
Response to Reviewers
Topological data analysis distinguishes parameter regimes in the Anderson-Chaplain model of angiogenesis

John T. Nardini, Bernadette J. Stolz, Kevin B. Flores, Heather A. Harrington, Helen M. Byrne

We thank the three Reviewers for their positive and constructive comments on our manuscript. We have now extensively
revised our article in line with their suggestions. We include below a point-by-point response to the comments that were raised
by each Reviewer. For clarity, we indicate our responses to the comments, together with the actions we have taken to address
these comments. In the revised manuscript (and the responses included below), blue text indicates text that has been added
during revision of the manuscript.

Reviewer 1

1. Comment: Introduction (2nd paragraph): Here the authors outline the A-C angiogenesis model, which
appears not to account for any vascular remodelling (vessel compression, collapse, lumen remodelling, etc.)
- not as far as more contemporary models do, e.g.: DOI:10.1016/j.mvr.2015.02.007,
DOI:10.1371/journal.pone.0150296, DOI:10.1371/journal.pcbi.1005259, DOI:10.1098/rsif.2016.0918. There-
fore, the authors should justify this simplification in their study. Also, they need to elaborate in the paper
how and if this would impact the findings of this work. Along the same lines, the authors should justify why
they decided to select investigating the A-C model using a two-dimensional space. They have to elaborate
and convince on their decision to do so â mainstream state-of-art mathematical models are 3D; thus, a 2D
cancer model study may seem too simplistic nowadays. The authors need to elaborate on this matter and
explain again if the findings of their TDA study would be different in the case of a A-C model in 3D.

Response:

Response 1: We thank the reviewer for their comments on the Anderson-Chaplain model of angiogenesis, for highlighting
many excellent models of angiogenesis and vascular tumour growth, and for highlighting the differences in complexity
between 2D and 3D models of angiogenesis and vascular tumour growth: we completely agree with their comments.
At the same time, we would like to stress that the focus of our study is to show how concepts from topological data
analysis (TDA) can be used to study mathematical models of angiogenesis, i.e., the period during which a solid tumour
transitions from being avascular to vascular. In particular, we are not analysing vessel networks within vascular tumours.
We wholeheartedly agree that the Anderson-Chaplain model is highly idealised and neglects many physical processes which
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influence angiogenesis. It was chosen as the focus of our study because (i) it provides a minimal description of angiogenesis,
(ii) it generates vessel networks which are in good agreement with those observed in vivo, and (iii) it is one of the most
highly cited mathematical models of angiogenesis.

Action 1: We have included the following text and citations in the Introduction of the revised manuscript.

While more detailed theoretical models of angiogenesis have been developed (see reviews [7, 19, 31, 38, 42],
we focus on the Anderson-Chaplain model due to its simplicity and wide adoption in the mathematical biology
literature. The methods presented in this work can also be used to study alternative models of angiogenesis, such
as the phase-field model presented in [48], the 2D model of early angiogenesis and cell fate specification in [42],
the 3D hybrid model presented in [34], and multiscale models of vascular tumour growth, such as those presented
in [17, 46, 9, 39]

Response 2: We acknowledge that a 2D model of angiogenesis is no longer state-of-the-art, however, the focus of our study
is to provide a proof-of-concept that TDA can be used to study mathematical models of angiogenesis. Simulations of 3D
models of angiogenesis (and vascular tumour growth) and their investigation using TDA can be computationally expensive,
and may prohibit exhaustive searches of parameter space, particularly for hybrid, multiscale models that are stochastic. For
these reasons, we focused on 2D simulations of angiogenesis in this study. We intend to apply our methods to 3D models
of angiogenesis and vascular tumour growth in future work. Indeed, in separate work which is currently under review, we
have used TDA to analyse 4D (3D space, 1D time) data extracted from in vivo studies of tumour vessel networks [43].

Action 2: To acknowledge this point, we have incorporated the following text in the “Conclusions and discussion” section:

Our future analysis of such state-of-the-art modeling techniques will require us to extend the topological methods
presented here for spatio-temporal data that describes how multiple cell types ( e.g. tumour cells, immune cells
and endothelial cells) interact in 3D. In a preliminary study, we applied these methods to 3D data from in vivo
studies of tumour vessel networks, which is near the edge of current computational feasibility [43]. Further work
in this direction requires significant computational advancements to scale the TDA pipeline to multiple, more
complex models and to analyze their parameter landscapes.

2. Comment: Introduction (2nd paragraph) + Discussion: The review articles of theoretical cancer models
should include more recent ones, opposed to the ones currently cited [41-44], more specifically the reviewer
proposes: DOI:10.1200/CCI.18.00068, DOI:10.1088/1478-3975/ab1a09, DOI:10.1016/
.ymeth.2020.02.010.
Response: We thank the reviewer for highlighting these excellent recent reviews of tumour modelling, and for giving
us the opportunity to cite them in the revised manuscript.

Action 1: We now cite additional, more recent review articles in the Introduction:

While more detailed theoretical models have been developed (see reviews [7, 19, 31, 38]), we focus on the Anderson-
Chaplain model due to its simplicity and wide adoption in the mathematical biology literature.
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Action 2: We have included additional references in the “Conclusions and discussion” Section:

Many models of angiogenesis have been developed and implemented since the Anderson-Chaplain model, as has
been extensively reviewed previously [7, 19, 20, 23, 29, 31, 33, 35, 38].

3. Comment: Figure 1: This figure is nice despite no clear explanation why/how fibronectin gradients are
produced, while also the vascular elements recruited by TAFs that are in turn secreted by tumour cells
seem too out of scale compared to the “mother” blood vessel. Minor rework is needed here to further
improve the cartoon.

Response: We thank the reviewer for their helpful suggestions. We have updated Figure 1 and its caption to improve
its clarity.

