (3) with the simpler partial
differential equation:

∂c

∂t
= −λnc. (4)

The parameters that appear in the model equations (1)-(2) and (4) are listed in S1
Table, together with a brief description of their biological meaning and typical
dimensional values taken from [1].

Nondimensionalization, initial & boundary conditions:

Following [1], we nondimensionalize Eqs. (1)–(2) and (4) as follows. We consider the
nondimensionalized variables (with asterisks) given by

t∗ =
Dc

L2
t, n∗ =

n

n0
, c∗ =

c

c0
, ρ∗ =

ρ

ρ0
,

D∗ =
Dn

Dc
, χ∗ =

χ0c0
Dc

, ρ∗ =
ρ0f0
Dc

,

β∗ =
ωL2n0
f0Dc

, γ∗ =
µL2n0
Dc

, η∗ =
λL2n0
Dc

. (5)

We substitute the variables from Equation (5) into Equations (1)–(2) and (4) and find
the nondimensionalized system of equations given by (asterisks dropped for notational
convenience)

∂n

∂t
= D∆n− χ∇ · (n∇c)− ρ∇(n∇f),

∂f

∂t
= βn− γnf,

∂c

∂t
= −ηnc. (6)

We list the nondimensionalized parameters for Equation in S2 Table.

∂n

∂t
= D∆n− χ∇ · (n∇c)− ρ∇ · (n∇f)

∂f

∂t
= βn− γnf

∂c

∂t
= −ηnc (7)

The dimensionless parameters used in all simulations (unless otherwise noted) are listed
in S2 Table.

We assume that the initial distribution of the TAF c can be described as a
one-dimensional profile from a tumor source at x = 1 as

c(x, y, 0) = e−
1−x2
ε1 , (x, y) ∈ [0, 1]× [0, 1]. (8)

The initial distribution of the fibronectin concentration f is given by

f(x, y, 0) = ke
−x2
ε2 , (x, y) ∈ [0, 1]× [0, 1]. (9)

April 8, 2021 2/5



Equations (8) and (9) are visually depicted in S7 Fig.
We use no-flux conditions at all boundary points to ensure that the net flux of tip

cells into the spatial domain is zero (no boundary conditions are needed for fibronectin
or TAF since their governing equations do not contain spatial derivatives).

Stochastic ABM implementation:

We simulate Equation (7) by using a stochastic agent-based model (ABM) to describe
tip cell locations over time and the resulting concentrations of fibronectin and TAF. In
turn, we create network of angiogenic blood vessels comprised of the tip cells and their
previous locations. We begin simulations by creating a lattice for our spatial domain
given by x = i∆x, i = 0, ..., N,∆x = 1/N with N = 201. The discretization of the
second spatial dimension, y, is defined equivalently. We then initialize ten tip cells
locations over time, ntipi (t), by setting ntipi (0) = {(0, 0.1i)}9i=1.

In order to simulate Eqs. (1)-(2) and (4), we discretize these equations around each

ntipi (t) over timestep ∆t using the upwind method and form five probabilities governing
whether the given tip cell will move left, right, up, down, or stay in place. We then set
ntipi (t+ ∆t) equal to one of these locations based on these five computed probabilities.

We define the ith vessel segment as

nvesseli =
⋃
t

ntipi (t). (10)

We also consider tip cell branching, in which a new tip cell is placed in the ABM
domain and creates a new vessel segment. As in [1], we use the following three rules to
determine when a tip cell branches and forms a new vessel segment:

1. Only sprouts of age greater than some new threshold value, ψ, may branch. We
set ψ = 0.1. After a tip cell branches, its “age” is re-set to zero.

2. A tip cell can only branch into neighboring lattice sites that are not occupied by
another sprout.

3. The endothelial cell density at ntipi (t) must be greater than some threshold level
given by

nb =
2.5

c(ntipi (t), t)
. (11)

We define the endothelial cell density at the point (x, y) as the number of
locations occupied by endothelial cells in the 3× 3 grid of points centered at
(x, y), divided by nine.

If all three of the above conditions are satisfied, then the tip cell will branch and
randomly place the new tip cell into one of its eight adjacent and unoccupied lattice
sites.