Action: In the revised figure, we now clearly indicate the spatial gradients of fibronectin and TAF in the same way. In the
caption, we explain briefly how the fibronectin gradient is formed. We depict the new, angiogenic blood vessels as strings
of endothelial cells to distinguish from the pre-existing parent vessel.

Figure 1: Schematic depicting seven aspects of tumour angiogenesis that are incorporated in the Anderson-Chaplain model of
tumour-induced angiogenesis [2]. (1) Distant tumour cells release a range of chemoattractants, including vascular endothelial
growth factors and basic fibroblast growth factors that stimulate the formation of new blood vessels. These growth factors are
described collectively as a single, generic tumour angiogenesis factor (TAF). (2) Production and consumption of tissue-matrix
bound fibronectin by the endothelial cells, creates a spatial gradient of fibronectin across the domain. (3) Endothelial cells sense
the TAF and fibronectin gradients and undergo individual cell migration. (4) As endothelial tip cells migrate, via chemotaxis,
up spatial gradients of the TAF, stalk cells in the developing vessels are assumed to proliferate, creating what has been termed a
“snail trail” of new endothelial cells. (5) Endothelial tip cells also migrate, via haptotaxis, up spatial gradients in fibronectin. (6)
Endothelial cells in existing sprouts may initiate the formation of secondary sprouts. (7) If a sprout coincides with an existing
vessel, then it is assumed to be annihilated and a new loop is formed; if two sprouts coincide, or anastomose, then both are
assumed to be annihilated and a new loop forms.
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4. Comment: Figure 2: Here the authors outline the hierarchy of the proposed pipeline, where the 3 major
components (mathematical model -> data analysis -> data clustering) are shown very nicely. However,
one may say that box 2 and box 3 concern about data processing and analysis; therefore, there is no
clear distinction between the two. Also, there is no connection amongst the 3 boxes that is to say which
component from box 1 feeds another component from box 2, and which component from box 2 supplies
box 3 or/and box 1, and so on. The illustration needs some rework to render it a true figure showing the
“flow” of the processes involved in the proposed pipeline!

Response: We agree that the original version of Figure 2 did not show how information flows between the different steps
of the pipeline, and thank the reviewer for giving us the opportunity to correct this.

Action: In the new figure, we have included arrows and modified the caption to describe how the synthetic data produced
during step 1 is analysed using both standard descriptors and TDA. Both descriptor vectors are then used as input for
the final, data clustering step 3. We believe these new descriptions enable the reader more readily to understand what we
mean by “data analysis” and “data clustering” in steps 2 and 3.

Figure 2: Data generation and analysis pipeline. 1. Spatio-temporal modeling: Anderson-Chaplain model. The Anderson-
Chaplain model is simulated for 11 × 11 = 121 different values of the haptotaxis and chemotaxis parameters, (ρ, χ). Model
outputs are saved as binary images, where pixels labeled 1 (or 0) denote the presence (or absence) of blood vessels. We generate
10 realizations for each of the 121 parameter combinations, leading to 1,210 binary images of simulated vessel networks. 2.
Data analysis. We use the binary images from Step 1 to generate standard and topological descriptor vectors. A) Standard
descriptor vectors. We compute the number of active tip cells and the number of vessel segments at discrete time points. We
also compute the length of each vessel at the final simulation time point [13, 25, 24, 1]. B) Topological descriptor vectors. We
construct flooding and sweeping plane filtrations [5] using binary images from the final time point of each simulation. We track
the birth and death of topological features (connected components and loops) and summarize the results with Betti curves and
persistence images [1]. 3. Data clustering. We perform k-means clustering using either the standard or topological descriptor
vectors computed during step 2 from all 1,210 simulations. In this way, we decompose (ρ, χ) parameter space into regions that
group vessel networks with similar morphologies.
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5. Comment: Materials Methods: The major direction of tumour angiogenesis data via a topological data
analysis of the Anderson-Chaplain model is to interrogate haptotaxis and chemotaxis. However, the papers
cited already in this manuscript [47,48] highlight the importance of mechanotaxis in tumour angiogenesis.
This is a major simplification which may also have significant impact to the TDA analysis of the tumour
networks. The authors need to elaborate on this in the paper, and they are strongly advised to encompass
in their study the effect of mechanotaxis.

Response: We have included additional text in the conclusion and discussion section which elaborates on the simpli-
fications made in the Anderson-Chaplain model of angiogenesis, which we have used in the present study. In particular,
we state clearly that the model neglects mechanotaxis (and many other biophysical processes), and discuss the potential
impact that mechanotaxis has on the angiogenesis model and downstream TDA analysis.

Action: The following text have been added to the “Conclusions and discussion” section:

Even though the Anderson-Chaplain model neglects mechanotaxis, subcellular signalling, and many other bio-
physical processes, it has been widely adopted due to its ability to generate networks which are in good agreement
with those seen in vivo. More complex models have been developed that account for mechanical factors such as
mechanotaxis, pressure-driven convective transport of extracellular factors, mechanical stimulation of endothe-
lial cell proliferation, and subcellular signalling pathways that guide cell fate specification of tip and stalk cells
[46, 47, 34, 42]. Importantly, these more complex models have been shown to recapitulate experimental ob-
servations of time-varying spatial distributions of angiogenic vasculature [46] and features such as asymmetric
neovasculature [47] and cell rearrangements and phenotype switching of endothelial stalk and tip cells [21, 10].
In future work we will apply the TDA framework developed here to these, and other, detailed angiogenesis mod-
els: since our framework only relies on a segmented vasculature image, this should, in principle, be relatively
straightforward. Such analyses will enable us to investigate the effect that processes such as mechanotaxis and
subcellular signalling have on the topology of blood vessel networks.

6. Comment: Materials Methods: “We generate 10 realizations of the model for each of the 121 parameter
combinations, and produce... “ It should be justified how this parameter space discretization and why this
parameter range was selected. Should the authors have selected a much broader or narrower parameter
range for model parameters ârho’ and âchi’, or even a parameter range that may produce “unrealistic
simulations,” would this have affected the findings significantly, or not? Please elaborate on this â the
authors should also connect their response with the above reviewer comment!

Response: We agree that additional discussion is needed about the selection of the parameter range and discretization.
We added text in the Materials and Methods section that describes this selection.

Action: The following text has been added to the Materials and Methods subsection “Data generation”:

The parameter bounds of [0,0.5] were chosen to yield a range of vascular architectures that are visibly distinct
and recapitulate vascular patterns seen in vivo. The resolution of the parameter mesh (11 discrete values between
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0 and 0.5) was chosen for computational tractability while still being sufficiently detailed to illustrate how TDA
methods can detect and quantify differences between simulations generated using similar parameter values that
are difficult to distinguish visually.

7. Comment: Materials Methods: “To facilitate downstream clustering analysis, we require vectors of the
same length for all simulations.” The authors need to justify this decision. What if the âexperimental
data’ were not homogeneous and of a different sample size. Would this impact the reliability and accuracy
of the proposed pipeline; would the pipeline be able to work in principle? Please explain that in the
manuscript.

Response: We have added additional text to the Materials and Methods section to explain why all vectors are chosen to
be the same length, noting that this requirement is only for the non-TDA related methods and, thus, does not affect any
results from the TDA methodology.

Action 1: The following text has been added to the Material and Methods subsection “Morphologically-motivated standard
descriptors and descriptor vectors”:

We remark that the requirement for having vectors of the same length for all simulations might not be feasible
when dealing with experimental data, which could include heterogeneities in sample size and time point locations.
We note further that this requirement only applies to the standard descriptors; for the topological filtrations
considered in future sections, only the final segmented vessel image is needed.

Action 2: The following text has been added to the “Quantifying vessel shape using topological data analysis” Section:

From the constructed simplicial complexes, one can quantify and visualize the connected components (dimension
0) and loops (dimension 1) of a dataset at different spatial scales. While we compute the NT and NS standard
descriptor vectors at 50 time points for each model simulation (see Section Morphologically-motivated standard
descriptors and descriptor vectors), we compute topological descriptor vectors from the final output binary image.

8. Comment: Figure 3: Selection of vessel segments (that would in principle determine the number of vessel
segments) appears somehow arbitrary. Please explain how it works in the algorithm. Also, the concept
determining the final length of the vessels may be appropriate for a 2D representation of a vasculature.
Despite of this, what if one had considered to adopt a different wave-front determination algorithm for the
tip vessel propagation “monitoring.” What if one had employed in the algorithm multiple wave-fronts /
directions of the dashed-line(s). Would the proposed approach work in 3D representation of the tumour
vessels? Please elaborate further details of the algorithm in the manuscript.

Response:

Response 1: We agree that our original definition of vessel segments was not clear and have modified this definition in the
following text.
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Action 1: We have revised the text in two places to clarify our definition for blood vessel segments.

1.) In the Section “Morphologically-motivated standard descriptors and descriptor vectors,” we now write:

As described in Methods in the appendix, NS and NT both increase by one with each branching event, and NT

decreases by one with each anastomosis event...

2.) In Section “Stochastic ABM implementation” of the appendix, we now write:

We define the ith vessel segment as

nvesseli =
⋃
t

ntipi (t). (1)

We also consider tip cell branching, in which a new tip cell is placed in the ABM domain, and creates a new
vessel segment. As in [2], we use the following three rules to determine when a tip cell branches and forms a new
vessel segment.

• Only sprouts of age greater than some new threshold value, ψ, may branch. We set ψ = 0.1. After a tip cell
branches, its “age” is re-set to zero.

• A tip cell can only branch into neighboring lattice sites that are not occupied by another sprout.

• The endothelial cell density at ntipi (t) must be greater than some threshold level given by

nb = 2.5c(ntipi (t), t). (2)

We define the endothelial cell density at the point (x, y) as the number of locations occupied by endothelial
cells in the 3× 3 grid of points centered at (x, y), divided by nine.

Response 2: We agree that it would be interesting to determine how tracking the length of the network in multiple directions
impacts our analysis, particularly when the studying the remodelling and adaptation of vascular tumour networks. In the
present study, we focus on one direction because the fibronectin and TAF gradients establish a clear bias in tip cell
movement. In future work, we plan to consider 3D networks that expand in multiple directions, in which the consideration
of length in multiple directions will be necessary in order to extract the degree of anisotropy in the evolving blood vessel
network. We agree that it would be interesting to apply the standard descriptors to data from three dimensional vessel
networks in our study, but consider it beyond the scope of the current article. We note that, in separate work, we have
used standard and topological methods to analyse data from 3D biological networks (for details, see: [43]).

Action 2: We have included the following text in the “Conclusions and discussion” Section:

Our future analysis of such state-of-the-art modeling techniques will require us to extend the topological methods
presented here for spatio-temporal data that describes how multiple cell types ( e.g., tumour cells, immune cells
and endothelial cells) interact in 3D. In a preliminary study, we applied these methods to 3D data from in vivo
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studies of tumour vessel networks, which is near the edge of current computational feasibility [43]. Further work
in this direction requires significant computational advancements to scale the TDA pipeline to multiple, more
complex models and to analyze their parameter landscapes.

9. Comment: Filtrations for simulated vasculature / Figure 4: It is not entirely clear in the methods how
the binary image is generated â here from the model produced data (synthetic data) â and how it is
associated with the resolution of the simulation space. More precisely, the authors need to explain how
the “resolution” of the model generated tumour vasculature relates to the binary image “resolution”. Is
there any relationship between the two resolutions? For example, let’s take two extreme scenarios: (a) in
the first one, assume the resolution of the model vasculature (produced using the snail-trail algorithm) is
of the order of 1 [unit length] (minimum segment length) whereas the pixel size is 10*10 [unit length]2; (b)
in the second scenario, the resolution of the model vasculature is of the order of 1 [unit length] (minimum
segment length) whereas the pixel size is 1*1 [unit length]2. Can the authors explain how the filtration
algorithm will perform â please quantify your results.