Resulting vasculature image: From an ABM simulation, we can form the entire
vasculature by constructing

Nvasculature =
⋃
i

nsprouti . (12)

We further convert this vasculature to a binary image, N , where we set each pixel (i, j)
to be

N(i, j) =

{
1 if (i∆x, j∆y) ∈ Nnetwork

0 otherwise
. (13)
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We present three representative realizations of N in Fig 7 that result from different
(ρ, χ) combinations. In these figures, red cells have a values of one to denote a sprout,
and white cells have a value of zero to denote the absence of a sprout.

Clustering results

Clustering with standard descriptor vectors: The use of the standard biological
descriptor vectors does not lead to biologically interpretable clusterings of the (ρ,χ)
parameter space (S1 Fig). The clustering of the parameter space using tips and vessel
segment descriptor vectors suggested that the majority of simulations belong to one
large cluster, which demonstrates that these descriptor vectors cannot distinguish
between simulations that result from visually distinct vascular architectures generated
by different model parameter values. The final vasculature length descriptor vector led
to four distinct clusters in the parameter space, but almost all (ρ,χ) pairs with χ > ρ
are placed into one large cluster (group 5), suggesting that this descriptor vector cannot
distinguish over half of the model simulations from each other. Concatenating all three
descriptor vectors into one large descriptor vector led again to one dominant cluster.
These descriptor vectors clusterings are robust, however, as each achieves a high OOS
accuracy of above 90% (S1 Fig).

Clustering with topological flooding descriptor vectors: We clustered our
simulated model data set using the the topological flooding descriptor vectors. Each
descriptor vector counts either the number of connected components (β0) or loops (β1);
performs the flooding filtration; and is summarized using a BC, PIR, or PIO, so we
considered 2× 1× 3 = 6 separate flooding topological descriptor vectors. Each of these
six descriptor vectors are ranked according to their OOS accuracy scores in S3 Table.
These clustering regions did not appear biologically interpretable, as many of the groups
are not well connected in the (ρ, χ) parameter space (S4 Fig). These flooding descriptor
vector clusterings are not robust, as we found a highest OOS accuracy of 65.8% is
achieved with the PIR1(Kflood) descriptor vector.

We next considered concatenating doubles of topological flooding vectors as a means
to improve robustness. We considered all (6 choose 2) = 15 possible flooding descriptor
vectors doubles and ranked these clusterings by the highest OOS accuracies in S4 Table.
Doubles of flooding descriptor vectors attain only slightly higher OOS accuracy scores
than individual flooding descriptor vectors. The PIO0(Kflood) & PIR1(Kflood) double
achieved the highest OOS classification accuracy of 66.4%. Though the clustering
regions in (ρ, χ) space for this double flooding descriptor vector did appear biologically
interpretable, as the five groups are mostly well connected, aside from Group 4 (S5 Fig).

Clustering with individual topological sweeping plane descriptor vectors:
We clustered our simulated model dataset using the the topological sweeping plane
descriptor vectors. Each descriptor vector counts either the number of connected
components (β0) or loops (β1); sweeps the plane in one of four directions (LTR, RTL,
TTB, and BTT); and is summarized using a Betti curve (BC), persistence image with
ramp weighting (PIR), or persistence image with one weighting (PIO), so we computed
2× 4× 3 = 24 sweeping plane descriptor vectors for each model simulation. Each of
these 24 summaries were ranked according to their OOS accuracy scores in S5 Table.
The four highest OOS accuracy scores resulted from the PIR1(KLTR) (91.5% OOS
accuracy), PIO0(KLTR) (83.5% OOS accuracy), PIO1(KRTL) (74.9% OOS accuracy),
and PIO1(KLTR) (74.7% OOS accuracy) descriptor vectors. While these clusterings
result in high classification scores, the resulting clusters were determined to not be
biologically interpretable. For example, S2 Fig shows that the parameter clusterings
that result from either the PIR1(KLTR) or the PIO0(KLTR) descriptor vector include
both high haptotaxis (e.g., (ρ, χ)=(0.5,0)) and high chemotaxis (e.g., (ρ, χ)=(0,0.5))
parameter combinations in the same cluster (group 5), even though these parameter
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combinations lead to markedly different vascular morphologies. The PIO1(KRTL) and
PIO1(KLTR) clusterings also led to clusterings that include high chemotaxis and high
haptotaxis simulations within the same cluster (within groups 1 and 2, respectively).
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