Response: We simulate the model on a 201x201 lattice, and use the same lattice to generate the binary images. For
each binary image, a pixel value of zero or one denotes the presence or absence of an endothelial tip cell at that lattice site,
respectively. Since the same 201x201 lattice is used for the simulations and the binary images, we are not downsampling
the resolution in our study; we observe the data at the individual cell level. We postpone comparison of the performance
of our methods on finer and coarser lattices to future work.

Action 1: The following text has been added to the “Data generation” Section

... We generate 10 realizations of the model for each of the 121 (ρ, χ) parameter combinations, and produce 1,210
binary images that summarize the different synthetic blood vessel networks. Each simulation is initialized using
the same initial conditions, with all other model parameters fixed at the baseline values used in [2], and no-flux
conditions imposed on the domain boundary. For consistency with [2], all simulations are computed on lattices
of size 201 × 201. Each simulation continues until either an endothelial tip cell crosses the line x = 0.95 (in
dimensionless spatial units) or the maximum simulation time, t = 20 (in dimensionless time units), is exceeded.
The final model output is a 201× 201 binary image in which nonzero (zero) pixels denote the presence (absence)
of an endothelial cell at that lattice site.

Action 2: The following text has been added to “Conclusions and discussion” Section:

Our results using persistence images with unit weightings, rather than ramped weightings, also suggest that short
persistence features may be informative for distinguishing vessel morphologies. The spatial resolution of the output
binary images that we used for our analyses was the same as that used to generate the simulations, enabling us
to distinguish the presence and absence of individual endothelial cells at each lattice site. In future work, we will
consider finer and coarser binary images to investigate how the performance of the methods depends on their
spatial resolution.
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10. Comment: The authors need to comment also about the efficiency of the “sweeping plane filtration”
and “flooding filtration” algorithms when applied to 3D data (i.e., image stacks of MR scans, see review
DOI:10.1018/nrclinonc.2014.126).

Response: The reviewer raises an excellent point about the practical considerations of this work. Determining the
efficiency of these methods will be particularly important for extending our analysis to 3D data. Persistent homology is an
O(n3) process, where n is the number of simplices in the simplicial complex. We postpone further analysis of the efficiency
of our plane sweeping and flooding techniques for future work.

Action: We have included the following text in the “Conclusions and discussion” section:

Our future analysis of such state-of-the-art modeling techniques will require us to extend the topological methods
presented here for spatio-temporal data that describes how multiple cell types ( e.g., tumour cells, immune cells
and endothelial cells) interact in 3D. In a preliminary study, we applied these methods to 3D data from in vivo
studies of tumour vessel networks, which is near the edge of current computational feasibility [43]. Further work
in this direction requires significant computational advancements to scale the TDA pipeline to multiple, more
complex models and to analyze their parameter landscapes.

11. Comment: The following statement is not entirely clear to the reviewer, please consider rephrasing it. “On
each subsequent step, we iterate through each nonzero pixel from the previous binary image and manually
set every pixel in its Moore neighborhood ...”

Response: We have rephrased this text and trust that the meaning is now clear.

Action: We have rephrased the text in the “Flooding filtration” section:

On the first step, we input the output binary image from a model simulation. In the binary image, pixels with
value one denote the presence of an endothelial cell and pixels with value zero denote the absence of endothelial
cells. To create the second binary image, we identify all pixels of value one in the initial binary image, and assign
all pixels in their Moore neighborhood (as shown in Fig 4B) to value one. We repeat this process, generating a
sequence of binary images, until a binary image with only pixels of value one is created.

12. Comment: “From the corresponding sequence of binary images, we construct a filtered simplicial complex
Kflood = {K1,K2, ...,Kend}.” To the reviewer’s understanding, end filtration will result into a simplicial
complex that covers the entire “image”. Can the authors explain why this is needed? Is this right?

Response: The reviewer’s understanding is correct that the end filtration results in a simplicial complex that covers the
entire image. As discussed in [11], a filtration of a simplicial complex K is a nested sequence of subcomplexes that starts
with the empty complex and ends with the complete complex:

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kend = K.
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In our application, we choose the complete complex K to be the covered image. We chose to only include the first 25
flooding steps in this filtration, however (as depicted in Figure 11), since it results in a β0 value equal to 1 (only a single
connected component) and β1 value equal to zero (no loops) after Kend=25 filtration steps. We note that choosing any
larger value of Kend, e.g., Kend = 26, would just result in additional “ones” for β0 and “zeros” for β1 being appended to the
end of the respective Betti curves, which is non-informative. Choosing any smaller value of Kend, e.g., Kend=24, would
not have resulted in a simplicial complex covering the entire image and filling in all holes for every simulation, and thus
the β0 and β1 curves for some simulations might not yet have attained values of 1 and 0, respectively. Thus, choosing
Kend=25, when the Betti curves for all simulations attain β0=1 and β1=0, is standard practice in the TDA literature and
ensures the maximum amount of topological information is encoded in the betti curves.

Action: To clarify the choice of Kend=25, we added the following text to the “Flooding filtration” paragraph in the
“Filtrations for simulated vasculature” subsection of the “Quantifying vessel shape using topological data analysis” section:

We chose Kend = 25 so that the Betti curves for all simulations attain β0 = 1 and β1 = 0 at the final filtration
step, thus ensuring that the maximum amount of topological information is encoded in the Betti curves.

13. Comment: Pages 8-9: “Intuitively, a topological feature is born in filtration step ... with another component
or when a loop is covered by 2-simplices.” It is self-evident that the homology group for when a feature
is generated / born (tip vessel, branch, anastomosis, etc.) and for when a feature ceases to exist (e.g., tip
transforms into an anastomosis). Nonetheless, and in view of the modelling simplification that no vascular
remodelling / vessel compression or collapse / vessel intussusception is encompassed in the A-C model,
then how a branch (or even a tip vessel) is regressed, or how an anastomosis is pruned in the vascular
network.

Response: We believe that there is some confusion regarding when the model and TDA computations are being
performed. We first run each model simulation in full; generating these simulations involves actions such as tip cell
migration, branching, and anastomosis but not vascular remodelling, compression, or collapse as these processes are
neglected in Anderson and Chaplain’s highly idealised model of angiogenesis. When a simulation is complete, we associate,
with the vessel network at the final point, a binary image, in which a nonzero entry indicates the presence of an endothelial
cell at that pixel, and a zero entry indicates no endothelial cells at that pixel. We only perform our TDA summaries (plane
sweeping and flooding) on this binary image (i.e., after model simulation).

Because tip cells are predominantly moving from left to right (due to the TAF gradient), the plane sweeping approach
can identify the locations of branching and anastomosis events as follows. An anastomosis event occurs when two vessel
segments join together. For the left-to-right (LTR) sweeping plane filtration, when the sweeping plane is located to the left
of the anastomosis site, the two vessel segments are represented by two separate connected components. Once the plane
reaches the anastomosis location, however, the two segments form a single connected component. Thus, the LTR plane
sweeping filtration tends to decrease by one when it reaches the locations of anastamosis events. In a similar fashion, the
right-to-left (RTL) plane sweeping filtration decreases by one when it reaches the locations of branching events.
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Action: The following text has been included in the “Materials and Methods” section:

We compute three so-called standard descriptor vectors to summarize each simulation: two are computed at 50
time steps and the third is computed at the final time step. We also compute 30 topological descriptor vectors.

The following text has been included in the “Persistent homology” section:

In our case, the scale parameter corresponds to the spatial location in the sweeping plane filtration and to the
number of flooding steps in the flooding filtration. Note that we compute these filtrations on simulated blood vessel
network images at the final time step of a model simulation...

14. Comment: Topological descriptor vectors from PH: The following statement may need some further justi-
fication why this step was considered in the persistent homology algorithm. “In a first step the coordinates
(b; d - b) are blurred by a Gaussian, with standard deviation sigma, that is centered about each birth-
persistence point.”

Response: This step was included as per the original study of persistence images [1]. Gaussian blurring is performed to
account for uncertainty associated with where the topological feature may be born and die.

Action: We have added the following text in in the “Persistence images” section to clarify the rationale for including
Gaussian blurring:

A persistence image [1] uses as input the birth-death pairs given by PH and converts the set of (birth b, persistence
(d− b)) coordinates into a vector, a format which is suitable for machine learning and other classification tasks.
Following the standard definition of a persistence image, the coordinates (b, d − b) are blurred by a Gaussian,
with standard deviation σ, that is centered about each birth-persistence point, which accounts for uncertainty [1].

15. Comment: Simulation Clustering: “Specifically, 7 of the 10 descriptor vectors from each of the 121 (rho,
chi) parameter combinations..” were these 7 descriptor vectors begin selected randomly following a specific
pattern (uniform, normal distribution)?

Response: We have edited this sentence to specify that the random selection was uniform, which is standard practice in
machine learning when deriving a validation set.

Action: The following text has been edited in the Materials and Methods subsection “Simulation Clustering”:

Specifically, 7 of the 10 descriptor vectors from each of the 121 (ρ, χ) parameter combinations are randomly
chosen, with uniform sampling, and placed into a training set (847 simulations); the remaining 3 descriptor
vectors from each (ρ, χ) combination are placed into a testing set (363 simulations).
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16. Comment: Results / Haptotaxis and chemotaxis alter vessel morphology: As covered in the recent re-
views (DOI:10.1007/s11831-015-9156-x, DOI:10.1016/j.ymeth.2020.02.010 - they should be cited here),
angiogenesis models have already highlighted the importance of chemotaxis and haptotaxis in tumour-
induced angiogenesis, whereas in these two modelling papers (DOI: 10.1371/journal.pcbi.1005259) and
(DOI:10.1098/rsif.2018.0415) it has been demonstrated the importance of mechanotaxis and interstitial
fluid flow in vascular development in the tumour microenvironment. Therefore, the contribution of this
paragraph is not entirely clear to the reviewer. It should be enhanced with the analysis suggested in the
comment 5 above.

Response: We thank the reviewer for highlighting the importance of mechanotaxis and interstitial fluid flow on vascular
growth and remodelling within vascular tumours. We agree that these processes contribute to the growth and composition
of vascular tumours, as do many other biological factors (e.g., subcellular signalling pathways, such as VEGF/delta-
notch, haematocrit splitting rules), as have been investigated in the mathematical/computational modelling literature. We
reiterate, however, that this paper is not concerned with modelling vascular tumour growth: it is concerned with modelling
angiogenesis, i.e., the formation of blood vessels that occurs before a tumour is perfused. We purposely chose a highly
idealised model of angiogenesis, which lacks many biological details, to illustrate how TDA can be used to analyse simulated
vascular networks. We chose the Anderson-Chaplain model because it is arguably the most highly cited discrete model of
angiogenesis in the literature. Thus, we agree wholeheartedly with the reviewer that the model is extremely simplistic. At
the same time, however, it generates networks which are in good agreement with those seen in vivo. In future work, we
aim to use the topological (and standard) descriptor vectors first to compare different models of angiogenesis, and then
to investigate and compare different multiscale models of vascular tumour growth. Consequently we do not consider it
appropriate or necessary to include the suggested references at this point in the text, although they are cited at several
points throughout the manuscript.
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Reviewer 2

1. Comment: The authors frequently make reference to “biologically interpretable / informative / meaningful”
clusters. However the definition of “biologically meaningful” is not clear to me; I would guess it refers to
clusters that have similar biological properties, but this is purely my inferred meaning. I think the authors
should define this up front with a clear statement on what constitutes a “biologically meaningful cluster”.
Furthermore, there’s a difference between “meaningful” and “interpretable”; the latter term has a quite
specific meaning in machine learning that is not necessarily equivalent to meaning (an algorithm can be
non-interpretable but still produce meaningful predictions).

Response: We agree with the reviewer that we should have stated more clearly what constitutes a “biologically meaningful
cluster.” By “biologically interpretable clusterings” we mean that we can identify similarities between simulations in a
particular cluster as well as differences between simulations from different clusters. In this specific case study, we propose
that the clusters that result from the topological plane sweeping descriptor vectors are biologically interpretable because
simulations from the same cluster arise from similar regions in (ρ, χ) parameter space. For example, Fig. 12A exhibits
biologically interpretable clusterings, as all simulations in group 1 have large values of haptotaxis and much lower values
of chemotaxis (i.e., ρ >> χ). The ρ/χ ratio decreases as we then consider simulations inside groups 2, 3, 4, and finally 5.

Action 1: We have revised the text in the Introduction to clarify this point:

Our main objectives are to identify descriptor vectors that group model simulations into biologically interpretable
clusters. By biologically interpretable, we mean that simulations within a cluster arise from similar parameter
values and that simulations from different clusters arise from different parameter values.

We use two topological approaches, the sweeping plane and flooding filtrations, to construct simplicial complexes
from binary image data generated from simulations of the Anderson-Chaplain model. We show that PH of the
sweeping plane filtration and its subsequent vectorization provides a descriptor vector which is interpretable for the
model parameters governing chemotaxis and haptotaxis. We show, by comparison with existing, morphologically-
motivated descriptor vectors, that this topological approach leads to more biologically interpretable clusters that
stratify the haptotaxis-chemotaxis parameter space. Furthermore, the clusters generated from the sweeping plane
filtration are robust and generalize well to unseen model simulations.

Response 2: We agree that we mis-used the phrase “biologically meaningful” at several places in the original manuscript.

Action 2: For consistency, we have replaced the phrase “biologically meaningful” by “biologically interpretable” throughout
the revised manuscript.

2. Comment: Have the authors considered alternative standard descriptors from the literature? For example,
δmax, the maximum distance in the tissue from the nearest blood vessel, and λ, a measure of the shape of
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the spaces between vessels, used by https://www.pnas.org/content/108/5/1799. Or even simply tortuosity
(which the authors themselves reference on page 13).

Response: We acknowledge that many other standard descriptors could have been used in our study, including those
listed by the reviewer. The focus of our study, however, is to highlight how concepts from persistent homology can be used
to analyze a collection of simulated vessel networks, rather than to provide an exhaustive analysis of standard descriptors
of angiogenesis. We have chosen to consider length, the number of vessel segments, and the number of active tip cells due
to their wide use in the literature.

Action: We have added the following text to the “Morphologically-motivated standard descriptors and descriptor vectors”
section :

Morphologically-motivated standard descriptors are used to summarize physical characteristics of each model
simulation. Commonly-used descriptors include inter-vessel spacing, the number of branch points, the total area
(volume) spanned by the network for 2-dimensional (3-dimensional) simulations, the shape of such loops in 2D
(voids in 3D), and tortuosity [3, 13, 22, 25, 24, 34]. We choose to use the following descriptors due to their
prevalence in the literature: the number of vessel segments (NS), the number of endothelial tip cells (NT ), and
the final length of the longest vessel (L) [4, 13, 25, 24].

3. Comment: Section “Filtrations for simulated vasculature”. The results section raises questions regarding
the two representations presented here (sweeping plane and flooding). Given that they produce quite
different results, I think some reference should be made to previous applications of each encoding; in
particular what problems they were developed to solve, as this may shed light on why sweeping plane
performs better than flooding.

Response: The previous applications of these two filtrations are limited. The plane sweeping technique was originally
considered in [5] to analyse brain artery data. Flooding filtrations have been used in [16] to distinguish retinas from healthy
patients and patients with diabetic retinopathy. While TDA has increased in popularity over the past 15 years, researchers
have only recently realized the need for application-specific filtrations [43]. We chose to employ the flooding and plane
sweeping filtrations after much thought on what an informative filtration may look like for binary images of simulated
blood vessel networks. Intuitively, the flooding filtration tracks how topological features change as the vessel segments
thicken over each filtration step. The plane sweeping filtration tracks how segments merge and bifurcate as we sweep across
the network in different directions.

Action: We have added references to the following text in section “Filtrations for simulated vasculature”:

There are different ways to study vascular data at multiple scales [5, 16, 8, 43]. ... A challenge for researchers is
to determine informative filtrations for specific applications [44], such as blood vessel development in our study.
Here, the input data is the binary image from the final timepoint of the Anderson-Chaplain model, which we call
N (See Eq (13) in the Appendix). We construct sequences of binary images that correspond to different filtered
simplicial complexes: a sweeping plane filtration [5] and a flooding filtration [16]...
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4. Comment: Section “Simulation clustering”. The distance metric used by the k-means algorithm is not
explained; I assume it’s Euclidean, but the authors should state this clearly.

Response: We have edited the Material and Methods subsection “Simulation Clustering” to clarify that Euclidean
distance is used.

Action: Text in Material and Methods subsection “Simulation Clustering” has been revised as follows:

We use all 363 testing simulations when computing OOS accuracy and use the KMeans command from scikit-learn
(version 0.22.1), which uses Lloyd’s algorithm for Euclidean space, for training and prediction.

5. Comment: Figs 10, 11. I find it difficult to compare these figures because the Betti curves are presented on
different axes (space in Fig 10, step in Fig 11). It would help if the figures were more directly comparable,
or even on the same plot.

Response: Because of the way in which we have applied the two filtrations, it does not make sense to plot the figures on
the same axis. The plane sweeping approach depends on the position of the plane, whereas the flooding approach depends
on the number of flooding steps that have been undertaken. The focus of figures 10 and 11 is not directly to compare the
two filtrations, but instead to highlight how each of them can be used to distinguish the three simulations presented in
Figure 7.

Action: The following text has been added to the section “Quantification of blood vessel architecture data”:

We next illustrate how we use the plane sweeping and flooding filtrations to analyse the chemotaxis-driven,
haptotaxis-driven, and chemotaxis & haptotaxis-driven simulations (from Fig 7). We computed Betti curves,
β0(K

v) and β1(K
v), of the simulated data with sweeping plane filtrations for v = {LTR,RTL, TTB,BTT}

(see Fig 10) and a flooding filtration v = {flood} (see Fig 11). These filtrations are constructed to provide
complementary but not directly comparable information; roughly, the sweeping plane gives an indication of the
network in the (x-y) plane whereas the flooding filtration also focusses on vessel density (see earlier description of
filtration construction). We could interpret the PH of the sweeping plane filtration direction as follows: the blood
vessels grow primarily from left to right, so the LTR and RTL filtrations primarily identify dynamic changes in
branching and anastomosis of vessels.

6. Comment: Section “Haptotaxis and chemotaxis alter vessel morphology”. The respective roles of hapto-
and chemotaxis have been investigated before, it’s not entirely clear whether the authors are reporting
them as new or just including them for context. I would guess the latter, but I think clarification is
needed.

Response: We agree that this sort of investigation has been performed previously, but we include it in our study for
consistency.

Action: We added the following text in the “Haptotaxis and chemotaxis alter vessel morphology” Section:
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We investigated the influence of haptotaxis and chemotaxis by varying the parameters ρ and χ. We note that
similar parameter sensitivity analyses have been performed previously [2, 19]; we reproduce this analysis as the
basis for our data analysis.

7. Comment: Section “Sweeping plane descriptor vectors cluster simulations by parameter values”. There are
two results here that are not explained: i) sweeping plane can produce biologically meaningful clusters,
while flooding cannot; ii) double descriptor vectors created by sweeping plane produce biologically mean-
ingful and robust clusters. I think the authors need to provide explanations, and in particular comment
on why the two encodings produce such different results.

Response: We agree that the results could have been explained more clearly, and apologise for any confusion. A
challenge for the application of TDA is to determine how to properly interpret its output. This is commonly done by
trial and error, and then one seeks to understand why particular filtrations perform well. We have found that the plane
sweeping approach robustly stratifies the (χ, ρ) parameter space into biologically interpretable clusterings. We suggest that
this may be because the way in which we create the LTR and RTL filtrations (moving a plane horizontally) resemble the
anisotropic manner in which the simulated networks are formed (endothelial tip cells move from left to right, in response
to a prescribed chemoattractant field). Furthermore, the LTR filtration can determine the location of anastomosis events
and the RTL filtration can determine the location of branching events (see also our response to comment 13 from reviewer
1 above).

Action: We have added the following text to the “Sweeping plane descriptor vectors cluster simulations by parameter
values” section:

We suggest that the LTR and RTL plane sweeping filtrations produce the most interpretable clusterings because
sweeping the plane horizontally resembles the way in which endothelial tip cells migrate from left to right in our
simulated data.

No single descriptor vector was able to robustly cluster simulations into biologically interpretable groups. We
suggest that double descriptor vectors combining LTR and RTL descriptor vectors can robustly group simula-
tions into biologically interpretable clusterings because the associated filtrations capture the ways in which vessel
segments anastomose and branch, respectively.

8. Comment: Choosing the value of k: the elbow plot (S2 Fig) is not hugely convincing to justify k=5, and
the decision appears to have been made somewhat post hoc based on the desired interpretation of the
clusters. The silhouette score might provide more information, and should be relatively easy to calculate
given that a standard distance metric is used by the k-means algorithm.

Response: We thank the reviewer for this helpful feedback. We agree that alternative methods could be used to
determine the optimal number of clusterings. However, our goal for this study is not to develop a fully automated pipeline
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and remove expert knowledge. Instead, we seek to develop a pipeline that we can interpret with expert knowledge to
identify biologically interpretable groupings. We find that k = 5 provides a reasonable choice in terms of the elbow plot
and biological interpretation.

Action: We have included the following text in the “Sweeping plane descriptor vectors cluster simulations by parameter
values” section

We applied k−means clustering to all sweeping plane double descriptor vectors and computed the average OOS
accuracy for a range of values of k, also known as an elbow plot (S2 Fig)... We note that more sophisticated
descriptors could be used to justify this choice of k, including the silhouette score [36]. However, the focus of our
study is to develop a pipeline that can be guided by expert knowledge, and we find that k = 5 appears well justified
by the elbow plot and biological interpretation.
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Reviewer 3

1. Comment: At the risk of sounding pedantic, the description of tumour-induced angiogenesis in Fig. 1 needs
its language updated or simply make clear that some of the concepts are useful modelling abstractions
but not necessarily biological mechanisms. For example, endothelial cells (ECs) don’t “deposit” other
ECs as they invade the avascular space. Since the formulation of the original A-C model, there have
been substantial advances in understanding the dynamics of tip and stalk cells in sprouting angiogenesis.
Furthermore, ECs don’t branch into two cells, it is ECs along an existing sprout that initiate secondary
sprouts and so on. It may be worth bringing the description of TAF (VEGF+bFGF) from the methods
section to the main text.

Response: We totally agree with the reviewer that the A-C model is simplistic and that many, more recent models provide
more detailed depictions of the multiple, biological mechanisms that regulate angiogenesis. We introduce these processes
in the Introduction and revisit them in the “Conclusions and discussion” section where we discuss possible directions for
future work (see our responses to comments 1 and 3 from Reviewer 1). We have also revised the legend to Figure 1 as per
the reviewer’s helpful suggestions.

Action 1: We have included a more detailed description of the processes that regulate angiogenesis in the Introduction
section, as well as a description of some of the shortcomings of the A-C model. The modified text in the Introduction is
provided below:

Here, we focus on tumor-induced angiogenesis, the process by which tumor cells stimulate the formation of new
blood vessels from pre-existing vasculature [18]. When oxygen and nutrient levels within a population of tumor
cells become too low to sustain a viable cell population, the tumor cells produce several growth factors, including
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth
factor (bFGF), which diffuse through the surrounding tissue [12, 14, 40]. On contact with neighboring blood
vessels, these tumor angiogenesis factors (or TAFs) increase the permeability of the vessel walls and loosen
adhesive bonds between the endothelial cells that line the blood vessels [15]. The TAFs activate the endothelial
cells to release proteases that degrade the basement membrane [30]. Activated tip endothelial cells then migrate
away from the parent vessel and follow external cues, such as spatial gradients of VEGF and/or fibronectin
[32, 45]. Stalk endothelial cells located behind the tip cells proliferate into the surrounding tissue matrix, causing
the emerging vessel sprouts to elongate [41]. When tip endothelial cells from one sprout come into contact with tip
or stalk endothelial cells from another sprout, the two endothelial cells may fuse or anastamose together, forming
a new loop through which oxygen and nutrients may be transported [32]. In Fig 1 we present a schematic model
of how these processes are coordinated.

As the number of experimental and theoretical studies of angiogenesis has increased, so our knowledge of the
mechanisms involved in its regulation has increased beyond the idealised description given above [28, 37]. For
example, subcellular signalling involving the VEGF and delta-notch signalling pathways is known to influence
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whether an endothelial cell adopts a tip or stalk cell phenotype [6]. Further, immune cells, including macrophages,
that are present in the tumor microenvironment, are known to release TAFs such as VEGF and matrix degrading
proteases which facilitate tumor angiogenesis [28]. Mechanical stimuli also influence endothelial cell migration.
For example, the fluid shear stress experienced by endothelial cells lining blood vessels drives their migration by
causing them to form lamellipodia and focal adhesions at the front of the cell, in the flow direction, and to retract
focal adhesions at the rear [26, 27].

Action 2: The legend to Fig 1 has been revised (see response to comment (3) from Reviewer 1):

2. Comment: The argument of the paper goes that the standard quantitative descriptors in page 4 (inter-
vessel spacing, number of branching points, tortuosity, etc) fail to capture higher dimensional information
and facilitate network clustering. It would be very interesting to see how (little) effective these are at
clustering the simulations similarly to Fig. 12. This comparison would provide quantitative evidence of
the superior performance of the method proposed.

Response: We thank the reviewer for this suggestion. We agree that this figure should be included in the main text.

Action: We have moved SI Figure 16 (original manuscript) into the main text (Fig 12 in the revised manuscript). References
to the figure have also been updated.

3. Comment: Fig. 12 and accompanying text: it would be interesting to also see the PIO0(KLTR) PIO0(K
RTL)

descriptors plotted on a 2D plane (via Principal Component Analysis for example) to get a sense of the
distance between the clusters. Fig 13 indicates that classes 1 and 2 may be phenotypically closer than any
other pair of classes.

Response: We thank the reviewer for this suggestion. We have included a new figure, S10 Fig, in the revised manuscript
(shown below). The colors correspond to the groupings for each simulation. As expected, pairs from consecutive groups
(e.g., 1 & 2, 2 & 3) are closer to each other than pairs from non-adjacent groups.

Action: We have included a new supplementary figure (S10 Fig) for this analysis, and have included the following text in
the “Sweeping plane descriptor vectors cluster simulations by parameter values” section:

We suggest that double descriptor vectors combining LTR and RTL descriptor vectors are able to robustly cluster
simulations into biologically interpretable clusterings because they capture how vessel segments anastomose and
branch, respectively. We performed principal components analysis to reduce the “PIO0(K

LTR) & PIO0(K
RTL)”

double descriptor vector to two principal components. The results presented in S10 Fig show that the simulations
from each group are also clustered in this two-dimensional space.

4. Comment: Page 18: my main criticism of the study is that the conclusion that the proposed descriptors
cluster the networks in biologically meaningful way is highly dependent on the choice of k=5 in the
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S10 Figure: Dimensionality reduction of the PIO0(K
LTR) & PIO0(K

RTL) double descriptor vector. We reduced the dimension-
ality of the PIO0(K

LTR) & PIO0(K
RTL) double descriptor vector down to two dimensions using principal components analysis

and plot the reduced-dimension descriptor vector for each simulation. The color of each dot denotes the predicted grouping of
each simulation from the k-means algorithm.

clustering analysis. This choice is justified in a very empirical way and I would suggest the authors to use
the elbow method or a similar heuristic to argue about the optimal number of clusters in k-means based
on the amount variance explained.

Response: We thank the reviewer for this helpful feedback. The conclusions certainly depend on the choice of k = 5

clusters, but this choice was guided by the elbow plot in S2 Fig of the revised manuscript. Further, we have included
similar results for k = 3 and k = 4 in S8 Fig of the revised manuscript. While the results change slightly as k varies, we
note that our goal is not to develop a fully automated pipeline and remove expert knowledge. Instead, we seek to develop
a pipeline that we can interpret with expert knowledge to find biologically interpretable groupings. We find that k = 5

represents a compromise between choosing a small number of clusters and thoroughly partitioning the parameter space.

Action: We have included the following text in the “Sweeping plane descriptor vectors cluster simulations by parameter
values” section

We applied k−means clustering to all sweeping plane double descriptor vectors and computed the average OOS
accuracy for a range of values of k, also known as an elbow plot (S2 Fig)... We note that more sophisticated
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descriptors could have been used to justify this choice of k, including the silhouette score [36]. However, the focus
of our study is to develop a pipeline that can be guided by expert knowledge, and we find that k = 5 appears well
justified by the elbow plot and biological interpretation.
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